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PREFACE TO THE EIGHTH EDITION

eÕ;kos'; euks ;s eka fuR;;qDrk miklrsA

J¼;k ij;ksisrkLrs es ;qDrrek erk%AA
The Eighth edition of this textbook is an outcome of new syllabus of Engineering

Mathematics III (NAS-301/NAS-401) for the students of B. Tech. II year (Both III and IV
semester in all branches) proposed and implemented by the U.P. Technical University
(U.P.T.U.), Lucknow recently. The book has been renovated in the light of the latest syllabus.
It will work as the latest ready reckoner for the readers.

The subject matter has been made more lucid and easier to understand. A large number
of new solved examples and questions have been added. All the answers have been checked
and verified. All the questions of latest university papers have been added in the body of the
text. The suggestions from our colleagues and readers have been incorporated at the proper
places. An appreciably heavy demand of the book ensures its utility to the users.

Separate exercise (TEST YOUR KNOWLEDGE) have been given at the end of each
unit.

This book is written with a unique style only meant for the welfare of dear students. We
hope that this book will be a strength for them and it will serve their very purpose of attaining
excellent results.

We are highly obliged to Dr. Hari Kishan, Ex-Head, Department of Mathematics,
K.R. (P.G.) College, Mathura, also an eminent author, for his valuable help round the clock in
making this book PERFECT in all senses.

We are indebted to GOD for shower of blessing. The suggestions with a view to enhance
the utility of the book are always welcome.

—AUTHORS

(ix)
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SYLLABUS

U.P. TECHNICAL UNIVERSITY, LUCKNOW

MATHEMATICS-III

NAS-301/NAS-401 L T P
3 1 0

Unit I: Function of Complex variable 8

Analytic functions, C-R equations. Harmonic Functions, Cauchy’s integral theorem,
Cauchy’s integral formula. Derivatives of analytic functions, Taylor’s and Laurent’s series,
Singularities, Zeroes and Poles, Residue theorem, Evaluation of real integrals of the type

0

2π
θ θ θz f d(cos , sin )  and 

− ∞

+ ∞z f x dx( ) .

Unit II: Integral Transforms 8

Fourier integral, Complex Fourier transform, Inverse Transforms, Convolution
Theorems, Fourier sine and cosine transform, Applications of Fourier transform to simple one
dimensional heat transfer equations, wave equations and Laplace equations, Z-transform and
its application to solve difference equations.

Unit III: Statistical Techniques 8

Moments, Moment generating functions, Skewness, Kurtosis, Curve fitting, Method of
least squares, Fitting of straight lines, Polynomials, Exponential curves, Correlation, Linear,
Non-linear and multiple regression analysis, Binomial, Poisson and Normal distributions,
Tests of significations: Chi-square test, t-test.

Unit IV: Numerical Techniques–I 8

Zeroes of transcendental and polynomial equations using Bisection method, Regula-
falsi method and Newton-Raphson method, Rate of convergence of above methods.

Interpolation: Finite differences, Newton’s forward and backward interpolation,
Lagrange’s and Newton’s divided difference formula for unequal intervals.

Unit V: Numerical Techniques–II 8

Solution of system of linear equations, Matrix Decomposition methods, Jacobi method,
Gauss Seidal method.

Numerical differentiation, Numerical integration, Trapezoidal rule, Simpson’s one third
and three-eight rules.

Solution of ordinary differential equations (first order, second order and simultaneous)
by Euler’s, Picard’s and fourth-order Runge-Kutta methods.

(x)
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STANDARD RESULTS

1. d
dx

 (xn) = nxn–1 2. d
dx

 (ax) = ax loge a

3. d
dx

 (ex) = ex 4. d
dx

 (loge x) = 
1
x

5. d
dx

 (log10 x) = 
1
x

 log10 e 6. d
dx

 (sin x) = cos x

7. d
dx

 (cos x) = – sin x 8. d
dx

 (tan x) = sec2 x

9. d
dx

 (cosec x) = – cosec x cot x 10. d
dx

 (cot x) = – cosec2 x

11.
d
dx

 (sec x) = sec x tan x 12.
d
dx

 (sin–1 x) = 
1

1 2− x

13. d
dx

  (cos–1 x) = 
−

−

1

1 2x
14. d

dx
 (tan–1 x) = 

1

1 2+ x

15. d
dx

 (sec–1 x) = 
1

12x x −
16.

d
dx

 (cot–1 x) = 
−
+

1

1 2x

17. d
dx

 (cosec–1 x) = – 
1

12x x −
18. sinh x = e ex x− −

2

19. cosh x = 
e ex x+ −

2
20. tanh x = 

e e

e e

x x

x x
−
+

−

−

21. cosh2 x – sinh2 x = 1, sech2 x + tanh2 x = 1, coth2 x = 1 + cosech2 x
22. cosh2 x + sinh2 x = cosh 2x

23. sinh–1 x = log (x + x2 1+ ), cosh–1 x = log (x x+ −2 1)

24. d
dx

 (sinh x) = cosh x 25. d
dx

 (cosh x) = sinh x

26. d
dx

 (tanh x) = sech2 x 27. d
dx

 (coth x) = – cosech2 x

28. d
dx

 (sech x) = – sech x tanh x 29. d
dx

 (cosech x) = – cosech x coth x

30. Product rule: 
d
dx

 (uv) = u
dv
dx

 + v
du
dx

31. Quotient rule: 
d
dx

 
u
v
F
HG
I
KJ  = 

v
du
dx

u
dv
dx

v

−
2

32.
dy
dx

 = 
dy
dt

dt
dx

. if y = f1(t) and x = f2(t)

(xi)
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33. sin–1 x + cos–1 x = 
π
2

, tan–1 x + cot–1 x = 
π
2

, sec–1 x + cosec–1 x = 
π
2

34. tan–1 a b
ab

−
+
F
HG

I
KJ1

 = tan–1 a – tan–1 b, tan–1 a b
ab

+
−
F
HG

I
KJ1

 = tan–1 a + tan–1 b

35. tan–1 2

1 2
x

x−

F
HG

I
KJ  = sin–1 

2

1 2
x

x+

F
HG

I
KJ  = 2 tan–1 x

36. sin 3x = 3 sin x – 4 sin3 x, cos 3x = 4 cos3 x – 3 cos x, tan 3x = 3

1 3

3

2
tan tan

tan

x x

x

−
−

sin 2x = 2 sin x cos x, tan 2x = 
2

1 2
tan

tan

x

x−
,

cos 2x = 2 cos2 x – 1 = 1 – 2 sin2 x = cos2 x – sin2 x = 
1

1

2

2
−
+

tan

tan

x

x

37. sin x = x – x3

3 !
 + x5

5 !
 – 

x7

7 !
 + ..., cos x = 1 – x2

2 !
 + 

x4

4 !
 – x6

6 !
 + ...

ex = 1 + x + 
x2

2 !
 + 

x3

3 !
 + ...

(1 – x)–1 = 1 + x + x2 + x3 + ... ; | x | < 1 (1 + x)–1 = 1 – x + x2 – x3 + ...

(1 – x)–2 = 1 + 2x + 3x2 + 4x3 + ... (1 + x)–2 = 1 – 2x + 3x2 – 4x3 + ...

38. sin C + sin D = 2 sin C D
2
+  cos C D

2
− , sin C – sin D = 2 cos C D

2
+  sin C D

2
−

cos C + cos D = 2 cos C D
2
+  cos C D

2
− , cos C – cos D = 2 sin C D

2
+  sin D C

2
−

39. 2 cos A cos B = cos (A + B) + cos (A – B), 2 sin A sin B = cos (A – B) – cos (A + B)

2 sin A cos B = sin (A + B) + sin (A – B), 2 cos A sin B = sin (A + B) – sin (A – B)

40. sin (A + B) = sin A cos B + cos A sin B, sin (A – B) = sin A cos B – cos A sin B

cos (A + B) = cos A cos B – sin A sin B, cos (A – B) = cos A cos B + sin A sin B

41.
d
dx

 (sinh–1 x) = 
1

1 2+ x
, 

d
dx

 (cosh–1 x) = 
1

12x −

d
dx

 (tanh–1 x) = 
1

1 2− x
, where | x | < 1,

d
dx

 (coth–1 x) = 
1

12x −
, where | x | > 1

d
dx

 (sech–1 x) = – 
1

1 2x x−
, 

d
dx

 (cosech–1 x) = – 
1

12x x +

42. (cos θ + i sin θ)n = cos nθ + i sin nθ, (cos θ + i sin θ)–n = cos nθ – i sin nθ
43. sin2 θ + cos2 θ = 1, sec2 θ – tan2 θ = 1, 1 + cot2 θ = cosec2 θ

(xii)
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44. θ 0° 30° 45° 60° 90° 180° 270° 360°

sin θ 0 1/2 1 2/ 3 2/ 1 0 – 1 0

cos θ 1 3 2/ 1 2/ 1/2 0 – 1 0 1

tan θ 0 1 3/ 1 3 ∞ 0 ∞ 0

45. θ 90° – θ 90° + θ π – θ π + θ
sin θ cos θ cos θ sin θ – sin θ
cos θ sin θ – sin θ – cos θ – cos θ
tan θ cot θ – cot θ – tan θ tan θ

46. sine formula: 
a

sin A
 = 

b
sin B

 = 
c

sin C
; cosine formula: cos A = 

b c a
bc

2 2 2

2
+ −

47. Area of triangle Δ = s s a s b s c( ) ( ) ( )− − − , where s = 
a b c+ +

2

48. nCr = 
n

r n r
!

! !−

49. z x dxn  = 
x
n

n+

+

1

1
 + c; n ≠ – 1

z 1
x

dx  = loge x + c; z e dxx  = ex + c; z a dxx  = 
a

a

x

elog
 + c

z sin x dx  = – cos x + c; z cos x dx  = sin x + c

z tan x dx  = log sec x + c; z cot x dx  = log sin x + c

z sec x dx  = log (sec x + tan x) + c = log tan 
π
4 2

+FHG
I
KJ

x
 + c

z cosec x dx  = log (cosec x – cot x) + c = log tan 
x
2

 + c

z sec x tan x dx = sec x + c; z cosec x  cot x dx = – cosec x + c

50. z −

dx

a x2 2
 = sin–1 

x
a
F
HG
I
KJ  + c; z −

−

dx

a x2 2
 = cos–1 

x
a
F
HG
I
KJ  + c

z +
dx

a x2 2  = 
1
a

 tan–1 x
a
F
HG
I
KJ  + c; z −

+
dx

a x2 2  = 
1
a

 cot–1 
x
a
F
HG
I
KJ  + c

z −
dx

a x2 2  = 
1

2a
 log a x

a x
+
−
F
HG
I
KJ  + c; z −

dx

x a2 2  = 
1

2a
 log x a

x a
−
+
F
HG
I
KJ  + c

z −

dx

x x a2 2
 = 

1
a

 sec–1 
x
a
F
HG
I
KJ  + c; z −

−

dx

x x a2 2
 = 

1
a

 cosec–1 
x
a
F
HG
I
KJ  + c

(xiii)
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51. z sech2 x dx = tanh x + c, z cosech2 x dx = – coth x + c

z sinh x dx = cosh x + c, z cosh x dx = sinh x + c

z sech x tanh x dx = – sech x + c, z cosech x coth x dx = – cosech x + c

52. z −a x dx2 2  = 
1
2

 x a x2 2−  + 
1
2

 a2 sin–1 
x
a

 + c

z +a x2 2  dx = 
1
2

 x a x2 2+  + 
1
2

 a2 log (x + a x2 2+ ) + c

x a2 2−z  dx = 
1
2

 x x a2 2−  – 
1
2

 a2 log (x + x a2 2− ) + c

z +

dx

a x2 2  = sinh–1 
x
a
F
HG
I
KJ  + c; z −

dx

x a2 2
 = cosh–1 

x
a
F
HG
I
KJ  + c

53.
a

b
f x dxz ( )  = 

a

b
f y dyz ( ) ; 

a

b
f x dxz ( )  = – 

b

a
f x dxz ( ) ; 

0

a
f x dxz ( )  = 

0

a
f a x dxz −( )

−z a

a
f x dx( )  = 

2

0
0

a
f x dx f x

f x
zRS|
T|

U
V|
W|

( ) , ( )

, ( )

if is even function

if is odd function

0

2a
f x dxz ( )  = 2 2

0 2
0

a
f x dx f a x f x

f a x f x
z − =

− = −

R
S|
T|

U
V|
W|

( ) , ( ) ( )

, ( ) ( )

if

if

54. Leibnitz rule for differentiation under the integral sign

d
dx

 
φ α

ψ α
α

( )

( )
( , )z f x dx  = 

φ α

ψ α ∂
∂α

α
( )

( )
{ ( , )}z f x dx  + f{ψ(α), α} 

d
d
ψ α

α
( )

 – f{φ(α), α} 
d

d
φ α

α
( )

55. If r
→

 = xi yj zk+ +  then  | |r
→

 = x y z2 2 2+ +  and r  = 
r

r

→

→
| |

 = 
xi yj zk

x y z

+ +

+ +2 2 2

56. AB
–→

 = position vector of B-position vector of A = OB
–→

 – OA
–→

57. a b
→ →

⋅  = | a
→

 | | b
→

 | cos θ ; work done = F
c

dr
→ →

⋅∫

58. a b
→ →

×  = | a
→

 | | b
→

 | sin θ n

59. Area of parallelogram = a b
→ →

× , Moment of force = r
→ →

× F

(xiv)
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60. a
→

 ⋅ ( b c
→ →

× ) = [ a b c
→ → →

] = 
a a a
b b b
c c c

1 2 3

1 2 3

1 2 3

 = ( a b
→ →

× ) . c
→

where a
→

 = Σ a1i , b
→

 = Σ b1i  and c
→

 = Σc1i

If a
→

 ⋅ ( b c
→ →

× ) = 0, then a
→

, b
→

, c
→

 are coplanar.

61. a
→

 × ( b c
→ →

× ) = (a c
→ →

⋅ ) b
→

 – ( a
→

 ⋅ b
→

) c
→

62. ( a
→

 × b
→

) ⋅ ( c
→

 × d
→

) = a c a d

b c b d

→ → → →

→ → → →
⋅ ⋅

⋅ ⋅

63. ( a
→

 × b
→

) × ( c d
→ →

× ) = [ a b d
→ → →

] c
→

 – [ a b c
→ → →

] d
→

64. A (Adj. A) = | A | I 65. AA–1 = I = A–1 A

66. AI = A = IA 67. (ABC)′ = C′B′A′

68. (AB)C = A(BC); A(B + C) = AB + AC

69. A + B = B + A; A + (B + C) = (A + B) + C

70. (AB)–1 = B–1A–1

71. Walli’s formula

0

2π
θ

/
sinz n  dθ = 

0

2π
θ θ

/
cosz n d  = 

n
n

n
n

n
n

n

n
n

n
n

n
n

n

− −
−

−
−

− −
−

−
−

R
S
||

T
||

1 3
2

5
4

3
4

1
2 2

1 3
2

5
4

4
5

2
3

. . ...... . .

. . ...... .

π
if is even

if is odd

72. z e bx dxax sin  = 
e

a b

ax

2 2+
 (a sin bx – b cos bx) + c

z e bx dxax cos  = 
e

a b

ax

2 2+
 (a cos bx + b sin bx) + c

73. Γ( / )1 2  = π , Γ( / )− 1 2  = – 2 π

74. log (1 + x) = x – x2

2
 + x3

3
 – x4

4
 + x5

5
 – x6

6
 + ......

log (1 – x) = – x – x2

2
 – x3

3
 – x4

4
 – x5

5
 – x6

6
 – ......

75. sin nπ = 0 ; cos nπ = (– 1)n, sin n +FHG
I
KJ

1
2

 π = (– 1)n ; cos n +FHG
I
KJ

1
2

 π = 0, where n ∈ I

76. x3 + y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz – zx).

(xv)
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UNIT 1
Function of Complex Variable

1.1 INTRODUCTION

A complex number z is an ordered pair (x, y) of real numbers and is written as

z = x + iy, where i = − 1 .
The real numbers x and y are called the real and

imaginary parts of z. In the Argand’s diagram, the complex
number z is represented by the point P(x, y). If (r, θ) are the

polar coordinates of P, then r = x y2 2+  is called the modulus

of z and is denoted by | z |. Also θ = tan–1 
y
x

 is called the

argument of z and is denoted by arg. z. Every non-zero complex
number z can be expressed as

z = r (cos θ + i sin θ) = reiθ

If z = x + iy, then the complex number x – iy is called the conjugate of the complex
number z and is denoted by z .

Clearly,  | z  | = | z |,| z |2 = z z ,

Re(z) = 
z z+

2
 , Im(z) = 

z z
i

−
2

.

1.2 DEFINITIONS

Let S be a non-empty set of complex numbers and δ be a positive real number.
1. Circle. |z – a| = r represents a circle C with centre at the point a and radius r.
2. Open disk. The set of points which satisfies the equation |z – z0| < δ defines an open disk
of radius δ with centre at z0 = (x0, y0). This set consists of all points which lie inside circle C.
3. Closed disk. The set of points which satisfies the equation |z – z0| ≤ δ defines a closed disk
of radius δ with centre at z0 = (x0, y0). This set consists of all points which lie inside and on the
boundary of circle C.
4. Annulus. The set of points which lie between two concentric circles C1 : |z – a| = r1 and
C2 : |z – a| = r2 defines an open annulus i.e., the set of points which satisfies the inequality r1
< |z – a| < r2.

The set of points which satisfies the inequality r1 ≤ |z – a| ≤ r2 defines a closed annulus.
It is to be noted that r1 ≤ |z – a| < r2 is neither open nor closed.

θ

r

P (x, y)

y

MO x

Y

X

1
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2 A TEXTBOOK OF ENGINEERING MATHEMATICS

5. Neighbourhood. δ-Neighbourhood of a point z0 is the set of all points z for which
|z – z0| < δ where δ is a positive constant. If we exclude the point z0 from the open disk
|z – z0| < δ then it is called the deleted neighbourhood of the point z0 and is written as
0 < |z – z0| < δ.
6. Interior and exterior points. A point z is an interior point of S if all the points in some
δ-neighbourhood of z are in S and an exterior point of S if they are outside S.
7. Boundary point. A point z is a boundary point of S if every δ-neighbourhood of z contains
at least one point of S and at least one point not in S. For example, the points on the circle
|z – z0| = r are the boundary points for the disk |z – z0| ≤ r.
8. Open and closed sets. A set S is open if every point of S is an interior point while a set S
is closed if every boundary point of S belongs to S. e.g. S = {z : |z – z0| < r} is open set while
S = {z : |z – z0| ≤ r} is closed set.
9. Bounded set. An open set S is bounded if ∃ a positive real number M such that
| z | ≤ M for all z ∈ S otherwise unbounded.
For example: the set S = {z : |z – z0| < r} is a bounded set while the set S = {z : |z – z0| > r} is
an unbounded set.
10. Connected set. An open set S is connected if any two points z1 and z2 belonging to S can
be joined by a polygonal line which is totally contained in S.
11. Domain. An open connected set is called a domain denoted by D.
12. Region. A region is a domain together with all, some or none of its boundary points. Thus
a domain is always a region but a region may or may not be a domain.
13. Finite complex plane. The complex plane without the point z = ∞ is called the finite
complex plane.
14. Extended complex plane. The complex plane to which the point z = ∞ has been added is
called the extended complex plane.

1.3 FUNCTION OF A COMPLEX VARIABLE

If x and y are real variables, then z = x + iy is called a complex variable. If corresponding to
each value of a complex variable z(= x + iy) in a given region R, there correspond one or more
values of another complex variable w (= u + iv), then w is called a function of the complex
variable z and is denoted by

w = f(z) = u + iv
For example, if w = z2 where z = x + iy and w = f(z) = u + iv

then  u + iv = (x + iy)2 = (x2 – y2) + i(2xy)
⇒  u = x2 – y2 and v = 2xy

Thus u and v, the real and imaginary parts of w, are functions of the real variables x and y.
∴ w = f(z) = u(x, y) + iv(x, y)
If to each value of z, there corresponds one and only one value of w, then w is called a

single-valued function of z. If to each value of z, there correspond more than one values of w,
then w is called a multi-valued function of z. For example, w = z  is a multi-valued function.

To represent w = f(z) graphically, we take two Argand diagrams: one to represent the
point  z  and  the  other  to  represent  w.  The  former  diagram is called the XOY-plane or the
z-plane and the latter UOV-plane or the w-plane.
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FUNCTION OF COMPLEX VARIABLE 3

1.4 LIMIT OF f(z)

A function f(z) tends to the limit l as z tends to z0 along any
path, if to each positive arbitrary number ε, however small,
there corresponds a positive number δ, such that

   | f(z) – l | < ε whenever 0 < | z– z0 | < δ

and we write  Lt
z z→ 0

f(z) = l, where l is finite

Note. In real variables, x → x0 implies that x approaches x0 along
the number line, either from left or from right. In  complex
variables, z → z0 implies that z approaches z0 along any path,
straight or curved, since the two points representing z and z0 in a
complex plane can be joined by an infinite number of curves.

1.5 CONTINUITY OF f(z)

A single-valued function f(z) is said to be continuous at a point z = z0 if f(z0) exists, lim
z z→ 0

f(z)

exists and Lt
z z→ 0

f(z) = f(z0).

A function f(z) is said to be continuous in a region R of the z-plane if it is continuous at
every point of the region. A function f(z) which is not continuous at z0 is said to be discontinuous
at z0.

If the function f(z) = u + iv is continuous at z0 = x0 + iy0 then the real functions u and v
are also continuous at the point (x0, y0). Therefore, we can discuss the continuity of a complex
valued function by studying the continuity of its real and imaginary parts. If f(z) and g(z) are

continuous at a point z0 then the functions f(z) ± g(z), f(z) g(z) and 
f z
g z
( )
( )

, where g(z0) ≠ 0 are also

continuous at z0.
If f(z) is continuous in a closed region S then it is bounded in S i.e., |f(z)| ≤ M ∀ z ∈ S.

Also, the function f(z) is continuous at z = ∞ if the function f
1
ξ
F
HG
I
KJ  is continuous at ξ = 0

1.6 DERIVATIVE OF f(z)

Let w = f(z) be a single-valued function of the variable z(= x + iy), then the derivative or
differential co-efficient of w = f(z) is defined as

dw
dz

f z
f z z f z

zz
= ′ = + −

→
( )

( ) ( )
Lt

δ

δ
δ0

provided the limit exists, independent of the manner in which δz → 0.

1.7 ANALYTIC FUNCTION [G.B.T.U. 2012, M.T.U. 2012, U.P.T.U. 2014]

A function f(z) is said to be analytic at a point z0 if it is one-valued and differentiable not only
at z0 but at every point of some neighbourhood of z0. For example: ex (cos y + i sin y). A function
f(z) is said to be analytic in a certain domain D if it is analytic at every point of D.

Y

O X

Z

Z0
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4 A TEXTBOOK OF ENGINEERING MATHEMATICS

The terms ‘regular’, ‘holomorphic’ and ‘monogenic’ are also sometimes used as synony-
mous with the term analytic.

A function f(z) is said to be analytic at z = ∞ if the function f 1
z
F
HG
I
KJ  is analytic at z = 0.

Here it should be noted that analyticity implies differentiability but not vice versa. For
example, the function f(z) = |z|2 is differentiable only at z = 0 and nowhere else therefore f(z)
is differentiable at z = 0 but not analytic anywhere.

A function f(z) may be differentiable in a domain except for a finite number of points.
These points are called singular points or singularities of f(z) in that domain.

1.8 ENTIRE FUNCTION

A function f(z) which is analytic at every point of the finite complex plane is called an entire
function. Since the derivative of a polynomial exists at every point, a polynomial of any degree
is an entire function. Rational functions with non-zero denominators are also entire functions.

1.9 NECESSARY AND SUFFICIENT CONDITIONS FOR f(z) TO BE ANALYTIC
[M.T.U. 2012, U.P.T.U. (C.O.) 2008]

The necessary and sufficient conditions for the function
 w = f(z) = u(x, y) + iv(x, y)

to be analytic in a region R, are

(i) ∂
∂

∂
∂

∂
∂

∂
∂

u
x

u
y

v
x

v
y

, , ,  are continuous functions of x and y in the region R.

(ii)
∂
∂

∂
∂

∂
∂

∂
∂

u
x

v
y

u
y

v
x

= = −, .

The conditions in (ii) are known as Cauchy-Riemann equations or briefly C-R
equations.
Proof. (a) Necessary Condition. Let w = f(z) = u(x, y) + iv(x, y) be analytic in a region R, then
dw
dz

 = f ′(z) exists uniquely at every point of that region.

Let δx and δy be the increments in x and y respectively. Let δu, δv and δz be the corre-
sponding increments in u, v and z respectively. Then,

f ′(z) = Lt Lt
δ δ

δ
δ

δ δ
δz z

f z z f z
z

u u i v v u iv
z→ →

+ − = + + + − +
0 0

( ) ( ) ( ) ( ) ( )

 = Lt
δ

δ
δ

δ
δz

u
z

i
v
z→

+FHG
I
KJ0

...(1)

Since the function w = f(z) is analytic in the region R, the limit (1) must exist independ-
ent of the manner in which δz → 0, i.e., along whichever path δx and δy → 0.

First, let δz → 0 along a line parallel to x-axis so that δy = 0 and δz = δx.
[since z = x + iy, z + δz = (x + δx) + i(y + δy) and δz = δx + iδy]

∴ From (1), f ′(z) = Lt
δ

δ
δ

δ
δ

∂
∂

∂
∂x

u
x

i
v
x

u
x

i
v
x→

+FHG
I
KJ = +

0
...(2)

Now, let δz → 0 along a line parallel to y-axis so that δx = 0 and δz = iδy.
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FUNCTION OF COMPLEX VARIABLE 5

∴ From (1), f ′(z) = Lt
δ

δ
δ

δ
δ

∂
∂

∂
∂y

u
i y

i
v

i y i
u
y

v
y→

+
F
HG

I
KJ = +

0

1

   = 
∂
∂

∂
∂

v
y

i
u
y

− ...(3) ∵ 1
i

i= −

From (2) and (3), we have 
∂
∂

∂
∂

∂
∂

∂
∂

u
x

i
v
x

v
y

i
u
y

+ = −

Equating the real and imaginary parts, 
∂
∂

∂
∂

u
x

v
y

= and
∂
∂

∂
∂

u
y

v
x

= − (U.P.T.U. 2015)

Hence the necessary condition for f(z) to be analytic is that the C-R equations must be
satisfied.
(b) Sufficient Condition. Let f(z) = u + iv be a single-valued function possessing partial

derivatives ∂
∂

∂
∂

∂
∂

∂
∂

u
x

u
y

v
x

v
y

, , ,  at each point of a region R and satisfying C-R equations.

i.e.,
∂
∂

∂
∂

u
x

v
y

= and
∂
∂

∂
∂

u
y

v
x

= − .

We shall show that f (z) is analytic, i.e., f ′(z) exists at every point of the region R.
By Taylor’s theorem for functions of two variables, we have, on omitting second and

higher degree terms of δx and δy.
 f(z + δz) = u(x + δx, y + δy) + iv(x + δx, y + δy)

= u x y
u
x

x
u
y

y i v x y
v
x

x
v
y

y( , ) ( , )+ +
F
HG

I
KJ

L
NM

O
QP

+ + +
F
HG

I
KJ

L
NM

O
QP

∂
∂

δ ∂
∂

δ ∂
∂

δ ∂
∂

δ

= [u(x, y) + iv(x, y)] + 
∂
∂

∂
∂

δ ∂
∂

∂
∂

u
x

i
v
x

x
u
y

i
v
y

+FHG
I
KJ + +
F
HG

I
KJ  δy

= f(z) + 
∂
∂

∂
∂

δ ∂
∂

∂
∂

u
x

i
v
x

x
u
y

i
v
y

+FHG
I
KJ + +
F
HG

I
KJ  δy

or    f(z + δz) – f(z) = 
∂
∂

∂
∂

δ ∂
∂

∂
∂

u
x

i
v
x

x
u
y

i
v
y

+FHG
I
KJ + +
F
HG

I
KJ  δy

= 
∂
∂

∂
∂

δ ∂
∂

∂
∂

u
x

i
v
x

x
v
x

i
u
x

+FHG
I
KJ + − +F
HG

I
KJ  δy | Using C-R equations

= 
∂
∂

∂
∂

δ ∂
∂

∂
∂

u
x

i
v
x

x
u
x

i
v
x

+FHG
I
KJ + +FHG

I
KJ  iδy | ∵ – 1 = i2

= 
∂
∂

∂
∂

u
x

i
v
x

+FHG
I
KJ  (δx + iδy) = 

∂
∂

∂
∂

u
x

i
v
x

+FHG
I
KJ  δz | ∵ δx + iδy = δz

⇒  
f z z f z

z
u
x

i
v
x

( ) ( )+ − = +δ
δ

∂
∂

∂
∂

∴  f ′(z) = Lt
δz → 0

 
f z z f z

z
u
x

i
v
x

( ) ( )+ − = +δ
δ

∂
∂

∂
∂
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6 A TEXTBOOK OF ENGINEERING MATHEMATICS

Thus f ′(z) exists, because 
∂
∂

∂
∂

u
x

v
x

,  exist.

Hence f(z) is analytic.
Note 1. The real and imaginary parts of an analytic function are called conjugate functions. Thus, if
f(z) = u(x, y) + iv (x, y) is an analytic function, then u(x, y) and v(x, y) are conjugate functions. The relation
between two conjugate functions is given by C-R equations.
Note 2. When a function f(z) is known to be analytic, it can be differentiated in the ordinary way as if z
is a real variable.

Thus, f(z) = z2 ⇒ f ′(z) = 2z
f(z) = sin z ⇒ f ′(z) = cos z etc.

1.10 CAUCHY-RIEMANN EQUATIONS IN POLAR COORDINATES (U.P.T.U. 2008)

Let (r, θ) be the polar coordinates of the point whose cartesian coordinates are (x, y), then
 x = r cos θ, y = r sin θ,

 z = x + iy = r (cos θ + i sin θ) = reiθ

∴ u + iv = f(z) = f(reiθ) ...(1)
Differentiating (1) partially w.r.t. r, we have

∂
∂

∂
∂

u
r

i
v
r

+  = f ′ (reiθ) . eiθ ...(2)

Differentiating (1) partially w.r.t. θ, we have

  
∂
∂θ

∂
∂θ

u
i

v+  = f ′ (reiθ) . ireiθ = ir 
∂
∂

∂
∂

u
r

i
v
r

+FHG
I
KJ | Using (2)

= – r 
∂
∂

∂
∂

v
r

ir
u
r

+

Equating real and imaginary parts, we get

  ∂
∂θ

∂
∂

u
r

v
r

= − and
∂
∂θ

∂
∂

v
r

u
r

=

or  
∂
∂

∂
∂θ

u
r r

v= 1
 and

∂
∂

∂
∂θ

v
r r

u= − 1
 , which is the polar form of C-R equations.

1.11 DERIVATIVE OF w, i.e., f ′(z) IN POLAR COORDINATES

w = f(z)

∴    
dw
dz

f z
u
x

i
v
x x

= ′ = + =( )
∂
∂

∂
∂

∂
∂

 (u + iv) = 
∂
∂
w
x

= 
∂
∂

∂
∂

∂
∂θ

∂θ
∂

w
r

r
x

w
x

+

= cos θ ∂
∂

∂
∂θ

∂
∂θ

θw
r

u
i

v
r

− +FHG
I
KJ

sin

= cos θ 
∂
∂

∂
∂

∂
∂

θw
r

r
v
r

ir
u
r r

− − +F
HG

I
KJ

sin

∵ r x y
r x x r

y
x

x r
y r

2 2 2

1

= +
∴ = =

= F
HG
I
KJ

∴ =
−

=

−

∂ ∂ θ θ

θ

∂θ
∂

θ
θ

/ cos cos

tan

sin
sin

as

and

as
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FUNCTION OF COMPLEX VARIABLE 7

= cos θ ∂
∂

∂
∂

∂
∂

w
r

i
u
r

i
v
r

− +F
HG

I
KJ  sin θ = cos θ 

∂
∂
w
r

 – i sin θ 
∂
∂
w
r

⇒
dw
dz

 = (cos θ – i sin θ) 
∂
∂
w
r

...(1)

which is the result in terms of 
∂
∂
w
r

.

Again,   
dw
dz

w
r

r
x

w
x

= +∂
∂

∂
∂

∂
∂θ

∂θ
∂

. .  = 
∂
∂

∂
∂

θ ∂
∂θ

θu
r

i
v
r

w
r

+F
HG

I
KJ −cos .

sin

= 
1
r

v i
r

u
r

w∂
∂θ

∂
∂θ

θ θ ∂
∂θ

−F
HG

I
KJ −cos

sin
 = – 

i
r

u
i

v
r

w∂
∂θ

∂
∂θ

θ θ ∂
∂θ

+F
HG

I
KJ −cos

sin

= – 
i
r

w
r

w∂
∂θ

θ θ ∂
∂θ

cos
sin−

⇒ dw
dz

i
r

= −  (cos θ – i sin θ) 
∂
∂θ
w

which is the result in terms of 
∂
∂θ
w

.

1.12 HARMONIC FUNCTION [M.T.U. 2014, G.B.T.U. 2012, U.P.T.U. 2007, 2009]

A function of x, y which possesses continuous partial derivatives of the first and second orders
and satisfies Laplace’s equation is called a Harmonic function.

1.13 THEOREM

If f(z) = u + iv is an analytic function then u and v are both harmonic functions.
Proof. Let f(z) = u + iv be analytic in some region of the z-plane, then u and v satisfy C-R
equations.

∴  
∂
∂

∂
∂

u
x

v
y

= ...(1)

and  
∂
∂

∂
∂

u
y

v
x

= − ...(2)

Differentiating eqn. (1) partially w.r.t. x and eqn. (2) w.r.t. y, we get

   ∂
∂

∂
∂ ∂

2

2

2u

x

v
x y

= ...(3)

and    
∂
∂

∂
∂ ∂

2

2

2u
y

v
y x

= − ...(4)

Assuming ∂
∂ ∂

∂
∂ ∂

2 2v
x y

v
y x

=  and adding equations (3) and (4), we get
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∂
∂

∂
∂

2

2

2

2
u

x
u

y
+  = 0 ...(5)

Now, differentiating eqn. (1) partially w.r.t. y and eqn. (2) w.r.t. x, we get

 
∂
∂ ∂

∂
∂

2 2

2
u

y x
v

y
= ...(6)

and  
∂
∂ ∂

∂
∂

2 2

2
u

x y
v

x
= − ...(7)

Assuming 
∂
∂ ∂

∂
∂ ∂

2 2u
y x

u
x y

=  and subtracting eqn. (7) from eqn. (6), we get

 
∂
∂

∂
∂

2

2

2

2
v

x
v

y
+  = 0 ...(8)

Equations (5) and (8) show that the real and imaginary parts u and v of an analytic
function satisfy the Laplace’s equation. Hence u and v are harmonic functions.
Note. Here u and v are called conjugate harmonic functions.

1.14 ORTHOGONAL SYSTEM [M.T.U. 2012, U.P.T.U. 2009]

Every analytic function f(z) = u + iv defines two families of curves u(x, y) = c1 and v(x, y) = c2,
which form an orthogonal system.

Consider the two families of curves
u(x, y) = c1 ...(1)

and v(x, y) = c2 ...(2)
Differentiating eqn. (1) w.r.t. x, we get

∂
∂

∂
∂

u
x

u
y

dy
dx

+ .  = 0 or
dy
dx

u
x
u
y

= −

∂
∂
∂
∂

 = m1  (say)

Similarly, from eqn. (2), we get
dy
dx

v
x
v
y

= −

∂
∂
∂
∂

 = m2 (say)

∴  m1m2 = 

∂
∂

∂
∂

∂
∂

∂
∂

u
x

v
x

u
y

v
y

.

.
...(3)

Since f(z) is analytic, u and v satisfy C-R equations

i.e., ∂
∂

∂
∂

u
x

v
y

= and
∂
∂

∂
∂

u
y

v
x

= −

∴ From (3), m1m2 = 

∂
∂

∂
∂

∂
∂

∂
∂

v
y

v
x

v
x

v
y

.

.−
 = – 1

(x, y) = cv 2

u (x, y) = c1

XO

Y
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FUNCTION OF COMPLEX VARIABLE 9

Thus, the product of the slopes of the curves (1) and (2) is –1. Hence the curves intersect
at right angles, i.e., they form an orthogonal system.

1.15 THEOREM (U.P.T.U. 2008)

An analytic function with constant modulus is constant.
Proof. Let f(z) = u + iv be an analytic function with constant modulus. Then,

  | f(z) | = | u + iv | = constant

⇒ u v2 2+  = constant = c (say)

Squaring both sides, we get
u2 + v2 = c2 ...(1)

Differentiating eqn. (1) partially w.r.t. x, we get

 2u 
∂
∂

∂
∂

u
x

v
v
x

+ 2  = 0

⇒ u 
∂
∂

∂
∂

u
x

v
v
x

+  = 0 ...(2)

Again, differentiating eqn. (1) partially w.r.t. y, we get

2u 
∂
∂

∂
∂

u
y

v
v
y

+ 2  = 0

⇒ u 
∂
∂

∂
∂

u
y

v
v
y

+  = 0

⇒  u −FHG
I
KJ + FHG

I
KJ

∂
∂

∂
∂

v
x

v
u
x

 = 0 ...(3)  ∵ ∂
∂

∂
∂

∂
∂

∂
∂

u
y

v
x

v
y

u
x

= − =and

Squaring and adding eqns. (2) and (3), we get

  (u2 + v2) 
∂
∂

∂
∂

u
x

v
x

F
HG
I
KJ + FHG

I
KJ

R
S|
T|

U
V|
W|

2 2

 = 0

⇒  
∂
∂

∂
∂

u
x

v
x

F
HG
I
KJ + FHG

I
KJ

2 2

 = 0 | ∵ u2 + v2 = c2 ≠ 0

⇒  | f ′(z) |2 = 0 ∵ f z
u
x

i
v
x

′ = +( )
∂
∂

∂
∂

⇒ | f ′(z) | = 0
⇒ f(z) is constant.

1.16 APPLICATION OF ANALYTIC FUNCTIONS TO FLOW PROBLEMS

Since the real and imaginary parts of an analytic function satisfy the Laplace’s equation in
two variables, these conjugate functions provide solutions to a number of field and flow problems.

For example, consider the two dimensional irrotational motion of an incompressible
fluid, in planes parallel to xy-plane.

Let V
→

 be the velocity of a fluid particle, then it can be expressed as

V
→

 = vx 
� �i v jy+ ...(1)
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10 A TEXTBOOK OF ENGINEERING MATHEMATICS

Since the motion is irrotational, there exists a scalar function φ(x, y), such that

V
→

 = ∇φ(x, y) = 
∂φ
∂

∂φ
∂x

i
y

j� �+ ...(2)

From (1) and (2), we have   vx = 
∂φ
∂x

and vy = 
∂φ
∂y

...(3)

The scalar function φ(x, y), which gives the velocity components, is called the velocity
potential function or simply the velocity potential.

Also the fluid being incompressible, div V
→

 = 0

⇒  � � ( � �)i
x

j
y

v i v jx y
∂

∂
∂
∂

+
F
HG

I
KJ +  = 0

⇒  
∂
∂

∂
∂

v
x

v

y
x y+  = 0 ...(4)

Substituting the values of vx and vy from (3) in (4), we get

 
∂
∂

∂φ
∂

∂
∂

∂φ
∂x x y y

F
HG
I
KJ +
F
HG
I
KJ  = 0 or

∂ φ
∂

∂ φ
∂

2

2

2

2x y
+  = 0

Thus, the function φ is harmonic and can be treated as real part of an analytic function
 w = f(z) = φ(x, y) + i ψ (x, y)

For  interpretation  of  conjugate  function  ψ (x, y),  the  slope  at  any  point  of  the  curve
ψ (x, y) = c′ is given by

 
dy
dx

x

y

y

x

= − =

∂ψ
∂
∂ψ
∂

∂φ
∂
∂φ
∂

| By C-R equations

= 
v

v
y

x
| By (3)

This shows that the resultant velocity v vx y
2 2+  of the fluid particle is along the tangent

to the curve ψ (x, y) = c′ i.e., the fluid particles move along this curve. Such curves are known
as stream lines and ψ (x, y) is called the stream function. The curves represented by
φ (x, y) = c are called equipotential lines.

Since φ(x, y) and ψ(x, y) are conjugate functions of analytic function w = f(z), the
equipotential lines φ (x, y) = c and the stream lines ψ (x, y) = c′, intersect each other orthogonally.

Now, dw
dz x

i
x

= +∂φ
∂

∂ψ
∂

 = 
∂φ
∂

∂φ
∂x

i
y

− | By C-R equations

= vx – ivy | By (3)

∴ The magnitude of resultant velocity = 
dw
dz

v vx y= +2 2

The function w = f(z) which fully represents the flow pattern is called the complex potential.
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FUNCTION OF COMPLEX VARIABLE 11

In the study of electrostatics and gravitational fields, the curves φ(x, y) = c and ψ (x, y) = c′
are called equipotential lines and lines of force respectively. In heat flow problems, the
curves φ (x, y) = c and ψ (x, y) = c′ are known as isothermals and heat flow lines respectively.

1.17 DETERMINATION OF THE CONJUGATE FUNCTION

If f(z) = u + iv is an analytic function where both u(x, y) and v(x, y) are conjugate functions,
then we determine the other function v when one of these say u is given as follows:

∵   v = v (x, y)

∴   dv = 
∂
∂

∂
∂

v
x

dx
v
y

+  dy

⇒  dv = – 
∂
∂

∂
∂

u
y

dx
u
x

+  dy ...(1) | By C-R eqns.

 M = – 
∂
∂
u
y , N = 

∂
∂
u
x

∴    
∂
∂

∂
∂

M
y

u
y

= −
2

2 and ∂
∂

∂
∂

N
x

u
x

=
2

2

Now,  
∂
∂

∂
∂

M N
y x

=  gives

 – 
∂
∂

∂
∂

2

2

2

2
u

y
u

x
=

or  
∂
∂

∂
∂

2

2

2

2
u

x
u

y
+  = 0

which is true as u being a harmonic function satisfies Laplace’s equation.
∴ dv is exact.
∴ dv can be integrated to get v.
However, if we are to construct f(z) = u + iv when only u is given, we first of all find v by

above procedure and then write f(z) = u + iv.

Similarly, if we are to determine u and only v is given then we use du = 
∂
∂

∂
∂

v
y

dx
v
x

−  dy

and integrate it to find u. Consequently f(z) = u + iv can also be determined.

1.18 MILNE’S THOMSON METHOD

With the help of this method, we can directly construct f(z) in terms of z without first finding
out v when u is given or u when v is given.

z = x + iy
 z  = x – iy

⇒ x = 
1
2

 (z + z ) and y = 
1
2i

 (z – z )

∴ f(z) = u(x, y) + iv(x, y)

 = u 
z z z z

i
iv

z z z z
i

+ −RST
UVW + + −RST

UVW2 2 2 2
, , ...(1)
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12 A TEXTBOOK OF ENGINEERING MATHEMATICS

Relation (1) is an identity in z and z . Putting z  = z, we get
  f(z) = u(z, 0) + iv(z, 0) ...(2)

Now, f(z) = u + iv

⇒ f ′(z) = 
∂
∂

∂
∂

∂
∂

∂
∂

u
x

i
v
x

u
x

i
u
y

+ = − | By C-R eqns.

= φ1(x, y) – i φ2(x, y)

where andφ ∂
∂

φ ∂
∂1 2( , ) ( , )x y

u
x

x y
u
y

= =

Now, f ′(z) = φ1 (z, 0) – i φ2(z, 0) | Replacing x by z and y by 0
Integrating, we get

 f(z) = z {φ1(z, 0) – i φ2(z, 0)} dz + c | c is an arbitrary constant.

Hence the function is constructed directly in terms of z.
Similarly if v(x, y) is given, then

f(z) = z [ψ1(z, 0) + iψ2(z, 0)] dz + c ψ ∂
∂

ψ ∂
∂1 2( , ) ( , )x y

v
y

x y
v
x

= =and

Milne’s Thomson method can easily be grasped by going through the steps involved in
following various cases.

Case I. When only real part u(x, y) is given.
To construct analytic function f(z) directly in terms of z when only real part u is given,

we use the following steps:

1. Find 
∂
∂
u
x

2. Write it as equal to φ1(x, y)

3. Find  
∂
∂
u
y

4. Write it as equal to φ2(x, y)
5. Find φ1(z, 0) by replacing x by z and y by 0 in φ1(x, y).
6. Find φ2(z, 0) by replacing x by z and y by 0 in φ2(x, y).
7. f(z) is obtained by the formula

f(z) = { ( , ) – ( , )}φ φ1 20 0z i z dzz  + c directly in terms of z.

Case II. When only imaginary part v(x, y) is given.
To construct analytic function f(z) directly in terms of z when only imaginary part v is

given, we use the following steps :

1. Find 
∂
∂
v
y

2. Write it as equal to ψ1(x, y)

3. Find 
∂
∂
v
x

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com


FUNCTION OF COMPLEX VARIABLE 13

4. Write it as equal to ψ2(x, y)
5. Find ψ1(z, 0) by replacing x by z and y by 0 in ψ1(x, y)
6. Find ψ2(z, 0) by replacing x by z and y by 0 in ψ2(x, y)
7. f(z) is obtained by the formula

f(z) = { ( , ) ( , )}ψ ψ1 20 0z i z dz c+ +z  directly in terms of z.

Case III. When u – v is given.
To construct analytic function f(z) directly in terms of z when u – v is given, we follow

the following steps:
1. f(z) = u + iv ...(1)
2. i f(z) = iu – v ...(2)
3. Add (1) and (2) to get

 (1 + i) f(z) = (u – v) + i(u + v)
or, F(z) = U + iV
where F(z) = (1 + i) f(z), U = u – v and V = u + v

4. Since u – v is given hence U(x, y) is given

5. Find 
∂
∂
U
x

6. Write it as equal to φ1(x, y)

7. Find 
∂
∂
U
y

8. Write it as equal to φ2(x, y)
9. Find φ1(z, 0)

10. Find φ2(z, 0)
11. F(z) is obtained by the formula

 F(z) = { ( , ) – ( , )}φ φ1 20 0z i z dz c+z
12. f(z) is determined by f(z) = 

F( )z
i1 +
 directly in terms of z.

Case IV. When u + v is given.
To construct analytic function f(z) directly in terms of z when u + v is given, we follow

the following steps:
1. f(z) = u + iv ...(1)
2. i f(z) = iu – v ...(2)
3. Add (1) and (2) to get

 (1 + i) f(z) = (u – v) + i(u + v)
⇒  F(z) = U + iV

where,  F(z) = (1 + i) f(z), U = u – v and V = u + v
4. Since u + v is given hence V(x, y) is given

5. Find 
∂
∂
V
y

6. Write it as equal to ψ1(x, y)
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14 A TEXTBOOK OF ENGINEERING MATHEMATICS

7. Find 
∂
∂
V
x

8. Write it as equal to ψ2(x, y)
9. Find ψ1(z, 0)

10. Find ψ2(z, 0)
11. F(z) is obtained by the formula

 F(z) = { ( , ) ( , )}ψ ψ1 20 0z i z dz c+ +z
12. f(z) is determined by f(z) = 

F( )z
i1 +  directly in terms of z.

EXAMPLES

Example 1. Find the values of c1 and c2 such that the function
f(z) = x2 + c1y

2 – 2xy + i (c2x
2 – y2 + 2xy)

is analytic. Also find f ′(z). (U.K.T.U. 2011)
Sol. Here   f(z) = (x2 + c1y

2 – 2xy) + i (c2x
2 – y2 + 2xy) ...(1)

Comparing (1) with  f(z) = u(x, y) + iv(x, y), we get
  u(x, y) = x2 + c1y

2 – 2xy ...(2)
and v(x, y) = c2x

2 – y2 + 2xy ...(3)
For the function f(z) to be analytic, it should satisfy Cauchy-Riemann equations.

Now from (2),  
∂
∂
u
x

 = 2x – 2y and
∂
∂
u
y  = 2c1y – 2x

Also, from (3),     
∂
∂
v
x

 = 2c2x + 2y and
∂
∂
v
y

 = – 2y + 2x

Cauchy-Riemann eqns. are

 
∂
∂

∂
∂

u
x

v
y

=

⇒  2x – 2y = – 2y + 2x which is true.

and  
∂
∂

∂
∂

u
y

v
x

= −

⇒  2c1y – 2x = – 2c2x – 2y ...(4)
Comparing the coefficients of x and y in eqn. (4), we get

  2c1 = – 2 ⇒ c1 = – 1
and – 2 = – 2c2 ⇒ c2 = 1

Hence c1 = – 1 and c2 = 1

Now,  f ′(z) = 
∂
∂

∂
∂

u
x

i
v
x

+  = 2x – 2y + i(2c2x + 2y)

= 2x – 2y + i(2x + 2y) | ∵ c2 = 1
= 2(x + iy) + 2i(x + iy)
= 2z + 2iz = 2(1 + i)z.

Example 2. Find  p  such  that  the  function  f(z)   expressed  in  polar  coordinates  as
f(z) = r2 cos 2θ + ir2 sin pθ is analytic.
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Sol. Let f(z) = u + iv, then u = r2 cos 2θ, v = r2 sin pθ

 
∂
∂
u
r

 = 2r cos 2θ, 
∂
∂
v
r

 = 2r sin pθ

 
∂
∂θ
u

 = – 2r2 sin 2θ, 
∂
∂θ
v

 = pr2 cos pθ

For f(z) to be analytic, 
∂
∂

∂
∂θ

u
r r

v= 1
and

∂
∂

∂
∂θ

v
r r

u= − 1

∴  2r cos 2θ = pr cos pθ and 2r sin pθ = 2r sin 2θ
Both these equations are satisfied if p = 2.
Example 3. (i) Prove that the function sinh z is analytic and find its derivative.

(U.K.T.U. 2010)
(ii) Show that f(z) = log z is analytic everywhere in the complex plane except at the origin

and that its derivative is 
1
z
F
HG
I
KJ  .

Sol. (i) Here  f(z) = u + iv = sinh z = sinh (x + iy) = sinh x cos y + i cosh x sin y
∴ u = sinh x cos y and v = cosh x sin y

∂
∂
u
x

 = cosh x cos y, 
∂
∂
u
y

 = – sinh x sin y

∂
∂
v
x

 = sinh x sin y, 
∂
∂
v
y  = cosh x cos y

∴  
∂
∂

∂
∂

u
x

v
y

= and
∂
∂

∂
∂

u
y

v
x

= −

Thus C-R equations are satisfied.

Since sinh x, cosh x, sin y and cos y are continuous functions, 
∂
∂

∂
∂

∂
∂

u
x

u
y

v
x

, ,  and 
∂
∂
v
y

 are

also continuous functions satisfying C-R equations.

Hence f(z) is analytic everywhere.

Now f ′(z) = 
∂
∂

∂
∂

u
x

i
v
x

+  = cosh x cos y + i sinh x sin y = cosh (x + iy) = cosh z.

(ii) Here f(z) = u + iv = log z = log (x + iy)

Let x = r cos θ and y = r sin θ so that

x + iy = r (cos θ + i sin θ) = reiθ

log (x + iy) = log (r eiθ) = log r + iθ = 
1
2

 log (x2 + y2) + i tan–1 
y
x
F
HG
I
KJ

Separating real and imaginary parts, we get

 u = 
1
2

 log (x2 + y2) and v = tan–1 
y
x
F
HG
I
KJ
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16 A TEXTBOOK OF ENGINEERING MATHEMATICS

Now,  
∂
∂
u
x

 = 
x

x y

u
y

y

x y2 2 2 2+
=

+
,

∂
∂

and  
∂
∂
v
x

 = 
−
+

=
+

y
x y

v
y

x
x y2 2 2 2,

∂
∂

We observe that the Cauchy-Riemann equations

 
∂
∂
u
x

 = 
∂
∂
v
y  and

∂
∂
u
y  = – 

∂
∂
v
x

are satisfied except when x2 + y2 = 0 i.e., when x = 0, y = 0
Also derivatives are continuous except at origin.
Hence the function f(z) = log z is analytic everywhere in the complex plane except at the

origin.

Also,  f ′(z) = 
∂
∂
u
x

 + i 
∂
∂
v
x

 = 
x iy

x y
−
+2 2  = 

x iy
x iy x iy x iy z

−
+ −

=
+

=
( )( )

1 1

Example 4. Show that the function ex (cos y + i sin y) is holomorphic and find its
derivative.

Sol.   f(z) = ex cos y + i ex sin y = u + iv
Here,  u = ex cos y, v = ex sin y

 
∂
∂
u
x

 = ex cos y
∂
∂
v
x

 = ex sin y

 
∂
∂
u
y

 = – ex sin y
∂
∂
v
y

 = ex cos y

Since,  ∂
∂

∂
∂

u
x

v
y

= and  
∂
∂

∂
∂

u
y

v
x

= −

hence, C-R equations are satisfied. Also first order partial derivatives of u and v are continuous
everywhere. Therefore f(z) is analytic.

Now,  f ′(z) = 
∂
∂

∂
∂

u
x

i
v
x

+  = ex cos y + i ex sin y

= ex (cos y + i sin y) = ex . eiy = ex+iy = ez

Example 5. If n is real, show that rn (cos nθ + i sin nθ) is analytic except possibly when
r = 0 and that its derivative is

nrn–1 [cos (n – 1) θ + i sin (n – 1) θ].

Sol. Let   w = f(z) = u + iv = rn (cos nθ + i sin nθ)

Here,  u = rn cos nθ, v = rn sin nθ

then,  
∂
∂
u
r

 = nrn–1 cos nθ
∂
∂
v
r

 = nrn–1 sin nθ

 
∂
∂θ
u

 = – nrn sin nθ
∂
∂θ
v

 = nrn cos nθ
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Thus, we see that,
∂
∂

∂
∂θ

u
r r

v= 1
and   

∂
∂

∂
∂θ

v
r r

u= − 1

∴ Cauchy-Riemann equations are satisfied. Also first order partial derivatives of u
and v are continuous everywhere.

Hence f(z) is analytic if f ′(z) or 
dw
dz

 exists for all finite values of z.

We have,    
dw
dz

 = (cos θ – i sin θ) 
∂
∂
w
r

= (cos θ – i sin θ) . nrn–1 (cos nθ + i sin nθ)
= nrn–1 [cos (n – 1) θ + i sin (n – 1) θ]

This exists for all finite values of r including zero, except when r = 0 and n ≤ 1.
Example 6. Show that if f(z) is analytic and Re f(z) = constant then f(z) is a constant.

(U.P.T.U. 2006)
Sol. Since the function f(z) = u (x, y) + iv (x, y) is analytic, it satisfies the Cauchy-

Riemann equations
∂
∂

= ∂
∂

u
x

v
y and

∂
∂

= − ∂
∂

u
y

v
x

Also, Re f(z) = constant, therefore u(x, y) = c1

∴ ∂
∂
u
x

 = 0 = 
∂
∂
u
y

.

Using C-R equations, ∂
∂

= = ∂
∂

v
x

v
y

0

Hence v(x, y) = c2 = a real constant

Therefore f(z) = u(x, y) + iv(x, y) = c1 + ic2 = a complex constant.

Example 7. Given that u(x, y) = x2 – y2 and v(x, y) = – y
x y2 2+
F
HG

I
KJ  .

Prove that both u and v are harmonic functions but u + iv is not an analytic function of z.
Sol. u = x2 – y2

 
∂
∂
u
x

 = 2x ⇒
∂
∂

2

2
u

x
 = 2

 
∂
∂
u
y  = – 2y ⇒

∂
∂

2

2
u

y
 = – 2

Since  
∂
∂

2

2
u

x
 + 

∂
∂

2

2
u

y
 = 0 Hence u(x, y) is harmonic.

Also,  v = 
−
+
y

x y2 2

 
∂
∂
v
x

 = 
2

2 2 2
xy

x y( )+
⇒ ∂

∂

2

2
v

x
 = 

2 63 2

2 2 3
y x y
x y

−
+( )
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∂
∂
v
y  = 

y x
x y

2 2

2 2 2
−

+( )
⇒

∂
∂

2

2
v

y
 = 

6 22 3

2 2 3
x y y
x y

−
+( )

Since  ∂
∂

2

2
v

x
 + 

∂
∂

2

2
v

y
 = 0. Hence v(x, y) is also harmonic.

But,
∂
∂
u
x

 ≠ 
∂
∂
v
y and

∂
∂
v
x

 ≠ – 
∂
∂
u
y

Therefore u + iv is not an analytic function of z.
Example 8. If φ and ψ are functions of x and y satisfying Laplace’s equation, show that

s + it is analytic, where

 s = 
∂φ
∂

∂ψ
∂y x

− and t = 
∂φ
∂

∂ψ
∂x y

+ .

[U.K.T.U. 2010, G.B.T.U. (C.O.) 2011]
Sol. Since φ and ψ are functions of x and y satisfying Laplace’s equations,

∴  
∂ φ
∂

∂ φ
∂

2

2

2

2x y
+  = 0 ...(1)

and  
∂ ψ
∂

∂ ψ
∂

2

2

2

2x y
+  = 0. ...(2)

For the function s + it to be analytic,

  
∂
∂

∂
∂

s
x

t
y

= ...(3)

and  
∂
∂

∂
∂

s
y

t
x

= − ...(4)

must satisfy.

Now,   
∂
∂

∂
∂

∂φ
∂

∂ψ
∂

s
x x y x

= −
F
HG

I
KJ  = 

∂ φ
∂ ∂

∂ ψ
∂

2 2

2x y x
− ...(5)

  
∂
∂

∂
∂

∂φ
∂

∂ψ
∂

t
y y x y

= +
F
HG

I
KJ  = 

∂ φ
∂ ∂

∂ ψ
∂

2 2

2y x y
+ ...(6)

  
∂
∂

∂
∂

∂φ
∂

∂ψ
∂

∂ φ
∂

∂ ψ
∂ ∂

s
y y y x y y x

= −
F
HG

I
KJ = −

2

2

2

...(7)

and  
∂
∂

∂
∂

∂φ
∂

∂ψ
∂

t
x x x y

= +
F
HG

I
KJ  = 

∂ φ
∂

∂ ψ
∂ ∂

2

2

2

x x y
+ . ...(8)

From (3), (5) and (6), we have

∂ φ
∂ ∂

∂ ψ
∂

∂ φ
∂ ∂

∂ ψ
∂

2 2

2

2 2

2x y x y x y
− = + ⇒

∂ ψ
∂

∂ ψ
∂

2

2

2

2x y
+  = 0

which is true by (2).
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Again from (4), (7) and (8), we have

  
∂ φ
∂

∂ ψ
∂ ∂

∂ φ
∂

∂ ψ
∂ ∂

2

2

2 2

2

2

y y x x x y
− = − − ⇒

∂ φ
∂

∂ φ
∂

2

2

2

2x y
+  = 0

which is also true by (1).

Hence the function s + it is analytic.

Example 9. Verify if f(z) = 
xy (x iy)

x y

2

2 4
+

+
, z ≠ 0 ; f(0) = 0 is analytic or not?

[U.P.T.U. (C.O.) 2008]

Sol.  u + iv = 
xy x iy

x y

2

2 4
( )+
+

 ; z ≠ 0

∴   u = 
x y

x y

2 2

2 4+
, v = 

xy
x y

3

2 4+

At the origin,   
∂
∂

= −
→

u
x

u x u
xx

lim
( , ) ( , )

0

0 0 0
 = lim

x x→

−
0

0 0
 = 0

 
∂
∂

= −
→

u
y

u y u
yy

lim
( , ) ( , )

0

0 0 0
 = lim

y y→

−
0

0 0
 = 0

  
∂
∂

= −
→

v
x

v x v
xx

lim
( , ) ( , )

0

0 0 0
 = lim

x x→

−
0

0 0
 = 0

  
∂
∂

= − = −
→ →

v
y

v y v
y yy y

lim
( , ) ( , )

lim
0 0

0 0 0 0 0
 = 0

Since   
∂
∂

= ∂
∂

u
x

v
y and

∂
∂

= − ∂
∂

u
y

v
x

Hence Cauchy-Riemann equations are satisfied at the origin.

But  f ′(0) = lim
( ) ( )

lim
( )

.
z x

y

f z f
z

xy x iy
x y x iy→ →

→

− = +
+

−
L
NM

O
QP +0 0

0

2

2 4
0

0
1

 = lim
x
y

xy
x y→

→
+0

0

2

2 4

Let z → 0 along the real axis y = 0, then

   f ′(0) = 0
Again let z → 0 along the curve x = y2 then

f ′(0) = lim
x

x
x x→ +

=
0

2

2 2
1
2

which shows that f ′(0) does not exist since the limit is not unique along two different paths.
Hence f(z) is not analytic at origin although Cauchy-Riemann equations are satisfied there.
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Example 10. Show that the function defined by f(z) = | |xy  is not regular at the origin,
although Cauchy-Riemann equations are satisfied there. [G.B.T.U. (C.O.) 2011]

Sol. Let f(z) = u(x, y) + iv(x, y) = | |xy then u(x, y) = | |xy , v(x, y) = 0

At the origin (0, 0), we have

∂
∂
u
x

u x u
x xx x

= − = −
→ →
Lt Lt

0 0

0 0 0 0 0( , ) ( , )
 = 0

∂
∂
u
y

u y u
y yy y

= − = −
→ →
Lt Lt

0 0

0 0 0 0 0( , ) ( , )
 = 0

∂
∂
v
x

v x v
x xx x

= − = −
→ →
Lt Lt

0 0

0 0 0 0 0( , ) ( , )
 = 0

∂
∂
v
y

v y v
y yy y

= − = −
→ →
Lt Lt

0 0

0 0 0 0 0( , ) ( , )
 = 0

Clearly,
∂
∂

∂
∂

∂
∂

∂
∂

u
x

v
y

u
y

v
x

= = −,

Hence C-R equations are satisfied at the origin.

Now   f ′(0) = Lt Lt
z z

f z f
z

xy
x iy→ →

− =
−

+0 0

0 0( ) ( ) | |

If z → 0 along the line y = mx, we get

  f ′(0) = Lt Lt
x x

mx
x im

m
im→ →+

=
+0

2

01 1
| |
( )

| |

Now this limit is not unique since it depends on m. Therefore, f ′(0) does not exist.
Hence the function f(z) is not regular at the origin.
Example 11. Prove that the function f(z) defined by

f(z) = 
x (1 i) y (1 i)

x y

3 3

2 2
+ − −

+
, z ≠ 0 and f(0) = 0

is continuous and the Cauchy-Riemann equations are satisfied at the origin, yet f ′(0) does not
exist. (U.P.T.U. 2015)

Sol. Here,  f(z) = 
( ) ( )x y i x y

x y

3 3 3 3

2 2
− + +

+
 , z ≠ 0

Let   f(z) = u + iv = 
x y
x y

i
x y
x y

3 3

2 2

3 3

2 2
−
+

+ +
+

,

then    u = 
x y
x y

3 3

2 2
−
+

 , v = 
x y
x y

3 3

2 2
+
+

Since z ≠ 0 ⇒ x ≠ 0, y ≠ 0
∴ u and v are rational functions of x and y with non-zero denominators. Thus, u, v and

hence f(z) are continuous functions when z ≠ 0. To test them for continuity at z = 0, on changing
u, v to polar co-ordinates by putting x = r cos θ, y = r sin θ, we get
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FUNCTION OF COMPLEX VARIABLE 21

 u = r(cos3 θ – sin3 θ) and v = r (cos3 θ + sin3 θ)
When z → 0, r  →  0
∴ Lt Lt

z r
u

→ →
=

0 0
 r (cos3 θ – sin3 θ) = 0

Similarly,  Lt
z → 0

v = 0

∴  Lt
z → 0

 f(z) = 0 = f(0)

⇒ f(z) is continuous at z = 0.
Hence f(z) is continuous for all values of z.
At the origin (0, 0), we have

∂
∂
u
x

u x u
x

x
xx x

= − = −
→ →
Lt Lt

00

0 0 0 0( , ) ( , )
 = 1

∂
∂
u
y

u y u
y

y
yy y

= − = − −
→ →
Lt Lt

00

0 0 0 0( , ) ( , )
 = – 1

∂
∂
v
x

v x v
x

x
xx x

= − = −
→ →
Lt Lt

0 0

0 0 0 0( , ) ( , )  = 1

∂
∂
v
y

v y v
y

y
yy y

= − = −
→ →
Lt Lt

00

0 0 0 0( , ) ( , )
 = 1

∴
∂
∂

∂
∂

u
x

v
y

= and
∂
∂

∂
∂

u
y

v
x

= −

Hence C-R equations are satisfied at the origin.

Now  f ′(0) = Lt Lt
0 0z z

f z f
z

x y i x y
x y x iy→ →

− = − + + −
+ +

( ) ( ) ( ) ( )
( )( )

0 03 3 3 3

2 2

Let z → 0 along the line y = x, then

 f ′(0) = Lt
0x

ix
x i

i
i

i i i
→

+
+

=
+

= − = +0 2
2 1 1

1
2

1
2

3

3 ( )
( )

...(1)

Also, let z → 0 along the x-axis (i.e. y = 0), then

 f ′(0) = Lt
0x

x ix
x→

+3 3

3  = 1 + i ...(2)

Since the limits (1) and (2) are different, f ′(0) does not exist.

Example 12. Show  that  the  function  f (z) = e z− −4 , z ≠ 0 and f(0) = 0 is not analytic at
z = 0, although Cauchy-Riemann equations are satisfied at this point. [U.P.T.U. (C.O.) 2008]

Sol. Here, f(z) = e z− −4

 = e x iy− + −( ) 4

= e
x iy

x iy
x iy

−
+

−
−

1
4

4

4( )
.
( )
( )

 = e

x iy

x y
− −

+

RS|T|
UV|W|

( )

( )

4

2 2 4

= e x y
x y x y ixy x y−

+
+ − − −1

6 42 2 4
4 4 2 2 2 2

( )
[( ) ( )]
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⇒ u + iv = e
xy x y
x y

i
xy x y
x y

x y x y
x y

− + −
+

L
NMM

O
QPP −

+
+ −

+

L
NM

O
QP

4 4 2 2

2 2 4
6

2 2

2 2 4

2 2

2 2 4
4 4( ) cos

( )
( )

sin
( )

( )

∴ u = e
xy x y
x y

x y x y
x y

− + −
+

L
NMM

O
QPP −

+

4 4 2 2

2 2 4
6

2 2

2 2 4
4( ) cos

( )
( )

and v = e
xy x y
x y

x y x y
x y

− + −
+

L
NMM

O
QPP −

+

4 4 2 2

2 2 4
6

2 2

2 2 4
4( ) sin

( )
( )

At z = 0,  
∂
∂
u
x

u x u
xx

= −
→

lim
( , ) ( , )

0

0 0 0

= lim lim
x

x

x x

e
x xe→

−

→

−

−

− =
0 0

4

4

0 1

= lim lim
x x

x
x x

x
x x

→ →
+ + +L
NM

O
QP

=
+ + +0

4 8
0

3 7

1

1
1 1

2

1
1 1

2
"" ""

 = 0

 
∂
∂
u
y  = lim

( , ) ( , )
lim

y y

yu y u
y

e
y→ →

−− = −
−

0 0

0 0 0
4

 = 0

  
∂
∂
v
x

v x v
x xx x

= − =
→ →

lim
( , ) ( , )

lim
0 0

0 0 0 0
 = 0

and   
∂
∂
v
y

v y v
y yy y

= − =
→ →

lim
( , ) ( , )

lim
0 0

0 0 0 0
 = 0.

Hence Cauchy-Riemann Conditions are satisfied at z = 0.

But f ′(0) = lim
( ) ( )

lim
z z

zf z f
z

e
z→ →

−− =
−

0 0

0
4

= lim
( )

/

/

r

re

i
e

re

i

→

− −

0 4

4 4π

π  ; if z → 0 along z = reiπ/4

= lim /r

r

i
e

re→

−

0 4

4

π  = ∞

which shows that f ′(z) does not exist at z = 0. Hence f(z) is not analytic at z = 0.
Example 13. (i) Examine the nature of the function

f z
x y x iy

x y
z 0

0 z 0

2 5

4 10( )
( )

,

,
=

+
+

≠

=

R
S|
T|

U
V|
W|

 in the region including the origin.

(ii) If f(z) = 
x y(y ix)

x y
, z 0

0 z 0

3

6 2
−

+
≠

=

R
S|
T|

U
V|
W|,

 , prove that 
f(z) f(0)

z
−

 → 0 as z → 0 along any radius

vector but not as z → 0 in any manner and also that f(z) is not analytic at z = 0.
[G.B.T.U. 2013, U.K.T.U. 2010]
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Sol. (i) Here,   u + iv = 
x y x iy

x y

2 5

4 10
( )+
+

 ; z ≠ 0

∴  u = 
x y

x y

3 5

4 10+
, v = 

x y
x y

2 6

4 10+

At the origin,  
∂
∂
u
x

u x u
x xx x

= − = −
→ →

lim
( , ) ( , )

lim
0 0

0 0 0 0 0
 = 0

 
∂
∂
u
y

u y u
y yy y

= − = −
→ →

lim
( , ) ( , )

lim
0 0

0 0 0 0 0
 = 0

Similarly,  
∂
∂
v
x

 = 0 = 
∂
∂
v
y

Since  
∂
∂

∂
∂

u
x

v
y

= and
∂
∂

∂
∂

u
y

v
x

= −

Hence Cauchy-Riemann equations are satisfied at the origin

But  f ′(0) = lim
( ) ( )

lim
( )

.
z x

y

f z f
z

x y x iy
x y x iy→ →

→

− = +
+

−
L
NM

O
QP +0 0

0

2 5

4 10
0

0
1

= lim
x
y

x y
x y→

→
+0

0

2 5

4 10

Let z → 0 along the radius vector y = mx, then

f ′(0) = lim lim
x x

m x
x m x

m x
m x→ →+

=
+0

5 7

4 10 10 0

5 3

10 61
 = 0

Again let z → 0 along the curve y5 = x2

 f ′(0) = lim
x

x
x x→ +

=
0

4

4 4
1
2

which shows that f ′(0) does not exist. Hence f(z) is not analytic at origin although Cauchy-
Riemann equations are satisfied there.

(ii)   
f z f

z
x y y ix

x y x iy
( ) ( ) ( )

.
− = −

+
−

L
NM

O
QP +

0
0

13

6 2  = 
− +

+ +
ix y x iy
x y x iy

3

6 2
1( )

( )
.  = – i 

x y
x y

3

6 2+
Let z → 0 along radius vector y = mx then,

 lim
( ) ( )

lim
( )

z x

f z f
z

ix mx
x m x→ →

− = −
+0 0

3

6 2 2
0

 = lim
x

imx
x m→

−
+0

2

4 2  = 0

Hence 
f z f

z
( ) ( )− 0

 → 0 as z → 0 along any radius vector.

Now let z → 0 along a curve y = x3 then,

  lim
( ) ( )

lim
.

z x

f z f
z

ix x
x x

i
→ →

− = −
+

= −
0 0

3 3

6 6
0

2

Hence 
f z f

z
( ) ( )− 0

 does not tend to zero as z → 0 along the curve y = x3.

We observe that f ′(0) does not exist hence f(z) is not analytic at z = 0.
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Example 14. Show that the following functions are harmonic and find their harmonic
conjugate functions.

 (i) u = 
1
2

 log(x2 + y2) (U.P.T.U. 2015) (ii) v = sinh x cos y.

Sol. (i) u = 
1
2

 log (x2 + y2) ...(1)

 
∂
∂
u
x x y

x
x

x y
=

+
=

+
1
2

1
22 2 2 2. .

 
∂
∂

2

2

2 2

2 2 2

2 2

2 2 2
1 2u

x
x y x x

x y
y x

x y
= + −

+
= −

+
( ) . .

( ) ( )
...(2)

Also,  
∂
∂
u
y x y

y
y

x y
=

+
=

+
1
2

1
22 2 2 2. .

 
∂
∂

2

2

2 2

2 2 2

2 2

2 2 2
1 2u

y
x y y y

x y
x y
x y

= + −
+

= −
+

( ) . .
( ) ( )

...(3)

∂
∂

∂
∂

2

2

2

2
u

x
u

y
+  = 0. [From (2) and (3)]

Since u satisfies Laplace’s equation hence u is a harmonic function.

Let   dv = 
∂
∂

∂
∂

v
x

dx
v
y

dy+

= −
F
HG
I
KJ + FHG

I
KJ

∂
∂

∂
∂

u
y

dx
u
x

dy [Using C-R equations]

= 
−
+

F
HG

I
KJ +

+
F
HG

I
KJ

y
x y

dx
x

x y
dy2 2 2 2

= 
x dy y dx

x y
−
+( )2 2  = d

y
x

tan− F
HG
I
KJ

L
NM

O
QP

1

Integration yields, v = tan–1 
y
x
F
HG
I
KJ  + c | c is a constant

which is the required harmonic conjugate function of u.
(ii) v = sinh x cos y ...(1)

∂
∂
v
x

 = cosh x cos y ⇒
∂
∂

2

2
v

x
 = sinh x cos y ...(2)

∂
∂
v
y  = – sinh x sin y ⇒

∂
∂

2

2
v

y
 = – sinh x cos y ...(3)

Since,  
∂
∂

∂
∂

2

2

2

2
v

x
v

y
+  = 0

Hence v is harmonic.
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Now,   du = 
∂
∂

∂
∂

u
x

dx
u
y

dy+  = 
∂
∂

∂
∂

v
y

dx
v
x

dy−

= – sinh x sin y dx – cosh x cos y dy
= – [sinh x sin y dx + cosh x cos y dy]
= – d (cosh x sin y).

Integration yields, u = – cosh x sin y + c | c is a constant
Example 15. (i) Show that the function u(x, y) = x4 – 6x2y2 + y4 is harmonic. Also find

the analytic function f(z) = u(x, y) + iv(x, y). (U.P.T.U. 2007)
(ii) Show that the function u = x3 – 3xy2 is harmonic and find the corresponding analytic

function. [U.P.T.U. (C.O.) 2008]
(iii) Show that ex cos y is a harmonic function, find the analytic function of which it is real

part. [U.P.T.U. (C.O.) 2008]
Sol. (i)  u = x4 – 6x2y2 + y4

∴  
∂
∂
u
x

 = 4x3 – 12xy2 ⇒ ∂
∂

2

2
u

x
 = 12x2 – 12y2

 
∂
∂
u
y

 = – 12 x2y + 4y3 ⇒
∂
∂

2

2
u

y
 = – 12x2 + 12y2

Since,   
∂
∂

+ ∂
∂

2

2

2

2
u

x
u

y
 = 0 ∴ u(x, y) is a harmonic function.

Now, let    dv = 
∂
∂

+ ∂
∂

v
x

dx
v
y

dy  = − ∂
∂
F
HG
I
KJ + ∂

∂
u
y

dx
u
x

dy | By C-R eqns.

= (12x2y – 4y3) dx + (4x3 – 12xy2) dy
= (12x2y dx + 4x3dy) – (4y3 dx + 12xy2 dy)
= d(4x3y) – d(4xy3)

Integration yields,  v = 4x3y – 4xy3 + c
Hence   f(z) = u + iv = x4 – 6x2y2 + y4 + i(4x3y – 4xy3 + c)

= (x + iy)4 + c1 = z4 + c1 | where c1 = ic
(ii)  u = x3 – 3xy2

∴  
∂
∂
u
x

 = 3x2 – 3y2 ⇒ ∂
∂

2

2
u

x
 = 6x

 
∂
∂
u
y  = – 6xy ⇒ ∂

∂

2

2
u

y
 = – 6x

Since,  
∂
∂

+ ∂
∂

2

2

2

2
u

x
u

y
 = 0 ∴ u is a harmonic function.

Now,  dv = 
dv
dx

dx
v
y

dy+ ∂
∂  = − ∂

∂
F
HG
I
KJ + ∂

∂
u
y

dx
u
x

dy | By C-R eqns.
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26 A TEXTBOOK OF ENGINEERING MATHEMATICS

= 6xy dx + (3x2 – 3y2) dy = (6xy dx + 3x2 dy) – 3y2 dy

= d(3x2y) – d(y3)

Integration yields,

 v = 3x2y – y3 + c

∴  f(z) = u + iv = x3 – 3xy2 + i(3x2y – y3 + c)

= (x + iy)3 + ic = z3 + c1 (where c1 = ic)

(iii) Let   u = ex cos y

∴  
∂
∂
u
x

 = ex cos y ⇒ ∂
∂

2

2
u

x
 = ex cos y

 
∂
∂
u
y  = – ex sin y ⇒

∂
∂

2

2
u

y
 = – ex cos y

Since 
∂
∂

+ ∂
∂

2

2

2

2
u

x
u

y
 = 0 ∴ u is a harmonic function.

Let   dv = 
∂
∂

+ ∂
∂

v
x

dx
v
y

dy  = − ∂
∂
F
HG
I
KJ + ∂

∂
F
HG
I
KJ

u
y

dx
u
x

dy | By C-R eqns.

= ex sin y dx + ex cos y dy = d (ex sin y)
Integration yields,

   v = ex sin y + c
Hence   f(z) = u + iv = ex cos y + i (ex sin y + c)

= ex(cos y + i sin y) + c1 | where c1 = ic
= ex + iy + c1 = ez + c1.

Example 16. (i) In a two-dimensional fluid flow, the stream function is ψ = – 
y

x y2 2+
,

find the velocity potential φ. [M.T.U. 2014]
(ii) An  electrostatic field in  the xy-plane is given by the potential function φ = 3x2y – y3,

find the stream function and hence find complex potential. (G.B.T.U. 2011, 2013)

Sol. (i)  ψ = – 
y

x y2 2+
...(1)

  
∂ψ
∂x

 = 
2

2 2 2
xy

x y( )+
, 

∂ψ
∂y

y x
x y

=
+

2 2

2 2 2
–

( )

We know that,   dφ = 
∂φ
∂

∂φ
∂x

dx
y

dy+  = 
∂ψ
∂

∂ψ
∂y

dx
x

dy–

= 
( )
( ) ( )

y x
x y

dx
xy

x y
dy

2 2

2 2 2 2 2 2
2−

+
−

+

= 
( )

( )
x y dx x dx xy dy

x y

2 2 2

2 2 2
2 2+ − −
+
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FUNCTION OF COMPLEX VARIABLE 27

= 
( ) ( ) ( )

( )
x y d x x x dx y dy

x y

2 2

2 2 2
2 2+ − +

+

= 
( ) ( ) ( )

( )
x y d x xd x y

x y

2 2 2 2

2 2 2
+ − +

+
 = d 

x
x y2 2+
F
HG

I
KJ .

Integration yields, φ = 
x

x y2 2+
 + c where c is a constant.

(ii) Let ψ (x, y) be the stream function.

  dψ = 
∂ψ
∂

∂ψ
∂x

dx
y

dy+  = −
F
HG
I
KJ + FHG

I
KJ

∂φ
∂

∂φ
∂y

dx
x

dy

= {– (3x2 – 3y2)} dx + 6xy dy
= – 3x2 dx + (3y2 dx + 6xy dy)
= – d (x3) + 3d (xy2)

Integrating, we get   ψ = – x3 + 3xy2 + c |c is a constant
Complex potential is given by

w = φ + iψ = 3x2y – y3 + i(–x3 + 3xy2 + c)
or, w = –i[x3 – iy3 + 3ix2y – 3xy2 – c]
or, w = –i [(x + iy)3 – c]
⇒ w = –iz3 + c1 | where c1 = ic

Example 17. (i) If u = ex(x cos y – y sin y) is a harmonic function, find an analytic
function f (z) = u + iv such that f (1) = e.

(ii) Determine an analytic function f(z) in terms of z whose real part is e–x(x sin y – y cos y).
[M.T.U. 2012, G.B.T.U. 2011, U.P.T.U. 2006, 2008, 2014]

Sol. (i) We have,  u = ex(x cos y – y sin y)

 
∂
∂
u
x

 = ex(x cos y – y sin y) + ex cos y = φ1 (x, y) |say

 
∂
∂
u
y

 = ex [– x sin y – y cos y – sin y] = φ2 (x, y) |say

∴  φ1(z, 0) = ez z + ez = (z + 1) ez

φ2 (z, 0) = 0
By Milne’s Thomson method,

f(z) = { ( , ) ( , )}φ φ1 20 0z i z dz c− +z | c is a constant

= ( )z e dz cz+ +z 1  = (z – 1) ez + ez + c = zez + c ...(1)

 f(1) = e + c |From (1)
 e = e + c |f(1) = e (given)

⇒  c = 0
∴ From (1),  f(z) = zez.
(ii) u = e–x(x sin y – y cos y)

 
∂
∂
u
x

 = e–x sin y – e–x (x sin y – y cos y) = φ1 (x, y) | say
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28 A TEXTBOOK OF ENGINEERING MATHEMATICS

 
∂
∂
u
y

 = e–x(x cos y – cos y + y sin y) = φ2(x, y) | say

∴ φ1 (z, 0) = 0 and φ2(z, 0) = e–z(z – 1)
By Milne’s Thomson method,

 f(z) = z − +φ φ1 20 0( , ) ( , )z i z dz cl q
= – i z − − +e z dz cz ( )1

= − − − − −LNM OQP +
− −zi z e e dz cz z( ) ( ) ( )1

= – i [(1 – z) e–z – e–z] + c
⇒ f(z) = ize–z + c | where c is a constant
Example 18. (i) Determine the analytic function whose real part is e2x (x cos 2y – y sin 2y).
(ii) Find an analytic function whose imaginary part is e–x(x cos y + y sin y).

(U.P.T.U. 2009)
Sol. (i) Let f(z) = u + iv be the required analytic function.
Here, u = e2x (x cos 2y – y sin 2y)

∴
∂
∂
u
x

 = e2x (2x cos 2y – 2y sin 2y + cos 2y) = φ1 (x, y) | say

and   
∂
∂
u
y   = – e2x (2x sin 2y + sin 2y + 2y cos 2y) = φ2 (x, y) | say

Now,  φ1 (z, 0) = e2z (2z + 1)
 φ2 (z, 0) = – e2z (0) = 0

By Milne’s Thomson method,

 f(z) = { ( , ) ( , )}φ φ1 20 0z i z dz c− +z  = e z dz cz2 2 1( )+ +z
= (2z + 1) 

e e
dz c

z z2 2

2
2

2
− +z . |Integrating by parts

= (2z + 1) 
e z2

2
1
2

−  e2z + c

  f(z) = ze2z + c where c is an arbitrary constant.
(ii) Let f(z) = u + iv be the required analytic function.
Here   v = e–x(x cos y + y sin y)

 
∂
∂
v
y

 = e–x (– x sin y + y cos y + sin y) = ψ1(x, y) | say

 
∂
∂
v
x

 = e–x cos y – e–x (x cos y + y sin y) = ψ2 (x, y) | say

∴  ψ1 (z, 0) = 0
   ψ2(z, 0) = e–z – e–z z = (1 – z) e–z

By Milne’s Thomson method,

f(z) = z + +ψ ψ1 20 0( , ) ( , )z i z dz c  = i z e dz czz − +−( )1
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FUNCTION OF COMPLEX VARIABLE 29

= i z e e dz cz z( ) ( ) ( ) ( )1 1− − − − −LNM OQP +
− −z

= i [(z – 1) e–z + e–z] + c

⇒   f(z) = ize–z + c

Example 19. (i) Let f(z) = u(r, θ) + iv(r, θ) be an analytic function. If u = – r3 sin 3θ, then
construct the corresponding analytic function f(z) interms of z.

(ii) Find the analytic function f(z) = u + iv, given that v = r
1
r

−FHG
I
KJ  sin θ ; r ≠ 0

Sol. (i)  u = – r3 sin 3θ

 
∂
∂
u
r

 = – 3r2 sin 3θ,
∂
∂θ
u

 = – 3r3 cos 3θ

we know that   dv = 
∂
∂
v
r

 dr + 
∂
∂θ
v

 dθ = −FHG
I
KJ

1
r

u∂
∂θ  dr + r

u
r

∂
∂
F
HG
I
KJ  dθ

= (3r2 cos 3θ) dr – (3r3 sin 3θ) dθ
⇒  dv = d (r3 cos 3θ)

Integration yields,

 v = r3 cos 3θ + c

∴      f(z) = u + iv = – r3 sin 3θ + ir3 cos 3θ + ic

= ir3 (cos 3θ + i sin 3θ) + c1 | c1 = ic

= i(reiθ)3 + c1

⇒ f(z) = iz3 + c1 | ∵ z = reiθ

(ii)  v = r
r

−FHG
I
KJ

1
 sin θ

  
∂
∂
v
r

 = 1
1
2+FHG
I
KJr

 sin θ,
∂
∂θ
v

 = r
r

−FHG
I
KJ

1
 cos θ

we know that,

  du = 
∂
∂
u
r

 dr + 
∂
∂θ
u

 dθ = 
1
r

v∂
∂θ
F
HG
I
KJ  dr + −FHG

I
KJr

v
r

∂
∂  dθ

= 1
1
2−FHG
I
KJr

 cos θ dr – r
r

+FHG
I
KJ

1
 sin θ dθ

⇒ du = d (r cos θ) + d 
1
r

cos θF
HG

I
KJ

Integration yields, u = r
r

+FHG
I
KJ

1
 cos θ + c

∴  f(z) = u + iv = r
r

+FHG
I
KJ

1
 cos θ + c + i r

r
−FHG
I
KJ

1
 sin θ

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com


30 A TEXTBOOK OF ENGINEERING MATHEMATICS

= reiθ + 
1
r

 e–iθ + c

⇒ f (z) = z + 
1
z

 + c.

Example 20. If  u – v = (x – y)  (x2 + 4xy + y2)  and  f(z) = u + iv is an analytic function of
z = x + iy, find f(z) in terms of z.

Sol. Here, f(z) = u + iv

∴     if(z) = iu – v

Adding    (1 + i) f(z) = (u – v) + i(u + v)

Let  (1 + i) f(z) = F(z), u – v = U, u + v = V, then

   F(z) = U + iV

Now,      U = u – v = (x – y) (x2 + 4xy + y2)

⇒   
∂
∂
U
x

 = x2 + 4xy + y2 + (x – y)(2x + 4y) = 3x2 + 6xy – 3y2 = φ1(x, y)
| say

and  
∂
∂
U
y

 = – (x2 + 4xy + y2) + (x – y)(4x + 2y) = 3x2 – 6xy – 3y2 = φ2(x, y)

| say

Now, φ1(z, 0) = 3z2, φ2(z, 0) = 3z2

By Milne’s Thomson method,

F(z) = [ ( , ) – ( , )]φ φ1 20 0z i z dz c+z  = [ ( )]3 32 2z i z dz c− +z
  F(z) = (1 – i) z3 + c

⇒ (1 + i) f(z) = (1 – i) z3 + c

or,   f(z) = 
1
1 1

3−
+
F
HG
I
KJ +

+
i
i

z
c

i
 = 

−F
HG
I
KJ + =

+
F
HG

I
KJ

2
2 1

3
1 1

i
z c c

c
i

where

or,  f(z) = – iz3 + c1.

Example 21. If  u + v = 
2 sin 2x

e e 2 cos 2x2y 2y+ −−  and f(z) = u + iv is an analytic function of

z = x + iy, find f(z) in terms of z.

Sol. Let   f(z) = u + iv ...(1)

Multiplying both sides by i

i f(z) = iu – v ...(2)

Adding (1) and (2), we get

(1 + i) f(z) = (u – v) + i(u + v) ...(3)

⇒   F(z) = U + iV ...(4)

where  F(z) = (1 + i) f(z) ...(5)

 U = u – v and V = u + v ...(6)
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FUNCTION OF COMPLEX VARIABLE 31

It means that we have been given

 V = 
sin

cosh cos
2

2 2
x

y x− ...(7) | ∵ e2y + e–2y = 2 cosh 2y

Now  
∂
∂
V
y

x y
y x

= −
−

2 2 2
2 2 2

sin sinh
(cosh cos )

 = ψ1(x, y) | say

and  
∂
∂
V
x

x y x x
y x

= − −
−

2 2 2 2 2 2
2 2

2

2
cos (cosh cos ) sin

(cosh cos )

= 
2 2 2 2

2 2 2
cos cosh

(cosh cos )
x y
y x

−
−

 = ψ2(x, y) | say

∴ ψ1(z, 0) = 0

 ψ2(z, 0) = 
2 2 1
1 2

2
1 22

(cos )
( cos ) cos

z
z z

−
−

= −
−

 = 
−

− +
2

1 1 2 2sin z
 = – cosec2 z

By Milne’s Thomson method, we have

  F(z) = ∫ {ψ1(z, 0) + i ψ2(z, 0)} dz + c

= ∫ – i cosec2 z dz + c = i cot z + c

Replacing F(z) by (1 + i) f(z), from eqn. (5), we get

 (1 + i) f(z) = i cot z + c

⇒ f(z) = 
i

i
z

c
i1 1+

+
+

cot

∴ f(z) = 1
2  (1 + i) cot z + c1

, where c1 = 
c

i1 + .

Example 22. If f(z) = u + iv is an analytic function of z and u – v = 
cos x sin x e
2 cos x 2 cosh y

y+ −
−

−
,

prove that f(z) = 
1
2

1 cot
z
2

−LNM
O
QP  when f 

π
2
F
HG
I
KJ  = 0.

Sol. Let   f(z) = u + iv ...(1)
∴ i f(z) = iu – v
Add,  (1 + i) f(z) = (u – v) + i(u + v) ...(2)
⇒  F(z) = U + iV ...(3)

where   u – v = U, u + v = V and (1 + i) f(z) = F(z).

We have, u – v = 
cos sin

cos cosh
x x e

x y

y+ −
−

−

2 2

or,   U = 
cos sin cosh sinh

cos cosh
x x y y

x y
+ − +

−2 2
[∵ e–y = cosh y – sinh y]

= 
1
2 2

+ +
−

sin sinh
(cos cosh )

x y
x y

...(4)

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com


32 A TEXTBOOK OF ENGINEERING MATHEMATICS

Diff. (4) w.r.t. x partially, we get

∂
∂
U
x

x y x x y x
x y

= − − + −
−

L
NM

O
QP

1
2 2

(cos cosh ) cos (sin sinh )( sin )
(cos cosh )

 φ1(x, y) = 
1
2

1
2

− +
−

L
NM

O
QP

cosh cos sinh sin
(cos cosh )

y x y x
x y

 φ1(z, 0) = 
1
2

1
1

1
2 12

−
−

L
NM

O
QP

=
−

cos
(cos ) ( cos )

z
z z

. ...(5)

Diff. (4) partially w.r.t. y, we get

 
∂
∂
U
y

x y y x y y
x y

= − − + −
−

L
NM

O
QP

1
2 2

(cos cosh ) . cosh (sin sinh )( sinh )
(cos cosh )

   φ2(x, y) = 
1
2

1
2

cos cosh sin sinh
(cos cosh )

x y x y
x y

+ −
−

L
NM

O
QP

∴   φ2(z, 0) = 
1
2

1
1 2

cos
(cos )

z
z

−
−

L
NM

O
QP  = 

1
2

1
1

.
cos

−
−
F
HG

I
KJz . ...(6)

By Milne’s Thomson Method,

F(z) = [ ( , ) ( , )]φ φ1 20 0z i z dz c− +z
= 

1
2

1
1 2

1
1

.
( cos )

.
cos−

+
−

L
NM

O
QPz z

i
z

 dz + c

= 
1

2
1

2 22
+ zi zsin /

 dz + c = 
1

4
22+ +zi z dz ccosec ( / )

= 
1

4
2

1
2

+F
HG
I
KJ

−
F
HG
I
KJ

+i z
c.

( cot / )
 = – 

1
2 2
+F
HG
I
KJ

i z
cot  + c

or,   (1 + i) f(z) = – 
1

2 2
+F
HG
I
KJ +i z

ccot

⇒  f(z) = – 1
2 2 1

cot
z c

i
+

+
...(7)

 f 
π π
2

1
2 4 1

F
HG
I
KJ = − +

+
cot

c
i

[From (7)]

 0 = – 
1
2 1

+
+
c

i
⇒ c

i1
1
2+

= ...(8)

∴ From (7), f(z) = – 
1
2 2

1
2

cot
z +  = 

1
2

1
2

−FHG
I
KJcot

z
. [Using (8)]
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Example 23. (i) If f(z) is a regular function of z, prove that

∂
∂

∂
∂

2

2

2

2x y
+

F
HG

I
KJ  |f(z)|2 = 4 | f ′(z)|2. (U.P.T.U. 2007, 2015)

(ii) If f(z) is a harmonic function of z, show that

 
∂
∂
RST

UVW + ∂
∂
RST

UVWx
|f(z)|

y
|f(z)|

2 2

 = f (z) 2′ (U.P.T.U. 2009)

Sol. (i) Let f(z) = u + iv so that |f(z)| = u v2 2+

or  |f(z)|2 = u2 + v2 = φ(x, y) (say)

∴   
∂φ
∂

∂
∂

∂
∂x

u
u
x

v
v
x

= +2 2

∂ φ
∂

∂
∂

∂
∂

∂
∂

∂
∂

2

2

2

2

2 2

2

2

2
x

u
u

x
u
x

v
v

x
v
x

= + FHG
I
KJ + + FHG

I
KJ

L
N
MM

O
Q
PP

Similarly, 
∂ φ
∂

∂
∂

∂
∂

∂
∂

∂
∂

2

2

2

2

2 2

2

2

2
y

u
u

y
u
y

v
v

y
v
y

= +
F
HG
I
KJ + +

F
HG
I
KJ

L
N
MM

O
Q
PP

Adding, we get

∂ φ
∂

∂ φ
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

2

2

2

2

2

2

2

2

2 2 2

2

2

2

2 2

2
x y

u
u

x
u

y
u
x

u
y

v
v

x
v

y
v
x

v
y

+ = +
F
HG

I
KJ + FHG

I
KJ +
F
HG
I
KJ + +
F
HG

I
KJ + FHG

I
KJ +
F
HG
I
KJ

L
N
MM

O
Q
PP ...(1)

Since f(z) = u + iv is a regular function of z, u and v satisfy C-R equations and Laplace’s
equation.

∴
∂
∂

∂
∂

∂
∂

∂
∂

u
x

v
y

u
y

v
x

= = −, and
∂
∂

∂
∂

∂
∂

∂
∂

2

2

2

2

2

2

2

20
u

x
u

y
v

x
v

y
+ = = +

∴ From (1), we get

   
∂ φ
∂

∂ φ
∂

∂
∂

∂
∂

∂
∂

∂
∂

2

2

2

2

2 2 2 2

2 0 0
x y

u
x

v
x

v
x

u
x

+ = + FHG
I
KJ + FHG

I
KJ + + FHG

I
KJ + FHG

I
KJ

L
N
MM

O
Q
PP

= 4 
∂
∂

∂
∂

u
x

v
x

F
HG
I
KJ + FHG

I
KJ

L
N
MM

O
Q
PP

2 2

...(2)

Now   f(z) = u + iv

∴  f ′(z) = 
∂
∂

∂
∂

u
x

i
v
x

+ and |f ′(z)|2 = 
∂
∂

∂
∂

u
x

v
x

F
HG
I
KJ + FHG

I
KJ

2 2

From (2), we get

∂
∂

∂
∂

2

2

2

2x y
+

F
HG

I
KJ  φ = 4 |f ′(z)|2 or

∂
∂

∂
∂

2

2

2

2x y
+

F
HG

I
KJ  |f(z)|2 = 4 |f ′(z)|2.
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(ii) We have,   f(z) = u + iv ...(1)

∴  |f(z)| = u v2 2+ ...(2)

Partially differentiating eqn. (2) w.r.t. x and y, we get

  ∂
∂x

f z| ( )| = 
1
2

2 22 2 1/2( )u v u
u
x

v
v
x

+ ∂
∂

+ ∂
∂

F
HG

I
KJ

−  = 
u

u
x

v
v
x

f z

∂
∂

+ ∂
∂

| ( )|
...(3)

Similarly,
∂
∂y

f z| ( )| = 
u

u
y

v
v
y

f z

∂
∂

+ ∂
∂

| ( )|
...(4)

Squaring and adding (3) and (4), we get

∂
∂
RST

UVW + ∂
∂
RST

UVWx
f z

y
f z| ( )| | ( )|

2 2

 = 
u

u
x

v
v
x

u
u
y

v
v
y

f z

∂
∂

+ ∂
∂

F
HG

I
KJ + ∂

∂
+ ∂

∂
F
HG

I
KJ

2 2

2| ( )|

= 
u

u
x

v
v
x

u
v
x

v
u
x

f z

∂
∂

+ ∂
∂

F
HG

I
KJ + − ∂

∂
+ ∂

∂
F
HG

I
KJ

2 2

2| ( )|
| Using C-R eqns.

= 

( )

| ( )|

u v
u
x

v
x

f z

2 2
2 2

2

+ ∂
∂
F
HG
I
KJ + ∂

∂
F
HG
I
KJ

L
N
MM

O
Q
PP

= 
∂
∂
F
HG
I
KJ + ∂

∂
F
HG
I
KJ

u
x

v
x

2 2

|∵  |f(z)|2 = u2 + v2

= |f ′(z)|2 ∵ f z
u
x

i
v
x

′ = ∂
∂

+ ∂
∂

( )

ASSIGNMENT

1. (i) Determine a, b, c, d so that the function f(z) = (x2 + axy + by2) + i(cx2 + dxy + y2) is analytic.
(ii) Find the constants a, b, c such that the function f(z) where

f(z) = – x2 + xy + y2 + i (ax2 + bxy + cy2) is analytic. Express f(z) in terms of z.
(M.T.U. 2013)

(iii) Find the value of the constants a and b such that the following function f(z) is analytic.
f(z) = cos x (cosh y + a sinh y) + i sin x (cosh y + b sinh y)

(iv) Determine p such that the function f(z) = 
1
2

 log (x2 + y2) + i tan–1 
px
y

 is an analytic function.

Also find f ′(z). (M.T.U. 2012)
2. Show that

(a) f(z) = xy + iy is everywhere continuous but is not analytic.

(b) f(z) = z + 2 z  is not analytic anywhere in the complex plane.
(c) f(z) = z | z | is not analytic anywhere. (U.K.T.U. 2010)

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com


FUNCTION OF COMPLEX VARIABLE 35

3. Discuss the analyticity of the following functions:

(i) sin z (ii) cosh z (iii)
1
z

(iv) z3.

4. (i) Define analytic function. Discuss the analyticity and differentiability of f(z) = | z |4 at z = 0.
(G.B.T.U. 2012)

(ii) Define anlaytic function. Discuss the analyticity of f(z) = Re (z3) in the complex plane.
(U.P.T.U. 2014)

5. Show that the polar form of Cauchy-Riemann equations are 
∂
∂

∂
∂θ

∂
∂

∂
∂θ

u
r r

v v
r r

u= = −1 1
, . Deduce

that 
∂
∂

∂
∂

∂
∂θ

2

2 2

2

2
1 1u

r r
u
r r

u+ +  = 0.

6. (i) Show that an analytic function f(z), whose derivative is identically zero, is constant.

(ii) It is given that a function f(z) and its conjugate f z( )  are both analytic. Determine the function
f(z).

(iii) Show that if f(z) is analytic and Im f (z) = constant then f (z) is a constant.

(iv) Show that if f(z) is differentiable at a point z, then |f ′(z)|2 = 
u u
v v

x y

x y

7. (i) Show that the function f(z) defined by f(z) = 
x y x iy

x y

3 5

6 10
( )+
+

, z ≠ 0, f(0) = 0, is not analytic at the

origin even though it satisfies Cauchy-Riemann equations at the origin. (G.B.T.U. 2011)
(ii) Show that for the function

 f(z) = 
( )

,

,

z
z

z

z

2
0

0 0

≠

=

R
S|
T|

the Cauchy-Riemann equations are satisfied at the origin. Does f ′(0) exist?
(iii) Show that for the function

 f(z) = 
2

0

0 0

2 2
xy x iy

x y
z

z

( )
,

,

+
+

≠

=

R
S|
T|

the C-R equations are satisfied at origin but derivative of f(z) does not exist at origin.
8. (i) If u is a harmonic function then show that w = u2 is not a harmonic function unless u is a

constant.
(ii) If f(z) is an analytic function, show that |f (z)| is not a harmonic function.

9. (i) Show that the function u (x, y) = 2x + y3 – 3x2y is harmonic. Find its conjugate harmonic
function v(x, y) and the corresponding analytic function f(z).

(ii) Show that the function v(x, y) = ex sin y is harmonic. Find its conjugate harmonic function
u(x, y) and the corresponding analytic function f(z).

(iii) Define a harmonic function and conjugate harmonic function. Find the harmonic conjugate of
the function u(x, y) = 2x (1 – y). (U.P.T.U. 2009)

(iv) Show that the function u = e–2xy sin (x2 – y2) is harmonic. (U.K.T.U. 2011)
(v) Show that u(x, y) = x3 – 4xy – 3xy2 is harmonic. Find its harmonic conjugate v(x, y) and the

corresponding analytic function f(z) = u + iv. (G.B.T.U. 2013)
10. (i) Show that the function u(r, θ) = r2 cos 2θ is harmonic. Find  its conjugate harmonic function

and the corresponding analytic function f(z).
(ii) Determine constant ‘b’ such that u = ebx cos 5y is harmonic.
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(iii) Define Harmonic function. Show that the function v = log (x2 + y2) + x – 2y is harmonic. Also
find the analytic function f(z) = u + iv. (G.B.T.U. 2012)

(iv) Show that v(x, y) = e–x (x cos y + y sin y) is harmonic. Find its harmonic conjugate.
(U.P.T.U. 2014)

11. Determine the analytic function f(z) in terms of z whose real part is

(i)
1
2

 log (x2 + y2) (U.K.T.U. 2011) (ii) cos x cosh y

(iii) e–x (x cos y + y sin y) ; f (0) = 1 (iv) (x – y)(x2 + 4xy + y2) (G.B.T.U. 2012)

(v)
sin

cosh cos
2

2 2
x

y x−
(vi)

sin
cosh cos

2
2 2

x
y x+

.

12. Find the regular function f(z) in terms of z whose imaginary part is

(i)
x y

x y

−
+2 2 (ii) cos x cosh y (iii) sinh x cos y

(iv) 6xy – 5x + 3 (v)
x

x y2 2+
 + cosh x cos y. (vi) ex (x sin y + y cos y)

(U.P.T.U. 2015)
13. Prove that u = x2 – y2 – 2xy – 2x + 3y is harmonic. Find a function v such that f(z) = u + iv is

analytic. Also express f(z) in terms of z.

14. (i) An electrostatic field in the xy-plane is given by the potential function φ = x2 – y2, find the
stream function.

(ii) If the potential function is log (x2 + y2), find the flux function and the complex potential
function.

15. (i) In a two dimensional fluid flow, the stream function is ψ  =  tan–1 
y
x
F
HG
I
KJ , find the velocity

potential φ.

(ii) If w = φ + iψ represents the complex potential for an electric field and ψ = x2 – y
x

x y
2

2 2+
+

,
determine the function φ.

(iii) If u = (x – 1)3 – 3xy2 + 3y2, determine v so that u + iv is a regular function of x + iy.
[U.K.T.U. 2010]

16. If f(z) is an analytic function of z, prove that 
∂
∂

∂
∂

2

2

2

2x y
+

F
HG

I
KJ  |Re f(z)|2 = 2 |f ′(z)|2.

(G.B.T.U. 2012)
17. Find an analytic function f(z) = u(r, θ) + iv(r, θ) such that v(r, θ) = r2 cos 2θ – r cos θ + 2.

18. If f(z) = u + iv is an analytic function, find f(z) in terms of z if

(i) u – v = ex (cos y – sin y) (ii) u + v = 
x

x y2 2+
, when f(1) = 1

[U.P.T.U. (C.O.) 2008]

(iii) u – v = e x x
y x

y − +
−

cos sin
cosh cos

 when f 
π
2

3
2

F
HG
I
KJ = − i

.

19. (i) If f(z) = u + iv is an analytic function of z = x + iy and u + v = (x + y) (2 – 4xy + x2 + y2), then
construct f(z) in terms of z.

(ii) If f(z) = u + iv is an analytic function of z = x + iy and u – v = e–x [(x – y) sin y – (x + y) cos y], then
construct f(z) in terms of z. [U.P.T.U. (C.O.) 2009]

20. If f = u + iv is analytic show that g = – v + iu is also analytic. Also show that u and – v are
conjugate harmonic.
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21. Show that the function

(i) f (z) = 
z

z + 1
 is analytic at z = ∞. (ii) f(z) = z is not analytic at z = ∞.

22. If f (z) = u(x, y) + iv (x, y) where x = 
z z+

2
, y = 

z z
i

−
2

 is continuous as a function of two variables z

and z  then show that 
∂
∂
f
z

 = 0 is equivalent to the Cauchy-Riemann equations.

Hint.
∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

F
HG

I
KJ + ∂

∂
∂
∂

+ ∂
∂

∂
∂

F
HG

I
KJ

L
NMM

O
QPP

f
z

u
x

x
z

u
y

y
z

i
v
x

x
z

v
y

y
z

23. (i) Show that a harmonic function satisfies the formal differential equation 
∂
∂ ∂

2
0

u
z z

=

(ii) If w = f(z) is a regular function of z, prove that 
∂

∂
∂
∂

2

2

2

2x y
+

F
HG

I
KJ  log |f ′(z)| = 0. Further, if |f ′(z)|

is the product of a function of x and function of y, show that f ′(z) = exp. (αz2 + βz + γ) where α
is real and β, γ are complex constants.

24. If f (z) = u + iv is an analytic function of z = x + iy, find f (z) in terms of z if
(i) 3u + v = 3 sin x cosh y + cos x sinh y (ii) u – 2v = cos x cosh y + 2 sin x sinh y

(iii) 2u – v = ex (2 cos y – sin y)
25. (i) If f ′(z) = f(z) for all z, then show that f(z) = kez, where k is an arbitrary constant.

(ii) Find an analytic function f(z) such that Re [f ′(z)] = 3x2 – 4y – 3y2 and f(1 + i) = 0
(iii) Let f(z) = u + iv and g(z) = v + iu be analytic functions for all z. Let f(0) = 1 and g(0) = i. Obtain

the value of h(z) at z = 1 + i where h(z) = f ′(z) + g′(z) + 2f(z) g(z).
(iv) If f(z) = u + iv is an analytic function of z and φ is a function of u and v, then show that

 
∂φ
∂
F
HG
I
KJ + ∂φ

∂
F
HG
I
KJ = ∂φ

∂
F
HG
I
KJ + ∂φ

∂
F
HG
I
KJ

L
N
MM

O
Q
PP ′

x y u v
|f (z)|

2 2 2 2
2

Answers

1. (i) a = 2, b = – 1, c = – 1, d = 2 (ii) a = −
1
2

, b = – 2, c = 
1
2

 ; f(z) = −
1
2

 (2 + i) z2

(iii) a = – 1, b = – 1 (iv) p = – 1, f ′(z) = 
1
z

6. (ii) constant function 7. (ii) No

9. (i) v = 2y – 3xy2 + x3 + c ; f(z) = 2z + iz3 + ic (ii) u = ex cos y + c ; f(z) = ez + c

(iii) v(x, y) = x2 – y2 + 2y + c (v) v(x, y) = 2x2 – 2y2 + 3x2y – y3 + c, f(z) = z3  + 2iz2 + c

10. (i) v = r2 sin 2θ + c ; f(z) = z2 + ic (ii) b = ± 5

(iii) f(z) = – 2z + i(2 log z + z) + c (iv) u(x, y) = e–x (x sin y – y cos y) + c

11. (i) log z + c (ii) cos z + c (iii) 1 + ze–z

(iv) (1 – i) z3 + c (v) cot z + c (vi) tan z + c

12. (i) 
1 + +i

z
c (ii) i cos z + c (iii) i sinh z + c

(iv) 3z2 – 5iz + c (v)
i
z

 + i cosh z + c (vi) z ez + c
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13. v = x2 – y2 + 2xy – 2y – 3x + c, f(z) = (1 + i)z2 – (2 + 3i)z + ic

14. (i) ψ = 2xy + c (ii) 2 tan–1 
y
x
F
HG
I
KJ  + c, 2 log z + ic

15. (i) 
1
2

 log (x2 + y2) + c (ii) – 2xy + 
y

x y
c2 2+

+ (iii) v = 3y (1 + x2) – y3

17. i(z2 – z + 2) + c

18. (i) ez + c (ii)
1

1
1

+
+FHG
I
KJi

i
z

(iii) cot 
z
2

1
2

+  (1 – i)

21. (i) 2z + iz3 + c (ii) ize–z + c

24. (i) f (z) = sin z + c (ii) f (z) = cos z + c (iii) f (z) = ez + c

25. (ii) f(z) = z3 + 2iz2 + 6 – 2i (iii) 2i

1.19 LINE INTEGRAL IN THE COMPLEX PLANE

In case of real variable, the path of integration of 
a

b
f x dxz ( )  is always along the x-axis from

x = a to x = b. But in case of a complex function f(z), the path of the definite integral 
a

b
f z dzz ( )

can be along any curve from z = a to z = b.
Let f(z) be a continuous function of the complex variable z = x + iy defined at all points

of a curve C having end points A and B. Divide the curve C into n parts at the points
A = P0(z0), P1(z1), ......, Pi(zi), ......, Pn(zn) = B.

Let δzi = zi – zi–1 and ξi be any point on the arc Pi–1 Pi. Then the limit of the sum

f zi i
i

n

( )ξ δ
=
∑

1

 as n → ∞ and each δzi → 0, if it exists, is called the line integral of f(z)

along the curve C. It is denoted by
Cz f z dz( ) .

In case the points P0 and Pn coincide so that
C is a closed curve, then this integral is called

contour integral and is denoted by 
Cz f z dz( ) .

If f(z) = u(x, y) + iv(x, y), then since dz = dx + i dy,
we have

C Cz z= + +f z dz u iv dx i dy( ) ( )( )

   = 
C Cz z− + +( ) ( )udx vdy i vdx udy

which shows that the evaluation of the line integral
of a complex function can be reduced to the evalua-
tion of two line integrals of real functions.

Moreover, the value of the integral depends on the path of integration unless the
integrand is analytic.

P = A0

P = Bn

P1
P2

P
i – 1

P
i

P
i +1

Y

XO
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When the same path of integration is used in each integral, then

a

b

b

a
f z dz f z dzz z= −( ) ( )

If c is a point on the arc joining a and b, then

a

b

a

c

c

b
f z dz f z dz f z dzz z z= +( ) ( ) ( ) .

EXAMPLES

Example 1. Evaluate 
0

1 i
2(x y ix ) dz

+z − + .

(a) along the straight line from z = 0 to z = 1 + i
(b) along the real axis from z = 0 to z = 1 and then along a line parallel to imaginary axis

from z = 1 to z = 1 + i.
(c) along the imaginary axis from z = 0 to z = i and then along a line parallel to real axis

from z = i to z = 1 + i.
Sol. (a) Along the straight line OP joining O(z = 0) and P(z = 1 + i), y = x, dy = dx and x

varies from 0 to 1.

∴  
0

1
2

0

1+ +z z− + =
i i

x y ix dz( ) (x – y + ix2)(dx + i dy)

= 
0

1
2

0

1
2 1z z− + + = +( )( ) ( )x x ix dx idx ix i dx

= (i – 1) 
x

i
3

0

1

3
1
3

1
3

F
HG
I
KJ = − + .

(b) Along the path OAP where A is z = 1

0

1
2

+z − +
i

x y ix dz( )

= 
OA APz z− + +( )x y ix dz2 (x – y + ix2) dz ...(1)

Now along OA, y = 0, dz = dx and x varies from 0 to 1.

∴
OAz z− + = + = +

L
NM

O
QP

= +( ) ( )x y ix dz x ix dx
x

i
x

i2

0

1
2

2 3

0

1

2 3
1
2

1
3

Also along AP, x = 1, dz = idy and y varies from 0 to 1

∴
APz z− + = − + = − + −

L
NM

O
QP

( ) ( ) ( )x y ix dz y i idy i y i
y2

0

1 2

0

1

1 1
2  = – 1 + i – 

1
2

 i = – 1 + 
1
2

i

Hence from (1), 
0

1
2 1

2
1
3

1
1
2

1
2

5
6

+z − + = +FHG
I
KJ + − +FHG

I
KJ = − +

i
x y ix dz i i i( ) .
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(c) Along the path OBP where B is z = i

0

1
2 2

+z z z− + = − + +
i

x y ix dz x y ix dz( ) ( )
OB BP

(x – y + ix2) dz ...(2)

Now along OB, x = 0, dz = idy and y varies from 0 to 1

∴
OBz z− + = − = −

L
NM
O
QP

= −( ) ( )x y ix dz y idy i
y2

0

1 2

0

1

2
1
2

i

Also, along BP, y = 1, dz = dx and x varies from 0 to 1

∴
BPz z− + = − + = − +

L
NM

O
QP

= − +( ) ( )x y ix dz x ix dx
x

x i
x

i2

0

1
2

2 3

0

1

1
2 3

1
2

1
3

Hence from (2), 
0

1+z i
(x – y + ix2) dz = – 

1
2

1
2

1
3

1
2

1
6

i i i+ − +F
HG

I
KJ = − − .

Note. The values of the integral are different along the three different paths.

Example 2. Evaluate 
0

1 i
2(x iy)dz

+z −  along the paths

(a) y = x (b) y = x2. (G.B.T.U. 2010)
Sol.  (a) Along the line y = x,

  dy = dx so that dz = dx + idx = (1 + i) dx

0

1
2

0

1
2 1

+z z− = − +
i

x iy dz x ix i dx( ) ( )( )

  = (1 + i) 
x

i
x

i i
3 2

0

1

3 2
1

1
3

1
2

−
L
NM

O
QP

= + −FHG
I
KJ( )  = 

5
6

1
6

− i .

(b) Along the parabola y = x2, dy = 2x dx so that
  dz = dx + 2ix dx = (1 + 2ix) dx

and x varies from 0 to 1.

∴
0

1
2

0

1
2 2

+z z− = −
i

x iy dz x ix( ) ( )(1 + 2ix) dx

= ( )1
3 2

3 4

0

1

− +
L
NM

O
QP

i
x

i
x

= (1 – i) 
1
3

1
2

5
6

1
6

+FHG
I
KJ = +i i .

Example 3. Evaluate 
0

2 i
2(z) dz

+z , along

(a) the  real  axis from z = 0 to z = 2 and then along a line parallel to y-axis from z = 2 to
z = 2 + i. (U.P.T.U. 2009, U.K.T.U. 2011)

(b) along the line 2y = x. (U.P.T.U. 2009)

P (1, 1)

y =
x

y =
x

2

Y

O X
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FUNCTION OF COMPLEX VARIABLE 41

Sol.  ( z )2 = (x – iy)2 = (x2 – y2) – 2ixy
(a) Along the path OAP where A is (2, 0) and P is

(2, 1).

0

2
2

+z i
z dz( )

= 
OA APz z− − + − −( ) ( )x y ixy dz x y ixy dz2 2 2 22 2

...(1)
Now, along OA, y = 0, dz = dx and x varies from 0

to 2

∴
OAz z− − = =

L
NM
O
QP

=( )x y ixy dz x dx
x2 2

0

2
2

3

0

2

2
3

8
3

Also, along AP, x = 2, dz = idy and y varies from 0 to 1

∴
APz z− − =( )x y ixy dz2 2

0

1
2 (4 – y2 – 4iy) idy

= 4
3

2 4
1
3

2 2
11
3

3
2

0

1

iy i
y

y i i i− +
L
NM

O
QP

= − + = +

Hence from (1), we have
0

2
2 8

3
2

11
3

14
3

11
3

+z = + + = +
i

z dz i i( ) .

(b) Along the line OP, 2y = x, dx = 2dy
so that dz = 2dy + i dy = (2 + i) dy
and y varies from 0 to 1.

∴
0

2
2

0

2
2 2

0

1
2 2 22 4

+ +z z z= − − = − −
i i

z dz x y ixy dz y y iy( ) ( ) (4 ) (2 + i) dy

= (2 + i)(3 – 4i) 
0

1
2

3

0

1

10 5
3

10
3

5
3z = −

L
NM
O
QP

= −y dy i
y

i( ) .

Example 4. Integrate f(z) = x2 + ixy from A(1, 1) to B(2, 4) along the curve x = t, y = t2.
Sol. Equations of the path of integration are x = t, y = t2

∴ dx = dt, dy = 2t dt
At A(1, 1), t = 1 and at B(2, 4), t = 2

∴
A

B

A

Bz z z= + + =f z dz x ixy dx idy( ) ( )( )2

1

2
(t2 + it3)(dt + 2it dt)

= 
1

2
2 4

1

2
3

3 5

1

2 4

1

2

2 3
3

2
5

3
4z z− + = −

L
NM

O
QP

+
L
NM
O
QP

( )t t dt i t dt
t t

i
t

= 
8
3

64
5

1
3

2
5

12
3
4

151
5

45
4

−FHG
I
KJ − −FHG

I
KJ + −FHG

I
KJ = − +i i .

Example 5. Prove that

(i)
C

dz
z a

2 iz −
= π

(ii)
C

n(z a) dzz −  = 0 [n is an integer ≠ –1] where C is the circle |  z – a | = r.

(G.B.T.U. 2011)

O

2y = x

P (2, 1)

A (2, 0) X

Y

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
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Sol. The equation of the circle C is

             | z – a | = r or z – a = reiθθθθθ

where θ varies from 0 to 2π as z describes C once in the anti-clockwise direction.

Also    dz = ireiθ dθ.

(i)         
Cz z z−

= =dz
z a

ire d
re

i
i

i0

2

0

2π θ

θ

πθ  dθ = 2πi

(ii)
Cz z− =( ) .z a dz r e ire dn n ni i

0

2π θ θ θ

 = ir e dn i n+ +z1 1

0

2
( )θπ

θ

= irn+1 
e
i n

i n( )

( )

+

+
L
NM

O
QP

1

0

2

1

θ π

[∵ n ≠ – 1]

= 
r
n

n+

+

1

1
 [ei2(n+1)π – 1]

= 0. [∵ ei2(n+1)π = cos 2(n + 1)π + i sin 2(n + 1)π = 1]

Example 6. Evaluate the integral 
c
|z|dzz , where c is the contour

(i) The straight line from z = – i to z = i
(ii) The left half of the unit circle | z | = 1 from z = – i to z = i.
Sol. (i) The straight line from z = – i to z = i is x = 0

i.e.,  z = iy so that dz = idy

∴
c
|z|dz iy i dyz z= −1

1
| |  = i 

−z z− +
1

0

0

1
( )y dy i y dy

= – i 
y

i
y2

1

0 2

0

1

2 2

F
HG
I
KJ +
F
HG
I
KJ−

 = – i −FHG
I
KJ + FHG

I
KJ

1
2

1
2

i  = i.

(ii) For a point on the unit circle | z | = 1,
 z = eiθ

∴  dz = ieiθ dθ.

The points z = – i and i correspond to θ = 
3
2
π

 and θ = 
π
2

 respectively.

∴  
c

iz dz e idz z=| | .
/

/

3 2

2
1

π

π θ θ  = eiθ

π

πF
HG
I
KJ 3 2

2

/

/

 = eiπ/2 – e3iπ/2

= cos 
π π π π
2 2

3
2

3
2

+ − −i isin cos sin  = 0 + i – 0 – i(– 1) = 2i.

Example 7. Evaluate the integral 
c

log z dzz , where c is the unit circle | z | = 1.

Sol. Here,  c ≡ |z| = 1 ...(1)

    
c

zdzz log  = 
c

x iy dzz +log ( )
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= 
c

x y i
y
xz + +L

NM
O
QP

−1
2

2 2 1log ( ) tan  dz

= i 
c

y
xz − F
HG
I
KJtan 1

 dz. ...(2) (∵ x2 + y2 = 1)

On the unit circle,  z = eiθ

∴  dz = ieiθ dθ.
Now (2) becomes,

  
c

z dz iz z=log
0

2π
tan–1 (tan θ) ieiθ dθ = – 

0

2π θθ θz e di

= – θ θ
θ π

π θe
i

e
i

d
i iF

HG
I
KJ −

L
N
MM

O
Q
PPz

0

2

0

2
1.  = – 

2 12

0

2
π π

θ π

i
e

i
e
i

i
i

−
F
HG
I
KJ

L
N
MM

O
Q
PP

= – 
2

12 2π π π

i
e ei i+ −L

NM
O
QP  = 2πie2πi + 1 – e2πi = 2πi | ∵ e2πi = 1

ASSIGNMENT

1. Evaluate 
0

3
2

+z i
z dz , along

(a) the line y = 
x
3

       (b) the real axis to 3 and then vertically to 3 + i

(c) the parabola x = 3y2.

2. Find the value of the integral 
0

1
2

+z − −
i

x y ix dz( ) , along  real  axis  from z = 0 to z = 1 and then

along a line parallel to imaginary axis from z = 1 to z = 1 + i. [G.B.T.U. (C.O.) 2011]

3. Evaluate 
0

4 2+z i
z dz  along the curve given by z = t2 + it.

4. (i) Evaluate 
Cz | |z dz2  around the square with vertices at (0, 0), (1, 0), (1, 1) and (0, 1).

(ii) Show that 
Cz +( )z dz1  = 0 where C is the boundary of the square whose vertices are at the

points  z = 0, z = 1, z = 1 + i and z = i.

5. (a) Evaluate 
C

x y dx x y dyz + +( ) 2

(i) along y = x2 having (0, 0), (3, 9) as end points.
(ii) along y = 3x between the same points.

(b) Evaluate ( )
( )

( , )
3 4 32 2

0, 0

1 1
x xy y+ +z dx + 2(x2 + 3xy + 4y2)dy

(i) along y = x2 (ii) along y = x
Does the value of the integral depend upon the path?
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44 A TEXTBOOK OF ENGINEERING MATHEMATICS

6. (i) Evaluate 
Cz − −( )y x x i dz3 2  where C is the straight line from z = 0 to z = 1 + i.

(ii) Evaluate ( )z z
i

i
2

1

2 3
+

−

+z  dz along the line joining the points (1, – 1) and (2, 3).

7. (i) Evaluate 
Cz −( )z z dz2  where C is the upper half of the circle | z | = 1. What is the value of

this integral if C is lower half of the given circle?

(ii) Evaluate the integral ( )z z−z 2

C
 dz where C is the upper half of the circle | z – 2 | = 3. What is

the value of the integral if C is the lower half of the circle? (M.T.U. 2013)
[Hint: z = 2 + 3eiθ]

8. Prove that 
Cz = −1

z
dz iπ  or πi according as C is the semi-circular arc | z | = 1 from z = – 1

to z = 1 above or below the real axis.

9. Evaluate 
1

2
2 1

−

+z + +
i

i
x iy dz( )  along

(a) the straight line joining (1 – i) to (2 + i) (b) the curve x = t + 1, y = 2t2 – 1.

10. Evaluate the line integral 
Cz +( )3 22y dx y dy  where C is the circle x2 + y2 = 1 counter clockwise

from (1, 0) to (0, 1).

11. Evaluate the integral I = 
Cz FHG IKJzz dz  where C is the

boundary of the half annulus as given in figure 1.

12. Evaluate the integral 
Cz z dz2  where C is the arc of

the circle |z| = 2 from θ = 0 to θ = 
π
3

.

13. Evaluate 
Cz +2 3z

z
dz  where C is

(i) upper half of the circle |z| = 2 in clockwise direction.
(ii) lower half of the circle |z| = 2 in anticlockwise direction.

(iii) the circle |z| = 2 in anticlockwise direction.

14. Evaluate the integral 
Cz Re ( )z dz2  from 0 to 2 + 4i along the line segment joining the points

(0, 0) and (2, 4).

15. Evaluate ( )z dz
i 2

0

3 +z  along the real axis from z = 0 to z = 3 and then along a line parallel to

imaginary axis from z = 3 to z = 3 + i. (G.B.T.U. 2013)
16. Integrate f(z) = Re (z) from z = 0 to z = 1 + 2i.

(i) along straight line joining z = 0 to z = 1 + 2i.
(ii) along the real axis from z = 0 to z = 1 and then along a line parallel to imaginary axis from

z = 1 to z = 1 + 2i. (U.P.T.U. 2014)

Y

C2

C1

– 3 – 2 O 2 3 X
A B C D

Fig. 1
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Answers

1. (a) 6 + 
26
3

i (b) 6 + 
26
3

i (c) 6 + 
26
3

i 2.
3
2 6

+ i

3. 10 – 
8
3

i 4. (i) – 1 + i

5. (a) (i) 256.5 (ii) 200.25 (b) (i) 26/3 (ii) 26/3 ; No

6. (i) 1 – i (ii)
1
6

 (64i – 103) 7. (i) 
2
3

 ; – 
2
3

(ii) 66, – 66

9. (a) 4 + 8i (b) 4 + 
25
3

i 10. – 1 11.
4
3

12. − 16
3

13. (i) 8 – 3πi (ii) 8 + 3πi (iii) 6πi

14. – 8 (1 + 2i) 15. 12
26
3

+ i 16. (i) 
1 2

2
+ i

(ii)
1
2

 + 2i.

1.20 SIMPLY AND MULTIPLY CONNECTED DOMAINS

A domain in which every closed curve can be shrunk to a point without passing out of the
region is called a simply connected domain. If a domain is not simply connected, then it is
called multiply connected domain.

1.21 SIMPLY AND MULTIPLY CONNECTED REGIONS

A curve is called simple closed curve if it does not cross itself (Fig. 1). A curve which crosses
itself is called a multiple curve (Fig. 2).

A region is called simply connected if every closed curve in the region encloses points of
the region only, i.e., every closed curve lying in it can be contracted indefinitely without pass-
ing out of it. A region which is not simply connected is called a multiply connected region. In
plain terms, a simply connected region is one which has no holes. Figure 3 shows a multiply
connected region R enclosed between two separate curves C1 and C2. (There can be more than
two separate curves). We can convert a multiply connected region into a simply connected one,
by giving it one or more cuts (e.g. along the dotted line AB).

R1

R2

C

A

C1

C2

B
R

R

C

Fig. 1 Fig. 2 Fig. 3

Remark 1. Jordan arc is a continuous arc without multiple points.
Remark 2. Contour is a Jordan curve consisting of continuous chain of a finite number of regular arcs.
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1.22 CAUCHY'S INTEGRAL THEOREM [M.T.U. 2013, 2014; G.B.T.U. (C.O.) 2011]

Statement. If f(z) is an analytic function and f ′(z) is continuous at each point within and on a
simple closed curve C, then

Cz =f z dz 0( ) .

Proof. Let R be the region bounded by the curve C.

Let    f(z) = u (x, y) + iv(x, y), then

C Cz z= + +f z dz u iv dx idy( ) ( ) ( )

= 
C Cz z− + +( ) ( )udx vdy i vdx udy ...(1)

Since f ′(z) is continuous, the partial derivatives ∂
∂

∂
∂

∂
∂

∂
∂

u
x

u
y

v
x

v
y

, , ,  are also continuous

in R. Hence by Green’s Theorem, we have

  
C R Rz zz zz= − −

F
HG

I
KJ + −

F
HG

I
KJf z dz

v
x

u
y

dx dy i
u
x

v
y

dx dy( )
∂
∂

∂
∂

∂
∂

∂
∂ ...(2)

Now f(z) being analytic at each point of the region R, by Cauchy-Riemann equations, we
have

 
∂
∂

∂
∂

u
x

v
y

= and
∂
∂

∂
∂

u
y

v
x

= −

Thus, the two double integrals in (2) vanish.

Hence
Cz f z dz( )  = 0.

However Cauchy with the help of Goursat developed the revised form of Cauchy’s
fundamental theorem which states that

“If  f(z) is analytic and one valued within and on a simple closed contour C then 
Cz f z dz( )  = 0.”

Goursat showed that for the truth of the original theorem, the assumption of continuity
of f ′(z) is unnecessary and Cauchy’s theorem holds if f(z) is analytic within and on C.
Corollary. If f(z) is analytic in a region R and P, Q are two

points in R, then 
P

Q
f z dzz ( )  is independent of the path joining P

and Q and lying entirely in R.

Let PAQ and PBQ be any two paths joining P and Q.

By Cauchy’s theorem,

  
PAQBPz f z dz( )  = 0

⇒
PAQ QBPz z+f z dz f z dz( ) ( )  = 0

⇒  
PAQ PBQz z−f z dz f z dz( ) ( )  = 0

Hence  
PAQ PBQz z=f z dz f z dz( ) ( ) .

R
C

B

R Q

A
P
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1.23 EXTENSION OF CAUCHY'S THEOREM TO MULTIPLY CONNECTED REGION

If f(z) is analytic in the region R between two simple closed
curves C1 and C2, then

C C1 2

f(z)dz f(z)dzz z=
when integral along each curve is taken in anti-clockwise
direction.

Proof. f z dz( )z  = 0

where the path of integration is along AB and curve C2 in clockwise direction and along BA
and along C1 in anti-clockwise direction.

AB C BA Cz z z z+ + + =f z dz f z dz f z dz f z dz( ) ( ) ( ) ( )
2 1

0

or
C C2 1

0z z+ =f z dz f z dz( ) ( ) ∵
AB BAz z= −f z dz f z dz( ) ( )

Reversing the direction of the  integral around C2, we get

 
C C1 2
z z=f z dz f z dz( ) ( )

However if  a closed curve C contains non-intersecting closed curves C1, C2, ....., Cn,
then by introducing cross-cuts, it can be shown that

  
C C C Cz z z z= + + +f z dz f z dz f z dz f z dz

n

( ) ( ) ( ) ( )
1 2

"" .

C3

C4

C5

C2

C1
C6

C

A B
C2

C1
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EXAMPLES

Example 1. Evaluate 
C

2 2(x y 2ixy)dzz − + , where C is the contour | z | = 1.

Sol. f(z) = x2 – y2 + 2ixy = (x + iy)2 = z2 is analytic everywhere within and on | z | = 1.

∴ By Cauchy’s integral theorem, 
C

f z dzz ( )  = 0.

Example 2. Evaluate 
C

2(3z 4z 1) dzz + +  where C is the arc of the cycloid x = a(θ – sin θ),

y = a(1 – cos θ) between (0, 0) and (2πa, 0).
Sol. Here,  f(z) = 3z2 + 4z + 1 is analytic everywhere so that the integral is independent

of the path of integration and depends only on the end points z1 = 0 + i0 and z2 = 2πa + i0.

∴
Cz z+ + = + + = + +

L
NM

O
QP

( ) ( )3 4 1 3 4 1 22

0

2
2 3 2

0

2

z z dz z z dz z z z
a

a
π

π

 = 2πa (4π2a2 + 4πa + 1).

Example 3. Evaluate: 
C

2

3 2
2z 5

(z 2) (z 4)
dzz +

+ +
, where C is the square with vertices at

1 + i, 2 + i, 2 + 2i, 1 + 2i.

Sol. Here,  f(z) = 
2 5
2 4

2

3 2
z

z z
+

+ +( ) ( )

Singularities are given by
(z + 2)3 (z2 + 4) = 0

 z = – 2 (order 3), ± 2i (simple poles)
Since the singularities donot lie inside the contour

C hence by Cauchy’s integral theorem,

 
Cz +

+ +
2 5
2 4

2

3 2
z

z z
dz

( ) ( )
 = 0.

Example 4. Evaluate 
C

4 3(5z z 2) dzz − +  around

(i) unit circle |z| = 1

(ii) square with vertices (0, 0), (1, 0), (1, 1), (1, 0)

(iii) curve consisting of the parabola y = x2 from (0, 0) to (1, 1) and y2 = x from (1, 1) to
(0, 0).

Sol. f(z) = 5z4 – z3 + 2 is analytic everywhere. So by Cauchy integral theorem,

Cz f z dz( )  = 0

∴ For all given curves,   
Cz − +( )5 24 3z z dz = 0.

Example 5. Verify Cauchy theorem by integrating eiz along the boundary of the triangle
with the vertices at the points 1 + i, – 1 + i and – 1 – i. [G.B.T.U. 2012, 2013; M.T.U. 2012)

Y

O X

(1 + 2i)
D

(2 + 2i)
E

B
(2 + i)

A
(1 + i)

C
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Sol. The boundary of triangle C consists of three lines C1, C2 and C3. So,

 I = 
Cz e dziz

= 
C C C1 2 3
z z z+ +e dz e dz e dziz iz iz  = I1 + I2 + I3 ...(1)

Along C1: AB: y = 1, z = x + iy = x + i
∴  dz = dx

  I1 = 
C1
z e dziz  = 

1

1− +z e dxi x i( )

= 
1

1
1

− −z e dxix( )

= 
1

1

1 1 1

e
e
i

e e
i

ix i iF
HG
I
KJ = −

− − − −

Along C2 : BE:  x = – 1
 z = x + iy = – 1 + iy

∴  dz = i dy

  I2 = 
C2 1

1
1z z= − − +e dz e i dyiz i iy( )

= ie e dyi y− − −z1 1
 = i e–i − − −

e ye j
1

1

= – i (e–i+1 – e–1–i) = 
1 1 1

i
e ei i− + − −−e j

Along C3 : EA:  y = x, z = x + iy = (1 + i) x
∴   dz = (1 + i) dx

  I3 = 
C3 1

1
1 1z z= +

−

+e dz e i dxiz i i x( ) ( )

= ( )
( )

( )

1
1

1

1

1

+
+

L
NM

O
QP

+

−

i
e
i i

i i x

 = 
e e

i

i i− − +−F
HG

I
KJ

1 1

From (1),   I = I1 + I2 + I3 = 
1 1 1 1 1 1 1

i
e e e e e ei i i i i i− − − − + − − − − +− + − + −  = 0

Hence Cauchy’s theorem is verified.
Example 6. Can the Cauchy-integral theorem be applied for evaluating the following

integrals? Hence evaluate these integrals.

(i)
C

sin ze dz;
2z  C ≡ |z| = 1 (ii)

C
tan z dz;z  C ≡ |z| = 1

(iii)
C

z

2
e

z 9
dz;z +

 C ≡ |z| = 2
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Sol. (i)  Let  I = 
Cz e dzzsin 2

The integrand f(z) = e zsin 2

 is analytic for all z and f ′(z) is continuous inside C. Hence,
Cauchy integral theorem can be applied.

∴  I = 0

(ii) Let  I = 
Cz tan z dz

The integrand f(z) = tan z = 
sin
cos

z
z

 is analytic for all z except at the points  z = ± π
2

,

± 3
2
π

, ...... . All these points lie outside C. Also f ′(z) is continuous inside C. Hence Cauchy

integral theorem is applicable.
∴    I = 0

(iii) Let  I = 
Cz +

e
z

dz
z

2 9

The integrand f(z) = 
e

z

z

2 9+
 is analytic everywhere except at the points z = ± 3i. These

points lie outside c and f ′(z) is continuous inside C. Hence Cauchy integral theorem is applica-
ble and I = 0.

ASSIGNMENT

1. (i) State Cauchy-integral theorem for an analytic function. Verify this theorem by integrating
the function z3 + iz along the boundary of the rectangle with vertices +1, –1, i, – i.

(U.P.T.U. 2015)
(ii) Verify Cauchy’s integral theorem for f (z) = z2 taken over the boundary of a square with vertices

at ± 1 ± i in counter-clockwise direction.

2. Using Cauchy’s integral theorem, evaluate 
Cz f z dz( ) , where f(z) is

(i) ez (ii) sin z (iii) cos z

(iv) zn ; n = 0, 1, 2, 3, ...... and C is any simple closed path.

3. Evaluate: (i)
Cz − +

−
z z

z
dz

2 1
2

 ; C ≡ |z – 1| = 
1
2

(ii) 
Cz +

1

92 2z z
dz

( )
 ; C ≡ 1 < |z | < 2

4. (i) Verify Cauchy’s theorem for f (z) = z3 taken over the boundary of the rectangle with vertices at
– 1, 1, 1 + i, – 1 + i.

(ii) Verify Cauchy’s theorem by integrating z3 along the boundary of a square with vertices at
1 + i, 1 – i, –1 + i and –1 – i. (U.P.T.U. 2014)

5. Evaluate:

(i)
Cz −

+
e

z
dz

z

1
, where C is the circle |z| = 

1
2

(ii)
Cz +

−
z
z

dz
2 5

3
, where C is the circle |z| = 1

(iii)
Cz + +

+
3 7 1

1

2z z
z

dz , where C is the circle |z + i| = 1
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6. Evaluate the following integrals:

(i)
Cz + +

− +
z z

z z
dz

3

2
1

3 2
, where C is the ellipse 4x2 + 9y2 = 1

(ii)
Cz +

+ +
z

z z
dz

4

2 52 , where C is the circle |z + 1| = 1

(iii)
Cz − +

−
z z

z
dz

2 1
1

, where C is the circle |z| = 
1
2

7. Evaluate I = 
Cz −

dz
z 2

 around a triangle with vertices at (0, 0), (1, 0) and (0, 1).

8. State and prove Cauchy’s integral theorem. Hence evaluate z z
z

dz
2 5 6

2
+ +

−zC  where C: | |z = 3
2

[M.T.U. 2014, G.B.T.U. (C.O.) 2011]

9. Evaluate 
Cz +

e

z
dz

iz3

3( )π
, where C is the circle |z – π| = 3.2. (U.P.T.U. 2007)

10. (i) Verify Cauchy’s theorem for the function f(z) = 3z2 + iz – 4 along the perimeter of square with
vertices 1 ± i, –1 ± i. (G.B.T.U. 2011)

(ii) Verify Cauchy’s theorem for the function f(z) = 4z2 + iz – 3 along the positively oriented
square with vertices (1, 0), (– 1, 0), (0, 1) and (0, – 1). (M.T.U. 2012)

(iii) Verify Cauchy’s theorem for f(z) = z2 + 3z + 2 where c is the perimeter of square with vertices
1 ± i, – 1 ± i. (G.B.T.U. 2012)

Answers
2. 0 in all cases 3. (i) 0 (ii) 0
5. (i) 0 (ii) 0 (iii) 0
6. (i) 0 (ii) 0 (iii) 0
7. 0 8. 0 9. 0.

1.24 CAUCHY’S INTEGRAL FORMULA
(M.T.U. 2012, U.P.T.U. 2006, 2007, 2009, 2014; G.B.T.U. 2011, 2013)

Statement. If f(z) is analytic within and on a closed curve C and a is any point within C, then

f(a) = 
1

2 i
f z
z a

dz
Cπ z −

( )
.

Proof. Consider the function 
f z
z a

( )
−

, which is analytic at every

point  within  C  except at z = a. Draw a circle C1 with a as centre

and radius ρ such that C1 lies entirely inside C. Thus 
f z
z a

( )
−

 is

analytic in the region between C and C1.
∴ By Cauchy’s theorem, we have

C Cz z−
=

−
f z
z a

dz
f z
z a

dz
( ) ( )

1
...(1)

a ρ

C1

C
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Now, the equation of circle C1 is
  | z – a |  = ρ or z – a = ρeiθ

so that  dz = iρeiθ dθ

∴  
C1 0

2

0

2z z z−
= + = +f z

z a
dz

f a e
e

i e d i f a e d
i

i
i i( ) ( )

. ( )
π θ

θ
θ π θρ

ρ
ρ θ ρ θ

Hence by (1), we have 
Cz z−

= +f z
z a

dz i f a e di( )
( )

0

2π θρ θ ...(2)

In the limiting form, as the circle C1 shrinks to the point a, i.e., ρ → 0, then from (2),

Cz z z−
= = =f z

z a
dz i f a d if a d if a

( )
( ) ( ) ( )

0

2

0

2
2

π π
θ θ π

Hence    f(a) = 
1

2πi
f z
z a

dz
Cz −

( )

Aliter: About the point z = a, describe a small circle γ of radius r

lying entirely within C. Consider the function 
f z
z a

( )
−

.

This function is analytic in the region between C and γ.
Hence by Cauchy’s theorem for multiply connected region, we
have

  
Cz z−

=
−

f z
z a

dz
f z
z a

dz
( ) ( )

γ

⇒
Cz z z−

−
−

= −
−

f z
z a

dz
f a
z a

dz
f z f a

z a
dz

( ) ( ) ( ) ( )
γ γ

⇒  
Cz z z−

−
−

= −
−

f z
z a

dz f a
dz

z a
f z f a

z a
dz

( )
( )

( ) ( )
γ γ

⇒
Cz z−

− = −
−

f z
z a

dz if a
f z f a

z a
dz

( )
( )

( ) ( )
2π

γ
∵

γ
π

γ
z −

=

− =

dz
z a

i

z a r

2

since on| |

⇒
f z
z a

dz if a
f z f a

z a
dz

( )
( )

( ) ( )
−

− = −
−z z2π

γC

 ≤ 
γz −

−
| ( ) ( )|

| |
| |

f z f a
z a

dz

 ≤ 
ε

γr
dzz | |

≤ 
ε
r

 . 2πr

≤ 2πε → 0 as ε → 0

⇒      
Cz −

f z
z a

dz
( )

 – 2πif(a) = 0

⇒    f(a) = 
1

2πi
f z
z a

dz
Cz −

( )

a
γ

C

∵ f z z a
f z f a
z a r z

( )
| ( ) ( )|
| |

is continuous at

and for on

=
∴ − <

− =
ε

γ
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1.25 CAUCHY’S INTEGRAL FORMULA FOR THE DERIVATIVE OF AN ANALYTIC
FUNCTION [U.P.T.U. (C.O.) 2009, 2010]

If a function f(z) is analytic in a region D, then its derivative at any point z = a of D is also
analytic in D and is given by

 f ′(a) = 
1

2 i
f(z)

(z a)
dz

C 2π z −

where C is any closed contour in D surrounding the point z = a.
Proof. Let a + h be a point in the neighbourhood of the point a. Then by Cauchy’s Integral
Formula

 f(a) = 
1

2πi
f z
z a

dz
Cz −

( )

 f(a + h) = 
1

2πi
f z

z a h
dz

Cz − −
( )

∴  f(a + h) – f(a) = 
1

2
1 1

πi z a h z a
f z dz

Cz − −
−

−
RST

UVW ( )  = 
h

i
f z dz

z a h z a2π Cz − − −
( )

( ) ( )

⇒
f a h f a

h i
f z dz

z a h z a
( ) ( ) ( )

( ) ( )
+ − =

− − −z1
2π C

Take limit as h → 0

 Lt Lt
Ch h

f a h f a
h i

f z dz
z a h z a→ →

+ − =
− − −z0 0

1
2

( ) ( ) ( )
( ) ( )π

⇒  f ′(a) = 
1

2 2πi
f z

z a
dz

Cz −
( )

( )
...(1)

Since a is any point of the region D, so by (1) it is clear that f ′(a) is analytic in D. Thus,
the derivative of an analytic function is also analytic.

1.26 THEOREM

If a function f(z) is analytic in a domain D, then at any point z = a of D, f(z) has derivatives of
all orders, all of which are again analytic functions in D, their values are given by

  f n(a) = 
n !
2 i

f(z)
(z a)C n 1π z − +  dz

where C is any closed contour in D surrounding the point z = a.
Proof. We shall prove this theorem by Mathematical Induction.

Let the theorem be true for n = m. Then

  f m(a) = 
m

i
f z

z a m
! ( )

( )2 1π Cz − +  dz is true.

⇒    
f a h f a

h
m

i h
f z dz

z a h
f z dz

z a

m m

m m
( ) ( ) ! ( )

( )
( )

( )
+ − =

L
NM − −

−
−

UVWz z+ +2
1

1 1π C C
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= 
m

i h z a
h

z a
f z dzm

m
!

. .
( )

( )
( )

2
1 1

1 11

1

π Cz −
−

−
F
HG

I
KJ −

R
S|
T|

U
V|
W|+

− +

= m
i h z a

m
h

z a
m m h

z a
f z dzm

!
. .

( )
( )

( ) ( )
! ( )

( )
2

1 1
1

1 2
21

2

2π Cz −
+

−
+

+ +
−

+
RS|T|

UV|W|+ "

Take limit as h → 0

 lim
( ) ( ) ( ) ! ( )

( )h

m m

m
f a h f a

h
m

i
f z

z a→ +
+ − = +

−z0 2
1

2π C
 dz

⇒   f m+1(a) = 
( ) ! ( )

( )
m

i
f z

z a m
+

−z +
1

2 2π C
 dz

Hence the theorem is true for n = m + 1 if the theorem is true for n = m. But we know by
Cauchy’s Integral formula for the derivative of a function that the theorem is true for n = 1.
Hence the theorem must be true for n = 2, 3, 4, ...... and so on i.e., for all +ve integral values
of n. Thus,

f n(a) = 
n

i
f z

z a n
! ( )

( )2 1π Cz − +  dz ...(1)

Since a is any point of the region D, so by (1) it is clear that f n(a) is analytic in D. Thus
the derivatives of f(z) of all orders are analytic if f(z) is analytic.

Thus, if a function of a complex variable has a first derivative in a simply connected
region, all its higher derivatives exist in that region. This property is not exhibited by the functions
of real variables.

1.27 CAUCHY’S INEQUALITY

If f(z) is analytic within a circle C given by | z – a | = R and if | f(z) | ≤ M on C, then

| f n(a) | ≤ 
Mn !
Rn .

Proof. f n(a) = 
n

i
f z dz

z a n
! ( )

( )2 1π Cz − +

⇒  | f n(a) | = 
n

i
f z dz

z a n
! ( )

( )2 1π Cz − +

≤ 
n

i
f z dz
z a n

!
| |

| ( )|| |
|( ) |2 1π Cz − +

≤ 
n

dn
!

2 1 0

2

π
θ

πM
R

R+ z
≤ 

n
n

!
2 1π

M
R +  2πR ≤ 

M
R

n
n

!
.

∵ z a e

dz i e d

dz i e d
d

i

i

i

–

| | | |

=
∴ =
∴ =

=

R

R

R
R

θ

θ

θ
θ
θ

θ
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EXAMPLES

Example 1. Evaluate 
C

ze
z 1

dzz −

+ , where C is the circle | z | = 2

Sol. f(z) = e–z is an analytic function.
The point a = – 1 lies inside the circle | z | = 2.
∴ By Cauchy’s integral formula,

  e
z

z−

+z 1C
 dz = 2πi(e–z)z=–1 = 2πie.

Example 2. Evaluate the following integral:

C

1
z

cos z dzz
where C is the ellipse 9x2 + 4y2 = 1.

Sol. Pole is given by z = 0. The given ellipse encloses the simple pole.
∴ By Cauchy’s integral formula,

   
Cz cos z

z
dz  = 2πi (cos z)z=0 = 2πi.

Example 3. (i) Use Cauchy Integral formula to evaluate

C

2 2sin z cos z
(z 1)(z 2)

dzz +
− −

π π

where C is the circle | z | = 3. [G.B.T.U. 2010; G.B.T.U. (C.O.) 2011]

(ii) Evaluate: 
C

sin z cos z
(z 1) (z 2)z +

− −
π π  dz, where C is the circle | z | = 4. (U.P.T.U. 2008)

Sol. (i) The integrand has singularities given by
(z – 1) (z – 2) = 0 ⇒ z = 1, 2

The given circle | z | = 3 with centre at z = 0 and radius
3 encloses both the singularities.

∴  
sin cos

1 2C

2 2

Cz z+
− −

=

+
−

F
HG

I
KJ

−
π π

π π
z z

(z )(z )
dz

z z
z

z
dz

1

2 2

2

1

sin cos

+ 
C2

2 2

1

2z
+
−

F
HG

I
KJ

−

sin cosπ πz z
z

z
dz

= 2πi 
sin cos

2
sin cos

1

2 2 2 2π π π π πz z
z

i
z z

z
z z

+
−

L
NM

O
QP

+ +
−

L
NM

O
QP= =1 2

2

= 2πi 
0 1

1
2

0 1
1

−
−
F
HG
I
KJ + +F
HG
I
KJπi  = 2πi + 2πi = 4πi.

X

Y

O z = 1
z = 2

C | z | = 3≡
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(ii) Singularities are given by

  (z – 1) (z – 2) = 0 ⇒ z = 1, 2
The given circle | z | = 4 with centre at z = 0 and radius 4 encloses both the singularities.

∴
C C Cz z z+

− −
=

+
−

F
HG

I
KJ

−
+

+
−

F
HG

I
KJ

−
sin cos
( ) ( )

sin cos sin cos
π π

π π π π
z z

z z
dz

z z
z
z

dz

z z
z
z1 2

2
1

1
21 2

 dz

= 2
2

2
11 2

π π π π π π
i

z z
z

i
z z
zz z

sin cos sin cos+
−

L
NM

O
QP + +

−
L
NM

O
QP= =

= 2
1
1

2
1
1

π πi i
−
−
L
NM
O
QP +
L
NM
O
QP  = 2πi + 2πi = 4πi

Example 4. (i) Evaluate the following integral using Cauchy Integral formula

C

4 3z
z(z 1)(z 2)

dzz −
− −

, where C is the circle | z | = 3/2.

(U.P.T.U. 2015)

 (ii) Use Cauchy-integral formula to evaluate

C 2
z

z 3z 2z − +
 dz, where C is the circle z 2

1
2

− = . (U.P.T.U. 2009)

Sol. (i) Poles of the integrand are  z = 0, 1, 2. These are simple poles.

Given circle | z | = 
3
2

 with centre at z = 0 and radius 
3
2

 encloses two poles z = 0 and z = 1.

∴  
C C C

4 3
( 1) ( 2)

4 3
( 1) ( 2)

1 2
z z z−

− −
=

−
− − +

−
−

−
z

z z z
dz

z
z z

z
dz

z
z z

z
dz

4 3
2
1

( )
( )

= 2πi 
4 3

( 1) ( 2)
−

− −
L
NM

O
QP + −

−
L
NM

O
QP= =

z
z z

i
z

z zz z0 1

2
4 3

2
π

( )
 = 2πi.

(ii) Poles of the integrand are given by

  z2 – 3z + 2 = 0 ⇒ z = 1, 2

Both are simple poles. The given circle | z – 2 | = 
1
2

 with centre at z = 2 and radius 
1
2

encloses only one of the poles at z = 2.
∴ By Cauchy’s integral formula,

  
C Cz z− +

=
−
F
HG
I
KJ

−
z

z z
dz

z
z
z2 3 2

1
2

 dz = 2πi 
z

z z−
L
NM
O
QP =1 2

 = 2πi 
2
1
F
HG
I
KJ  = 4πi

Example 5. Evaluate by Cauchy’s integral formula

C

dz
z z iz +( )π  , where C is | z + 3i | = 1
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Sol. Poles of the integrand are z = 0, – πi (simple poles)

The given curve C is a circle with centre at z = – 3i, i.e., at (0, – 3) and radius 1.
Clearly, only the pole z = – πi lies inside the circle.

∴
Cz +

dz
z z i( )π  = 

Cz
F
HG
I
KJ

+

1
z

z iπ  dz

= 2π i 1
z z i

F
HG
I
KJ = − π

| By Cauchy’s Integral formula

= 
2π

π
i
i−
 = – 2

Example 6. Evaluate 
C

2

2
z 1
z 1

dzz +
−

 where C is circle,

(i) | z | = 3/2 (ii) | z – 1 | = 1 (iii) | z | = 1/2.
(U.P.T.U. 2014) (U.P.T.U. 2014)

Sol. The integrand has singularities given by

z2 – 1 = 0 ⇒ z = ± 1
(i) The given curve C is a circle with centre at origin

(0, 0) and radius 3/2.
Both the singularities z = 1 and z = – 1 lie inside the

circle | z | = 3/2.

∴  
C C Cz z z+

−
=

+
+

F
HG

I
KJ

−
+

+
−

F
HG

I
KJ

+
z
z

dz

z
z

z
dz

z
z

z
dz

2

2

2 2

1
1

1
1

1

1
1

11 2

= 2πi 
z
z

i
z
z

z z

2

1

2

1

1
1

2
1

1
+

+
F
HG

I
KJ + +

−
F
HG

I
KJ= = −

π

| By Cauchy’s Integral formula

= 2πi (1) + 2πi (– 1) = 0

(ii) The given curve C is a circle with centre at
(1, 0) and radius 1.

Only the singularity z = 1 lie inside the given
circle | z – 1 | = 1.

∴  
C Cz z+

−
=

+
+

F
HG

I
KJ

−
z
z

dz

z
z

z
dz

2

2

2

1
1

1
1

1

= 2πi 
z
z

z

2

1

1
1

+
+

F
HG

I
KJ =

 = 2πi | By Cauchy’s Integral formula

X

Y

O z = 1z = – 1

C | z | = 3/2≡

X

Y

O
z = 1

(0, 0) (1, 0)

C | z – 1| = 1≡

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com


58 A TEXTBOOK OF ENGINEERING MATHEMATICS

(iii) The given curve C is a circle with centre at

origin (0, 0) and radius 
1
2

. Clearly both the

singularities z = 1 and z = – 1 lie outside the

given circle | z | = 
1
2

.

Hence, by Cauchy’s Integral theorem

Cz +
−

z
z

dz
2

2
1
1

 = 0.

Example 7.(i) Use Cauchy’s integral formula to show that

C

zt

2
e

z 1
dzz +

 = 2πi sin t  if t > 0 and C is the circle |z| = 3. (U.P.T.U. 2009)

(ii) Evaluate the following complex integration using Cauchy’s integral formula

C

2

2
3z z 1

(z 1)(z 3)z + +
− +

 dz where C is the circle | z | = 2

Sol. (i) Singularities of the integrand are given by
  z2 + 1 = 0 ⇒ z = ± i (order 1)

The circle |z| = 3 has centre at z = 0 and radius 3. It encloses both the singularities z = i
and z = – i.

Now,   
Cz +

e
z

dz
zt

2 1
 = 

Cz − +
e

z i z i
dz

zt

( ) ( )
 = 

C C1 2
z z+
F
HG
I
KJ

−
+

−
F
HG
I
KJ

+

e
z i

z i
dz

e
z i

z i
dz

zt zt

= 2 2π πi
e

z i
i

e
z i

zt

z i

zt

z i
+
F
HG
I
KJ +

−
F
HG
I
KJ= = −

 = π (eit – e– it) = 2πi sin t

(ii) Poles of the integrand are given by
(z2 – 1) (z + 3) = 0 ⇒ z = 1, – 1, – 3 (simple poles)

The circle | z | = 2 has centre at z = 0 and radius 2. clearly the poles z = 1 and  z = – 1
lie inside the given circle while the pole z = – 3 lie outside it.

∴  
Cz + +

− +
3 1

1 3

2

2
z z

z z( )( )
 dz = 

C C1 2
z z

+ +
+ +

RST
UVW

−
+

+ +
− +

RST
UVW

+

3 1
1 3

1

3 1
1 3

1

2 2z z
z z

z
dz

z z
z z

z

( )( ) ( )( )
 dz

= 2πi 
3 1

1 3

2

1

z z
z z

z

+ +
+ +
L
NM

O
QP =

( )( )
 + 2πi 

3 1
1 3

2

1

z z
z z

z

+ +
− +
L
NM

O
QP = −

( )( )

| Using Cauchy’s Integral formula

= 2πi 
5
8
F
HG
I
KJ  + 2πi −FHG

I
KJ

3
4  = 2πi 

−F
HG
I
KJ

1
8  = – 

πi
4

X

Y

O

C | z | = 1/2≡
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FUNCTION OF COMPLEX VARIABLE 59

Example 8. Integrate (z3 – 1)–2 the counterclockwise sense around the circle
| z – 1 | = 1

Sol. Singularities of integrand are given by
 (z3 – 1)2 = 0

⇒  (z – 1)2 (z2 + z + 1)2 = 0

⇒  z = 1, − ±1 3
2

i

Singularities are of second order.
The circle | z – 1 | = 1 has centre at z = 1 and

radius 1. Clearly, only z = 1 lies inside the circle
| z – 1 | = 1

Now,
Cz −

dz
z( )3 21

 = 
Cz + +
RST

UVW
−

1
1

1

2 2

2

( )

( )

z z

z
 dz

= 
2
1

1
12 2

1

πi d
dz z z

z
! ( )+ +
RST

UVW
L
N
MM

O
Q
PP =

Using Cauchy's Integral
formula for derivatives

= 2πi 
− +

+ +
L
NM

O
QP =

2 2 1
12 3

1

( )
( )

z
z z z

 = – 4πi 
3
27
F
HG
I
KJ  = – 

4
9
πi

Example 9. Evaluate: 
C

z

2 2 2
e

(z )z + π
 dz, where C is | z | = 4. (U.P.T.U. 2008)

Sol. Singularities of the integrand are given by
(z2

 + π2)2
 = 0 ⇒ z = ± πi (order 2)

The given curve C is a circle with centre at origin and radius 4. The circle encloses both
the singularities.

∴
C ( )z +

e
z

z

2 2 2π
dz = 

C C1 2

2

2

2

2z z+
RST

UVW
−

+
−

RST
UVW

+

e
z i

z i
dz

e
z i

z i

z z

( )

( )

( )

( )

π
π

π
π

 dz

= 2πi 
d
dz

e
z i

z

z i
( )+

RST
UVW

L
N
MM

O
Q
PP =

π
π

2  + 2πi 
d
dz

e
z i

z

z i
( )−

RST
UVW

L
N
MM

O
Q
PP = −

π
π

2

| By C–I formula for derivatives

= 2
2

3π π
π π

i
e z i

z i

z

z i

( )
( )

+ −
+

L
NM

O
QP =

 + 2πi 
e z i

z i

z

z i

( )
( )

− −
−

L
NM

O
QP = −

π
π π

2
3

= 
π

π
π

π π
i i i−F
HG
I
KJ + +F
HG
I
KJ =1

2
1

22 2 .

X

Y

O
z = 1

C | z – 1| = 1≡
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Example 10. Use Cauchy’s integral formula to evaluate

C

2z

4
e

(z 1)
dzz +

 where C is the circle | z | = 2. [U.K.T.U. 2011]

Sol. The integrand has a singularity at z = – 1 which lies within the circle | z | = 2.

  
C

2

4( 1)z +
=
RST

UVW =−

e
z

dz
i d

dz
e

z
z

z

2
3

3

3
2

1

π
!

( )  = 
πi
3

 (8e2z)z = –1 = 
8
3 2

πi
e

.

Example 11. Evaluate 
C 2

z
z 1

dzz +
, where

(i) C ≡ z
1
z

+  = 2 (ii) C ≡ | z + i | = 1.

Sol. Poles of the integrand are given by

 z2 + 1 = 0 ⇒ z = ± i

Integrand  has  two  simple  poles  z = i and z = – i

(i) The given curve is

  z
z

+ 1
 = 2

⇒  x iy
x iy

+ +
+
1

 = 2

⇒ x y ixy
x iy

2 2 2 1– + +
+

 = 2

⇒  (x2 – y2 + 1)2 + 4x2y2 = 4x2 + 4y2

⇒ x4 + y4 – 2x2y2 + 1 + 2x2 – 2y2 + 4x2y2

  = 4x2 + 4y2

⇒ (x2 + y2)2 – 2(x2 + y2) + 1 = 4y2

⇒   x2 + y2 – 1 = ± 2y

⇒   x2 + (y ± 1)2 = 2

Above eqn. represents two circles with centres (0, 1), (0, – 1) and radius 2 .

  
C C Cz z z+

=
+

+
+

z
z

dz
z

z
dz

z
z

dz2 2 21 1 11 2

= 
C C1 2
z z+
F
HG
I
KJ

−
+

−
F
HG
I
KJ

+

z
z i
z i

dz

z
z i
z i

dz

= 2πi 
z

z i
i

z
z iz i z i+

F
HG
I
KJ +

+
F
HG
I
KJ= = −

2π

X

Y

O

– i

i

C | z – i | = 21 ≡

C | z + i | = 22 ≡

2

2
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= 2πi 
1
2

2
1
2

F
HG
I
KJ + F

HG
I
KJπi  = 2πi.

(ii) The given curve | z + i | = 1 is a circle with
centre  at  z  =  –  i  and  radius  1. Clearly  only  the  pole
z = – i lies inside the circle | z + i | = 1

  
C Cz z+

=
−
F
HG
I
KJ

+
z

z
dz

z
z i
z i

dz2 1

= 2πi 
z

z i z i−
F
HG
I
KJ = −

= πi | By Cauchy Integral formula

Example 12. Evaluate by using Cauchy Integral formula

C ( ) ( )z −
+ −

z 1

z 1 z 2
dz2 , where C is |z – i| = 2.

Sol. Poles of the integrand are given by
 (z + 1)2 (z – 2) = 0

⇒  z = – 1, 2
z = – 1 is a double pole while z = 2 is a simple

pole.
The given curve C is a circle with centre at (0, 1)

and radius 2. Clearly, the pole z = – 1 lies inside the
given circle while the pole z = 2 lies outside it.

Hence,

C Cz z−
+ −

=

−
−
F
HG
I
KJ

+
z

z z
dz

z
z

z
dz

1
1 2

1
2

12 2( ) ( ) ( )

= 
2
1

1
2

1

πi d
dz

z
z

z
!

−
−
F
HG
I
KJ

RST
UVW = −

= 2πi 
−
−

RST
UVW =−

1
2 2

1( )z z

 = – 
2
9
πi

.

ASSIGNMENT

1. Evaluate 
Cz +

−
z
z

dz
2 5

3
, where C is the circle | z | = 4.

2. Evaluate 
Cz +

e

z
dz

z

2 1
 over the circular path | z | = 2.

3. Evaluate 
Cz + +

+
3 7 1

1

2z z
z

dz , where C is the circle | z | = 1.5.

X

Y

O (0, 0)

(0, –1) z = – i

C | z + i | = 1≡

X

Y

O

21
z = 2

(0, 0)

(0, –1)

(–1, 0)

z = – 1

(0, 1)

(0, 3)

C | z – i | = 2≡

( 3, 0)
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4. Evaluate 
Cz −

cos z
z

dz
π

, where C is the circle | z – 1 | = 3.

5. Evaluate the complex integration

(i)
Cz +

+ +

RS|T|
UV|W|

cos sin
( )( )

π πz z
z z

2 2

1 2
 dz where C is the circle | z | = 3.

(ii)
Cz +

− −
sin cos

( ) ( )
π πz z

z z

2 2

1 3
 dz where C: |z| = 2 (M.T.U. 2013)

6. (i) Evaluate 
Cz − −

z dz
z z( )( )1 3

, where C is the circle

(a) | z | = 3 (b) | z | = 3/2.

(ii) Evaluate
Cz − −

e
z z

dz
z

( )(1 4)
, where C is the circle | z | = 2.

(iii) Evaluate using Cauchy’s integral formula:

Cz − −
e

z z
dz

z2

1 2( )( )
where C is the circle | z | = 3.

(iv) State Cauchy’s integral formula. Hence evaluate: (G.B.T.U. 2011, 2012)

Cz − +
exp ( )

( )

i z

z z

π
2 5 22 dz

where C is the unit circle with centre at origin and having positive orientation.

7. (i) Evaluate 
Cz +

e
z z

dz
z

( )1
, where C is the circle | z | = 

1
4

.

(ii) Using Cauchy Integral formula, evaluate 
Cz −

dz

z2 1
 where C ≡ | z | = 2.

(iii) Evaluate 
2 1

2
z

z z
dz

+
+zC  where C is | | .z = 1

2

8. Evaluate 
Cz −

cos πz

z
dz2 1

 around a rectangle with vertices

(a) 2 ± i, – 2 ± i (b) – i, 2 – i, 2 + i, i.

9. Integrate 
e

z

z

2 1+
 around the contour C, where C is

(i) | z – i | = 1 (ii) | z + i | = 1

10. Show that 
Cz e

z

z
 dz = 2πi,  C ≡ | z | = 1. Hence show that

0

2π
θ θ θz e dcos cos (sin )  = 2π and

0

2π
θ θ θz e dcos sin (sin )  = 0

11. Evaluate 
Cz +

dz

z2 9
, where C is

(i) | z – 3i | = 4 (ii) | z + 3i | = 2 (iii) | z | = 5
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12. Evaluate:

(i)
Cz +

+ +
z

z z

4

2 52  dz ; C ≡ | z + 1 – i | = 2 (ii)
Cz −

−
z

z i

3 6
2

 dz ; C ≡ | z | = 1

(iii)
Cz −

tan z

z2 1
 dz ; C ≡ | z | = 3/2 (iv)

Cz +
−

2
1

2

2
z z

z
dz ; C ≡ | z – 1 | = 1.

13. Evaluate by Cauchy-Integral formula: 
Cz +

−
z

z

2

2
1

1
 dz, where C is

(i) | z – 1 | = 1 (ii) | z + 1 | = 1 (iii) | z – i | = 1.
14. Evaluate the following integrals:

(i)
Cz − −

cos
( ) ( )

2
2 1 3

πz
z z

 dz; C ≡ | z | = 1 (ii)
Cz − +

+
z z

z i

4 2

3
3 6

( )
 dz; C ≡ | z | = 2

(iii)
Cz cosh z

z4  dz; C ≡ | z | = 1/2

15. Evaluate 
Cz

−FHG
I
KJ

sin2

3

6

z

z

dz
π

, where C is the circle | z | = 1.

16. (i) Evaluate 
Cz −

+
e dz

z

z2

31( )
, where C is the circle | z | = 2.

(ii) Evaluate the integral 
e

z

z2

51( )+z  dz around the boundary of the circle |z| = 2.

(U.P.T.U. 2015)

17. (i) Evaluate: 
Cz −

e

z

z3

42( log )
 dz, where C is the square with vertices at  ± 1 ± i.

(ii) Evaluate: dz

z z ez2 2 4( )−zC , where C ≡ | z | = 1. (G.B.T.U. 2013)

18. Evaluate 
Cz −

e

z z

z

( )1 3  dz, where C is

(i) | z | = 
1
2

(ii) | z – 1 | = 
1
2

(iii) | z | = 2

19. Integrate 
sin

( ) ( )

2

3 1 2
z

z z+ +
 around the contour C,  where C is a rectangle with vertices at 3 ± i, – 2 ± i.

20. Evaluate: 
Cz −

−
z z

z

3

32( )
 dz, where C is

(i) | z | = 3 (ii) | z – 2 | = 1 (iii) | z | = 1
21. Using Cauchy-integral formula, evaluate:

(i)
Cz −

cos

( )

z

z iπ 2  dz; C ≡ | z | = 5 (ii) 
Cz e

z

z

3  dz ; C ≡ | z | = 1

(iii)
Cz − +

e

z z

z

( ) ( )1 42 2  dz; C ≡ | z – 1 | = 
1
2

(iv)
Cz +

e
z

zt

( )2 21
 dz; C ≡ | z | = 3, t > 0.
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22. Evaluate 
Cz − +

sin z

z iz2 2
 dz, where C is

(i) | z + 2 | = 2
(ii) A rectangle with vertices at (1, 0), (1, 3), (– 1, 3) and (– 1, 0)

(iii) A rectangle with vertices at (2, 0), (2, 3), (– 2, 3) and (– 2, – 3).
23. Evaluate the integrals

(i)
Cz +

− − +
e z

z z z

z sin

( ) ( ) ( )

π
1 3 42  dz, C ≡ | z | = 2 (ii)

Cz +
−

z

z

1

92  dz; C ≡ | z + 3 | = 1

24. Show that

 (i) 
Cz +

=dz

z( )2 24 16
π

; C ≡ | z – i | = 2

(ii)
Cz +

= −FHG
I
KJ

e

z z
dz

e
i

z

2 31

11
4

( )
π ; C ≡ | z | = 2

(iii)
Cz +

dz

z( )2 34
 = 0; C ≡ | z – 1 | = 4

25. Evaluate 
Cz − +

z

z z( )2 26 25
 dz by Cauchy integral formula, where C is | z – 3 – 4i | = 4.

26. Let P(z) = a + bz + cz2 and z z z= =P P P
C C

( ) ( ) ( )z
z

dz
z

z
dz

z

z2 3  dz = 2πi where C is the circle | z | = 1.

Evaluate P(z).

27. If f(ξ) = 
Cz + +

−
3 7 12z z

z ξ
 dz, where C is the circle x2 + y2 = 4, find the values of f(3), f ′(1 – i) and

f ″(1 – i).

28. Evaluate: 
(1 +

C

z z

z

) sin
( )2 3 2−z  dz, where C ≡ | z – i | = 2 counter-clockwise. (U.P.T.U. 2014)

Answers

1. 28πi 2. 2πi sin 1 3. – 6πi 4. – 2πi

5. (i) – 4πi (ii) πi

6. (i) (a) 2πi (b) – πi (ii) – 
2
3

πie (iii) 2πi (e4 – e2) (iv)
2
3
π

7. (i) 2πi (ii) 0 (iii) 2πi

8. (a) 0 (b) – πi

9. (i) π(cos 1 + i sin 1) (ii) – π(cos 1 – i sin 1)

11. (i) 
π
3

(ii) – 
π
3

(iii) 0

12. (i) 
π
2

 (3 + 2i) (ii)
π
8

 – 6πi (iii) 2πi tan 1 (iv) 3πi

13. (i) 2πi (ii) – 2πi  (iii) 0

14. (i) 
2
5
πi

(ii) – 18πi (iii) 0 15. πi

16. (i) 4πie2 (ii)
4

3 2
πi

e
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17. (i) 72πi (ii) – 
πi
2

18. (i) 2πi (ii) – πie (iii) πi (2 – e)

19.
πi
2

 (4 cos 2 + sin 2) 20. (i) 12πi   (ii) 12πi (iii) 0

21. (i) 2π sinh π (ii) πi  (iii) 
6
25
πe

(iv) πi (sin t – t cos t)

22. (i) 0 (ii)
2
3
πi

 sinh 2 (iii)
2
3
πi

 (sinh 2 + sinh 1)

23. (i) 
πie
10

(ii)
2
3
πi

25.
3
128

π
.

26. P(z) = 1 + z + z2 27. f(3) = 0, f ′(1 – i) = 2π(6 + 13i), f ″(1 – i) = 12πi

28.
πi
2

5
2

3
2

3
2

cos sin+F
HG

I
KJ

1.28 REPRESENTATION OF A FUNCTION BY POWER SERIES

A series of the form a zn
n

n =

∞

∑
0

 or a z an
n

n

( )−
=

∞

∑
0

 whose terms are variable is called a power

series, where z is a complex variable and an, a are complex constants. The second form can be
reduced to first form merely by substitution z = ζ + a or by changing the origin.

Every complex function f(z) which is analytic in a domain D can be represented by a
power series valid in some circular region R about a point z0. Both the circular region R and
the point z0 lie inside D. Such a power series is Taylor’s series. If f(z) is not analytic at a point
z0,  we can still expand f(z) in an infinite series having both positive and negative powers of
z – z0. This series is called the Laurent’s series.

1.29 TAYLOR’S SERIES [U.P.T.U. (C.O.) 2008]

If f(z) is analytic inside a circle C with centre at a, then for all z inside C,

f(z) = f(a) + (z – a) f ′(a) + (z a)
2 !

f (a)
(z a)

n !

2 n−
″ + +

−"  f n(a) + ⋅⋅⋅

Or

f(z) = a (z a)n
n

n 0

−
=

∞

∑ , where an = 
f a

n

n( ) ( )
!

.

Proof. Let z be any point inside the circle C. Draw a circle C1 with
centre at a and radius smaller than that of C such that z is an
interior point of C1. Let w be any point on C1, then

| z – a | < | w – a | i.e., 
z a
w a

−
−

 < 1

Now,  1 1 1
1

1

w z w a z a w a
z a
w a−

=
− − −

=
−

− −
−

L
NM

O
QP

−

( ) ( )

aC1

C

z

w
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Expanding RHS by binomial theorem as z a
w a

−
−

 < 1, we get

1 1
1

2

w z w a
z a
w a

z a
w a

z a
w a

n

−
=

−
+

−
−

+
−
−
F
HG
I
KJ + +

−
−
F
HG
I
KJ +

L
N
MM

O
Q
PP" " ...(1)

This series converges uniformly since 
z a
w a

−
−

 < 1. Multiplying both sides of eqn. (1) by

1
2πi

f w( ) and integrating term by term w.r.t. w, over C1, we get

1
2

1
2 2 21 1 1 1

2

2

3π π π πi
f w
w z

dw
i

f w
w a

dw
z a

i
f w

w a
dw

z a
i

f w
w aC C C Cz z z z−

=
−

+ −
−

+ −
−

( ) ( ) ( )
( )

( ) ( )
( )

 dw

+ ⋅⋅⋅ + 
( ) ( )

( )
z a

i
f w

w a
dw

n

n
−

−z +2 1
1π C

 + ⋅⋅⋅ ...(2)

⇒   f(z) = f(a) + (z – a) f ′(a) + 
( )

!
( )

( )
!

z a
f a

z a
n

n−
″ + ⋅ ⋅ ⋅ +

−2

2
 f n(a) + ⋅⋅⋅ ...(3)

which is the required Taylor’s series for f(z) about z = a.
Cor. 1. Putting z = a + h in (3), we get

  f(a + h) = f(a) + hf ′(a) + 
h2

2 !
 f ″(a) + ⋅⋅⋅ + 

h
n

n

!
 f n(a) + ⋅⋅⋅

Cor. 2. If a = 0, the series (3) becomes

  f(z) = f(0) + zf ′(0) + 
z2

2 !
 f ″(0) + ⋅⋅⋅ + 

z
n

n

!
 f n(0) + ⋅⋅⋅

This series is called Maclaurin’s series.

1.30 LAURENT’S SERIES [U.P.T.U. (C.O.) 2008]

If f(z) is analytic inside and on the boundary of the annular (ring shaped) region R bounded by
two concentric circles C1 and C2 of radii r1 and r2 (r1 > r2) respectively having centre at a, then
for all z in R,

f(z) = an
n 0=

∞

∑ (z – a)n + b (z a)n
n

n 1

− −

=

∞

∑

where, an = 
1

2 i
f(w)

(w a)
dw

C n 1
1π z − +  ; n = 0, 1, 2, ...

and  bn = 
1

2 i
f(w)

(w a)
dw

C n 1
2π z − − +  ; n = 1, 2, 3, ...

Proof. Let z be any point in the region R, then by Cauchy’s integral formula for double connected
region, we have

f(z) = 
1

2
1

21 2π πi
f w
w z

dw
i

f w
w z

dw
C C

( ) ( )z z−
−

−
...(1)
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For the first integral in (1), w lies on C1

∴  | z – a | < | w – a | i.e.,
z a
w a

−
−

 < 1

Now   1 1 1
1

1

w z w a z a w a
z a
w a−

=
− − −

=
−

− −
−

F
HG

I
KJ

−

( ) ( )

= 1
1

2

w a
z a
w a

z a
w a−

+
−
−

+
−
−
F
HG
I
KJ + ⋅ ⋅ ⋅

L
N
MM

O
Q
PP

Multiplying both sides by 
1

2πi
f w( ) and integrating term by term w.r.t. w, along the

circle C1, we get

1
2

1
2 2 21 1 1 1

2

2

3π π π πi
f w
w z

dw
i

f w
w a

dw
z a

i
f w

w a
dw

z a
i

f w
w aC C C Cz z z z−

=
−

+ −
−

+ −
−

( ) ( ) ( )
( )

( ) ( )
( )

 dw

+ ⋅⋅⋅
= a0 + a1(z – a) + a2(z – a)2 + ⋅⋅⋅

  = a z an
n

n

( )−
=

∞

∑
0

  ...(2)  ∵ a
i

f w
w a

dw nn n=
−

= ⋅ ⋅ ⋅
L
NMM

O
QPPz +

1
2

0 1 2
1

1π C

( )
( )

, , , ,

For the second integral in (1), w lies on C2

∴   | w – a | <| z – a | i.e.,
w a
z a

−
−

 < 1

Now  1 1 1
1

1

w z w a z a z a
w a
z a−

=
− − −

= −
−

− −
−

F
HG

I
KJ

−

( ) ( )

= – 
1

1
2

z a
w a
z a

w a
z a−

+
−
−

+
−
−
F
HG
I
KJ + ⋅ ⋅ ⋅

L
N
MM

O
Q
PP

Multiplying both sides by – 
1

2πi
f w( ) and integrating term by term w.r.t. w, along the

circle C2, we get

– 
1

2
1 1

2
1 1

22 2 2
2π π πi

f w
w z

dw
z a i

f w dw
z a iC C Cz z z−

=
−

⋅ +
−

⋅( )
( )

( )
(w – a) f(w) dw

+ 
1 1

23
2( )z a i−

⋅ zπ C
(w – a)2 f(w) dw + ⋅⋅⋅

  = b1(z – a)–1 + b2(z – a)–2 + b3(z – a)–3 + ⋅⋅⋅

     = b z an
n

n

( )− −

=

∞

∑
1

 ...(3) ∵ b
i

f w
w a

dw nn n=
−

= ⋅ ⋅ ⋅
L
NMM

O
QPPz − +

1
2

1 2 3
2

1π C

( )
( )

, , , ,

Substituting from (2) and (3) in (1), we get

  f(z) = a z a b z an
n

n
n

nn

( ) ( )− + − −

=

∞

=

∞

∑∑
10

r1 a z

r2

R

C1
C2
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Note 1. In case f(z) is analytic inside C1, then bn = 0 and an = 1
2 1

1πi
f w

w a
dw

f a
nn

n

Cz −
=+

( )

( )

( )
!

and Laurent’s series reduces to Taylor’s series.

Note 2. If C is any simple closed curve which lies in the ring-shaped region R and encloses the circle C1,
then

C C1
1 1z z−

=
−+ +

f w

w a
dw

f w

w a
dwn n

( )

( )

( )

( )

and
C C2

1 1z z−
=

−− + − +
f w

w a
dw

f w

w a
dwn n

( )

( )

( )

( )

∴ Laurent’s series can be written as

f(z) = 
n

n
na z a

= − ∞

∞

∑ −( ) , where an = 
1

2 1πi
f w

w a
dwnCz − +

( )

( )
.

EXAMPLES

Example 1. Expand 
1

z 3z 22 − +
 in the region

(a) | z | < 1 (b) 1 < | z | < 2 (U.P.T.U. 2015)
(c) | z | > 2 (d) 0 < | z – 1 | < 1. (G.B.T.U. 2006, 2008, 2010)

Sol. Here f(z) = 
1
3 2

1
1 2

1
2

1
12z z z z z z− +

=
− −

=
−

−
−( )( )

| Partial Fractions

(a) When | z | < 1

∴  f(z) = 
1

2 1
2

1
1− −FHG

I
KJ

+
−z z

[Arranged suitably to make the binomial expansions valid]

= – 
1
2

1
2

1

−FHG
I
KJ

−z
 + (1 – z)–1 = – 

1
2 2

0 0n

n

n

nz
z

=

∞

=

∞

∑ ∑F
HG
I
KJ +

This is a series in positive powers of z, so it is an expansion of f(z) in Taylor’s series
within the circle | z | = 1.

(b) When 1 < |z| < 2

∴  f(z) = 
1

2 1
2

1

1
1

1
2

1
2

1
1

11 1

− −FHG
I
KJ

−
−FHG
I
KJ

= − −FHG
I
KJ − −FHG

I
KJ

− −

z
z

z

z
z z

= – 
1
2 2

1 1

0 0n

n

n

nz
z z=

∞

=

∞

∑ ∑F
HG
I
KJ − F

HG
I
KJ

This is a series in positive and negative powers of z, so it is an expansion of f(z) in
Laurent’s series within the annulus 1 < | z | < 2

a
C
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(c) When |z| > 2

∴  f(z) = 
1

1
2

1

1
1

1
1

2 1
1

11 1

z
z

z
z

z z z z−FHG
I
KJ

−
−FHG
I
KJ

= −FHG
I
KJ − −FHG

I
KJ

− −

= 
1 2 1 1

0 0
z z z z

n

n

n

n

=

∞

=

∞

∑ ∑F
HG
I
KJ − F

HG
I
KJ

This is Laurent’s series within the annulus 2 < | z | < R, where R is large.
(d) When 0 < |z – 1| < 1

 f(z) = 
1
1 1

1
1

1
1 1

1
1( ) ( )z z z z− −

−
−

= −
− −

−
−

 = – (z – 1)–1 – [1 – (z – 1)]–1

= – 
1

1
1

0
z

z
n

n

−
− −

=

∞

∑ ( ) .

This is also Laurent’s series within the annulus 0 < | z – 1 | < 1.

Example 2. Show that when | z + 1 | < 1, z–2 = 1 + (n 1)(z 1)n

n 1

+ +
=

∞

∑ .

Sol.  f(z) = z–2 = 
1 1

1 1
1

1 12 2 2z z z
=

+ −
=

− +[( ) ] [ ( )]
 = [1 – (z + 1)]–2

= 1 + 2(z + 1) + 3(z + 1)2 + 4(z + 1)3 + ⋅⋅⋅
[By binomial theorem, since | z + 1 | < 1]

= 1 + ( )( )n z n

n

+ +
=

∞

∑ 1 1
1

.

Example 3. Expand cos z in a Taylor’s series about z = 
π
4

.

Sol. Here  f(z) = cos z, f ′(z) = – sin z, f ″(z) = – cos z, f ″′(z) = sin z, ...

∴  f 
π
4
F
HG
I
KJ = 1

2
, f ′ π

4
F
HG
I
KJ = − 1

2
, f ″ 

π
4
F
HG
I
KJ = − 1

2
, f ″′ π

4
F
HG
I
KJ = 1

2
, ...

Hence cos z = f(z)

= f 
π π π

π
π

π
π

4 4 4
4

4
4

4
F
HG
I
KJ + −FHG

I
KJ ′ FHG

I
KJ +

−FHG
I
KJ

″ FHG
I
KJ +

−FHG
I
KJ

″′ FHG
I
KJz f

z
f

z
f

2 3

2 3! !
 + ...

= 
1
2

1
4

1
2 4

1
3 4

2 3

− −FHG
I
KJ − −FHG

I
KJ + −FHG

I
KJ + ⋅ ⋅ ⋅

L
N
MM

O
Q
PPz z z

π π π
! !

Example 4. Expand the function sin z
z − π

 about z = π.

Sol. Putting z – π = t, we have

sin sin ( ) sinz
z

t
t

t
t−

= + = −
π

π
 = – 

1
3 5

3 5

t
t

t t− + ⋅ ⋅ ⋅
F
HG

I
KJ! !

= − + − + ⋅ ⋅ ⋅ = − +
−

−
− )

1
3 5

1
3 5

2 4 2 4t t z z
! !

( )
!

(
!

π π
 + ⋅⋅⋅
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Example 5. Expand f(z) = 
z

(z 1)(z 2)+ +
 about z = – 2.

Sol. To expand f(z) about z = – 2, i.e., in powers of z + 2, we put z + 2 = t.

∴  f(z) = 
z

z z
t
t t

t
t t

t
t( )( ) ( ) ( )+ +

= −
−

= −
−

= −
1 2

2
1

2
1

2
 (1 – t)–1

= 
2 − t

t
 (1 + t + t2 + t3 + ⋅⋅⋅) for 0 < | t | < 1

= 
1
t

 (2 + t + t2 + t3 + ⋅⋅⋅) = 
2
t

 + 1 + t + t2 + ⋅⋅⋅

= 
2

2z +  + 1 + (z + 2) + (z + 2)2 + ⋅⋅⋅ for 0 < | z + 2 | < 1

which is Laurent’s series.
Example 6. Expand the following function in a Laurent’s series:

(i) f(z) = 
e

(z 1)

z

2−
 about z = 1. (ii) f(z) = 

1
z(z 1) (z 2)− −

 for | z – 1 | < 1

Sol. (i)  f(z) = 
e

z

z

( )− 1 2

Put   z – 1 = t then z = 1 + t

∴   f(z) = 
e
t

t1

2

+

 = 
e
t

t t t
2

2 3

1
1 2 3

+ + + + ⋅ ⋅ ⋅
L
NMM

O
QPP! ! !
 = e 1 1 1

2 32t t
t+ + + + ⋅ ⋅ ⋅

L
NM

O
QP! !

= e 
1
1

1
1

1
2

1
32( ) ! !z z

z

−
+

−
+ +

−
+ ⋅ ⋅ ⋅

L
NMM

O
QPP
.

(ii) f(z) = 
1

( 1) ( 2)z z z− −
 = 

1
2

1
1

1
2 2z z z

−
−

+
−( )

|Partial fractions

= 
1

2 1 1
1

1
1

2 1 1( ) ( )z z z− +
−

−
+

− −

= 
1
2

{1 + (z – 1)}–1 −
−

−1
1

1
2z

{1 – (z – 1)}–1 |∵ |z – 1| < 1

= 
1
2

1 1
1

1
1
2

1
0 0

( ) ( ) ( )− − −
−

− −
=

∞

=

∞

∑ ∑n n

n

n

n

z
z

z 

This is a series in positive and negative powers of (z – 1) hence it is an expansion of f(z)
in a Laurent’s series for |z – 1| < 1.

Example 7. Expand the following function in a Laurent’s series about the point z = 0:

 f(z) = 
1 cos z

z3
−

.

Sol. f(z) = 
1

3
− cos z

z
 = 1

1 1
2 43

2 4

z
z z− − + − ⋅ ⋅ ⋅

RS|T|
UV|W|

L
N
MM

O
Q
PP! !

= 1
2 4 63

2 4 6

z
z z z

! ! !
–− + ⋅ ⋅ ⋅

F
HG

I
KJ  = 

1
2

1
4

1
6! ! !z

z− +  z3 – ⋅⋅⋅
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Example 8. Find  the  terms  in  the  Laurent’s  expansion  of  
1

z(e 1)z −
  for  the  region

0 < | z | < 2π.

Sol.  f(z) = 
1

1z ez( )−
 = 

1

1
2 3

1
2 3

z z
z z+ + + + −

L
NMM

O
QPP! !

...

= z–1 z
z z+ + +

F
HG

I
KJ

−2 3 1

2 3! !
...  = z–2 1

2 3

2 1

+ + +
F
HG

I
KJ

−
z z
! !

...

= z–2 1
2 6 24 120

1
4

1
3 12

2 3 4
2

2 2

− + + + +
F
HG

I
KJ + + + +

F
HG

I
KJ

L

N
MM

z z z z
z

z z
... ...

− + +F
HG

I
KJ + + +

O
Q
PP

1
8

1
3 16

13
3 4

4z
z z

... ( ...) ...

= z–2 1
2

1
4

1
6

1
8

1
6

1
24

2 3− + −FHG
I
KJ − − +F
HG

I
KJ

L
NM

z
z z

+ z4 1
16

1
8

1
24

1
36

1
120

− + + −F
HG

I
KJ +
O
QP...

= z–2 1
2 12 720

2 4

− + − +
L
NMM

O
QPP

z z z
...  = z–2 – 

1
2

1
12 720

1
2

z
z− + −  + ...

The singularities of 
1

1z ez( )−
 are given by z = 0, ez = 1 i.e., z = 0, ± 2πi, ± 4πi, ....... .

Hence the above expansion is valid for the region 0 < | z | < 2π.
Example 9. Using Taylor’s theorem, show that:

 log z = (z – 1) – 
(z 1)

2
(z 1)

3

2 3− + −
 – ... where | z – 1 | < 1.

Sol.  f(z) = log z, f(1) = 0 | ∵ a = 1 and log 1 = 0

Now,  f ′(z) = 
1
z

,    f ′(1) = 1

  f ″(z) = – 
1
2z

,  f ″(1) = – 1

   f ″′(z) =  
2
3z

, f ″′(1) = 2

 f (iv) (z) = 
− 6

4z
,  f (iv) (1) = – 6 and so on.

We know that,

 f(z) = f(a) + (z – a) f ′(a) + 
( )

!
( )

( )
!

z a
f a

z a− ″ + −2 3

2 3
 f ″′(a) + ⋅⋅⋅

= f(1) + (z – 1) f ′(1) + 
( )

!
( )

( )
!

z
f

z− ″ + −1
2

1
1

3

2 3

 f ″′(1) + ⋅⋅⋅
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= 0 + (z – 1) (1) + 
( )

!
(– )

( )
!

z z− + −1
2

1
1

3

2 3

 (2) + ⋅⋅⋅

= (z – 1) – 
( ) ( )z z− + −1

2
1

3

2 3

 – ⋅⋅⋅

Example 10. Find the Taylor’s or Laurent’s series which represent the function
1

(1 z )(z 2)2+ +
 when

(i) | z | < 1 (ii) 1 < | z | < 2 (iii) | z | > 2.

Sol. Let  f(z) = 
1

1 2
1
5

1
2

2
12 2( )( )+ +

=
+

− −
+

RST
UVWz z z

z
z

(i) | z | < 1

 f(z) = 
1
5

1
2

1
1
2

2
5

1

. +FHG
I
KJ + −−

z
z

 (1 + z2)–1

| Binomial expansion of (1 + z)–1 is valid only when | z | < 1

= 
1

10
1

2
2

5
1 2

00

( ) ( )− F
HG
I
KJ + − −

∞∞

∑∑ n
n

n nz z
z

This is a series in positive powers of z, so it is an expansion of f(z) in a Taylor’s series
within the circle | z | = 1.

Remark. If  | z | < 1, (1 + z)–1 = ( )−
=

∞

∑ 1
0

n n

n

z ; (1 – z)–1 = zn

n =

∞

∑
0

.

(ii) 1 < | z | < 2

f(z) = 
1
5

1
2

1
1
2

2
5

1
1

11

2 2

1

. .+FHG
I
KJ + − +FHG

I
KJ

− −

z
z

z z

= 
1

10
1

2
2
5

1
1

0
2

0
2

∞ ∞

∑ ∑F
HG
I
KJ + F

HG
I
KJ(– )

–
(– )n

n
n

nz z
z z

This is a series in positive and negative powers of z, so it is an expansion of f(z) in a
Laurent’s series within the annulus 1 < | z | < 2.

(iii) | z | > 2

 f(z) = 
1
5

1
1

2 1
5

2
1

1
1

2 2. – ( – )
–1 –1

z z
z

z z
+FHG
I
KJ +FHG

I
KJ

= 
1

5
1

2 1
5

1 2
1

1
2

0
2

0
z z z z z

n
n

n
n

( ) ( )− F
HG
I
KJ − −FHG

I
KJ − F

HG
I
KJ

∞ ∞

∑ ∑
This is Laurent’s series within the annulus 2 < | z | < R, where R is large.
Example 11. Find the Taylor’s and Laurent’s series which represent the function

z 1
(z 2)(z 3)

2 −
+ +

 when (U.K.T.U. 2011)

(i) | z | < 2 (ii) 2 < | z | < 3 (iii) | z | > 3.
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Sol. Let   f(z) = 
z

z z

2 1
2 3

−
+ +( )( )

 = 1 + 
3

2
8

3z z+
−

+ .

(i) | z | < 2

  f(z) = 1 + 
3
2

1
2

8
3

1
3

1 1

+FHG
I
KJ − +FHG

I
KJ

− −z z

= 1 + 
3
2

1
2

8
3

1
3

00

( ) ( )− F
HG
I
KJ − − F

HG
I
KJ

∞∞

∑∑ n
n

n
nz z

It is a Taylor’s series within a circle | z | = 2.
(ii) 2 < | z | < 3

  f(z) = 1 + 
3

1
2 8

3
1

3

1 1

z z
z+FHG

I
KJ − +FHG

I
KJ

− −

| Arranging suitably to make the binomial expansion valid for 2 < | z | < 3

= 1 + 
3

1
2 8

3
1

3
00

z z
zn

n
n

n

( ) ( )− F
HG
I
KJ − − F

HG
I
KJ

∞∞

∑∑
It is a Laurent’s series within the annulus 2 < | z | < 3.

(iii) | z | > 3

 f(z) = 1 + 
3

1
2 8

1
31 1

z z z z
+FHG
I
KJ − +FHG

I
KJ

− −

= 1 + 
3

1
2 8

1
3

00
z z z z

n
n

n
n

( ) ( )− F
HG
I
KJ − − F

HG
I
KJ

∞∞

∑∑
It is a Laurent’s series within the annulus 3 < | z | < R, where R is large.

Example 12. Expand 
1

(z 1)(z 3)+ +
 in the regions

(i) | z | < 1 (ii) 1 < | z | < 3
(iii) | z | > 3 (iv) 1 < | z + 1 | < 2.

Sol.  f(z) = 
1

1 3
1
2

1
1

1
3( )( )z z z z+ +

=
+

−
+

L
NM

O
QP

(i) | z | < 1

  f(z) = 
1
2

1
1
3

1
3

1
1

( )+ − +FHG
I
KJ

L
N
MM

O
Q
PP

−
−

z
z

 = 
1
2

1
1
3

1
3

00

( ) ( )− − − F
HG
I
KJ

L
N
MM

O
Q
PP

∞∞

∑∑ n n n
n

z
z

It is a Taylor’s series within a circle | z | = 1.
(ii) 1 < | z | < 3

 f(z) = 
1
2

1
1

1 1
3

1
3

1 1

.
z z

z+FHG
I
KJ − +FHG

I
KJ

L
N
MM

O
Q
PP

− −

= 
1
2

1
1

1 1
3

1
3

00
z z

zn
n

n
n

( ) ( )− F
HG
I
KJ − − F

HG
I
KJ

L
N
MM

O
Q
PP

∞∞

∑∑
It is a Laurent’s series within the annulus 1 < | z | < 3.
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(iii) | z | > 3

 f(z) = 
1
2

1
1

1 1
1

31 1

z z z z
+FHG
I
KJ − +FHG

I
KJ

L
N
MM

O
Q
PP

− −

= 
1
2

1
1

1 1
1

3

00
z z z z

n
n

n
n

( ) ( )− F
HG
I
KJ − − F

HG
I
KJ

L
N
MM

O
Q
PP

∞∞

∑∑
It is a Laurent’s series within the annulus 3 < | z | < R where R is large.

(iv) 1 < | z + 1 | < 2
⇒  1 < | u | < 2 where z + 1 = u

 f(z) = 
1
2

1
1

1
3

1
2

1 1
2z z u u+

−
+

L
NM

O
QP = −

+
L
NM

O
QP

= 
1
2

2
2

1
2

.
( ) ( )u u u u+

=
+  = 

1
2

1
2

1
2

1
2

1

0
u

u
u

un
n

+FHG
I
KJ = − F

HG
I
KJ

− ∞

∑ ( )

= 
1

2 1
1

1
2

0
( )

( )
z

zn
n

+
− +F
HG
I
KJ

∞

∑
It is Laurent’s series in the annulus 1 < | z + 1 | < 2.
Example 13. Find the Laurent’s expansion for:

f(z) = 
7z 2

z z 2z3 2
−

− −
(U.K.T.U. 2010)

in the regions given by:
(i) 0 < | z + 1 | < 1 (ii) 1 < | z + 1 | < 3 (iii) | z + 1 | > 3.
Sol. We have

 f(z) = 
7 2

2
1 3

1
2

23 2
z

z z z z z z
−

− −
= −

+
+

−
 = 

1
1 1

3
1

2
1 3( ) ( )z z z+ −

−
+

+
+ −

(i) 0 < | z + 1 | < 1

 f(z) = – {1 – (z + 1)}–1 – 3
1

2
3

1
1

3

1

z
z

+
− − +F

HG
I
KJ

RST
UVW

−

= – 
3

1
1

2
3

1
3

00
z

z
zn

n

nn
+

− + − +F
HG
I
KJ

=

∞

=

∞

∑∑ ( )

This is a series in negative and positive powers of (z + 1) hence it is an expansion of f(z)
in Laurent’s series within the annulus 0 < | z + 1 | < 1.

(ii) 1 < | z + 1 | < 3

 f(z) = 1
1

1
1

1
3

1
2
3

1
1

3

1 1

z z z
z

+
−

+
F
HG

I
KJ −

+
− − +F

HG
I
KJ

RST
UVW

− −

= 
1

1
1

1
3

1
2
3

1
3

00
z z z

z
n n

nn
+ +

F
HG
I
KJ −

+
− +F

HG
I
KJ

=

∞

=

∞

∑∑
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This is also a series in negative and positive powers of (z + 1) hence it is an expansion of
f(z) in Laurent’s series within the annulus 1 < | z + 1 | < 3.

(iii) | z + 1 | > 3

 f(z) = 
1

1
1

1
1

3
1

2
1

1
3

1

1 1

z z z z z+
−

+
F
HG

I
KJ −

+
+

+
−

+
F
HG

I
KJ

− −

= 
1

1
1

1
3

1
2

1
3

1
00

z z z z z

n

n

n

n
+ +

F
HG
I
KJ −

+
+

+ +
F
HG
I
KJ=

∞

=

∞

∑∑
This is a series in negative powers of (z + 1) hence it is an expansion of f(z) in Laurent’s

series within the annulus 3 < | z + 1 | < R where R is large.

Example 14. (i) Obtain  the  Taylor’s  series  expansion of f(z) = 
1

z 4z 32 − +
 about the

point z = 4. Find its region of convergence.

(ii) Obtain Taylor’s series expansion of f(z) = 
1

z 42 +
 about the point z = – i. Find the

region of convergence. (U.P.T.U. 2006)
Sol. (i) If the centre of the circle is at z = 4, then the distances of the singularities z = 1

and z = 3 from centre are 3 and 1. Hence if a circle is drawn with centre at z = 4 and radius 1
then within a circle | z – 4 | = 1, the given function f(z) is analytic hence it can be expanded in
Taylor’s series within the circle | z – 4 | = 1 which is therefore the circle of convergence.

X

C | z – 4 | = 1�

z = 3z = 1 z = 4O

Y

z = 2

 f(z) = 
1

1 3( )( )z z− −  = 
1
2

1
3

1
1

1
2

1
4 1

1
4 3z z z z−

−
−

L
NM

O
QP = − +

−
− +

L
NM

O
QP

= 
1
2

1 4
1
3

1
4

3
1

1

{ ( )}+ − − + −F
HG
I
KJ

RST
UVW

L
N
MM

O
Q
PP

−
−

z
z

⇒      f(z) = 
1
2

1 4
1
3

1
4

3
0 0

( ) ( ) ( )− − − − −F
HG
I
KJ

L
N
MM

O
Q
PP=

∞

=

∞

∑ ∑n n

n

n
n

n

z
z
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(ii) If the centre of the circle is at z = – i, then
the distances of the singularities z = 2i and z = – 2i
from centre are 3 and 1 respectively.
Hence if a circle is drawn with centre at z = – i and
radius 1 then within a circle |z + i| = 1, the given
function f(z) is analytic hence it can be expanded in
Taylor’s series within the circle |z + i| = 1 which is
therefore the circle of convergence.

 f(z) = 
1

4
1

2 22z z i z i+
=

− +( ) ( )

 = 
1
4

1
2

1
2i z i z i−

−
+

F
HG

I
KJ

 = 
1
4

1
3

1
i z i i z i i( ) ( )+ −

−
+ +

L
NM

O
QP

 = 
1
4

1
3

1
3

1
1

1 1

i i
z i

i i
z i

i
− − +F

HG
I
KJ

RST
UVW − + +F

HG
I
KJ

RST
UVW

L
N
MM

O
Q
PP

− −

 = 
1
4 3 3

1
0 0

i
i z i

i
i

z i
i

n

n

n
n

n

+F
HG
I
KJ + − +F

HG
I
KJ

L
N
MM

O
Q
PP=

∞

=

∞

∑ ∑ ( )

 = 1
4

1
3 3

1
0 0

z i
i

z i
i

n

n

n
n

n

+F
HG
I
KJ + − +F

HG
I
KJ

L
N
MM

O
Q
PP=

∞

=

∞

∑ ∑ ( )

Example 15. (i) If the function f(z) is analytic and one-valued in | z – a | < R, prove that
for 0 < r < R,

 f ′(a) = 
1
r

P( ) e d
0

2
i

π
θ θ

π θz − where P(θ) is the real part of (a + reiθ).

(ii) Prove that: e J (z) t
1
2

z t
1
t

n
n

n
−FHG
I
KJ

= − ∞

∞

= ∑ , | t | > 0

where Jn (z) = 
1

cos n z sin
0π

θ θ
πz −( )  dθ [G.B.T.U. (C.O.) 2008]

Sol. (i) ∵ f(z) is regular in | z – a | < R
∴ f(z) is regular in | z – a | = r | ∵ r < R
∴ f(z) can be expanded in a Taylor’s series within the circle | z – a | = r. Thus,

  f(z) = a z am
m( )−

∞

∑
0

 where z – a = reiθ

= a r em
m miθ

0

∞

∑ ...(1)
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⇒  f z a r em
m mi( ) = −

∞

∑ θ

0

...(2)

Now, 
Cz z ∑−

=+
−

+ +

∞

f z
dz

z a
a r e

re id
r en m

m mi
i

n i n( )
( ) ( )1 0

2

1 1
0

π θ
θ

θ
θ

= a r i e dm
m n i m n− − +

∞ z∑ 0

2

0

π θ θ( )

= 0, for all values of n ...(3)

Particularly, 
Cz −

f z
dz

z a
( )

( )2  = 0 ...(4)

We know that  f ′(a) = 
1

2 2πi
f z dz
z aCz −
( )

( )
 = 

1
2 2πi

f z f z
z a

dz
Cz +

−
( ) ( )
( )

| Using (4)

= 1
2 0

2

2 2π
θ

π θ θ

θ
θ

i
f a re f a re

r e
re id

i i

i
iz + + +( ) ( )

= 1
2

2
0

2

π
θ

π θ

θz +Re( )a re
re

d
i

i
| ∵ z + z  = 2 Re (z)

= 
1

0

2

π
θ θ

π θ

r
e diz −P( )  where P(θ) = Re (a + reiθ).

(ii) The function e
z t

t
1
2

1−FHG
I
KJ  is analytic everywhere in the t-plane except at t = 0 and t = ∞

i.e., it is analytic in the ring shaped region r ≤ | t | ≤ R where r is small and R is large.
Therefore this function can be expanded in Laurent’s series in the form

 e a t b t
z t

t

n
n

n

n
n

n
1
2

1

0 1

−FHG
I
KJ

=

∞

=

∞
−= +∑ ∑

where  an = 
1

2

1
2

1

1πi
e

dt
t

z t
t

nCz −FHG
I
KJ

+ and bn = 
1

2

1
2

1

1πi
e

dt
t

z t
t

nCz −FHG
I
KJ

− +

where C is any circle with centre as origin.

Taking C ≡ | t | = 1 so that t = eiθ and dt = ieiθ dθ, we get

 an = 
1

2 0

2
2

1π
θπ θ

θ

θ θ

i
e

ie d
e

z
e e i

n i

i iz −

+

−( )

( )

= 
1

2 0

2

π
θ

π θ θz −e e diz nisin  = 
1

2 0

2

π
θ

π θ θz − −e di n z( sin )

= 
1

2 0

2

π
θ θ

πz −cos ( sin )n z  dθ | Since second part vanishes

⇒ an = 
1

0π
θ θ

πz −cos ( sin )n z  dθ | Using prop. of definite integrals
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Clearly, the function e
z t

t
1
2

1−FHG
I
KJ  remains unaltered if t is replaced by – 

1
t

 so that

bn = (– 1)n an. Therefore,

  e a t b t
z t

t

n
n

n

n
n

n
1
2

1

0 1

−FHG
I
KJ

=

∞

=

∞
−= +∑ ∑

= 
n

n
n

n

n
n

na t a t
=

∞

=

∞
−∑ ∑+ −

0 1

1( )  = 
n

n
na t

= − ∞

∞

∑

Here, an is Jn (z) hence, e z t
z t

t

n
n

n
1
2

1−FHG
I
KJ

= − ∞

∞

= ∑ J ( )

where, Jn (z) = 
1

0π
θ θ

πz −cos ( sin )n z  dθ.

Example 16. Prove that cosh z
1
z

a a z
1
z

0 n
n

n
1

+FHG
I
KJ = + +FHG

I
KJ

∞

∑
where an = 1

2
cosh

0

2

π
θ

πz  cosh (2 cos θ) dθ. (M.T.U. 2013)

Sol. The function f(z) = cosh z
z

+FHG
I
KJ

1
 is analytic everywhere in the finite part of the

plane except at z = 0 i.e., it is analytic in the annulus r ≤ | z | ≤ R where r is small and R is
large. Hence f(z) can be expanded in Laurent’s series in the annulus r < | z | < R. Thus,

cosh z
z

a z b zn
n

n
n+FHG

I
KJ = + −

∞∞

∑∑1

10

where an = 
1

2

1

1πi

z
z

z
dznCz

+FHG
I
KJ

+

cosh
and bn = 

1
2

1

1πi

z
z

z
dznCz

+FHG
I
KJ

− +

cosh

where C is any circle lying in the annulus with origin as centre.

   an = 
1

2

1

1πi

z
z

z
dznCz

+FHG
I
KJ

+

cosh

= 
1

2
2

0

2

1π
θ θπ θ

θi
ie d

e

i

i nz +
cosh ( cos )

( )

| Take C as a circle | z | = 1 on which z = eiθ

= 
1

2 0

2

π

πz cosh(2 cos θ) e–inθ dθ

= 1
2

2
0

2

π
θ θ θ

πz cosh ( cos ) cos n d ∵
0

2
2 0

π
θ θ θz =cosh ( cos ) sin n d
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bn = a–n

= 
1

2 0

2

π

πz  cosh (2 cos θ) cos (– nθ) dθ

= 
1

2 0

2

π

πz cosh (2 cos θ) cos nθ dθ = an

Hence,  cosh z
z

a z b zn
n

n
n+FHG

I
KJ = + −

∞∞

∑∑1

10

 = a z a zn
n

n
n+ −

∞∞

∑∑
10

| ∵ an = bn

= a0 + a z a zn
n

n
n+ −

∞∞

∑∑
11

 = a0 + a z zn
n n( )+ −

∞

∑
1

.

Example 17. If C is a closed contour around origin, prove that 
a
n !

1
2 i

a e
n ! z

dz
n 2

C

n az

n 1

F
HG
I
KJ = z +π

Hence deduce a
n !

1
2

e
n 2

0
0

2
2a cosF

HG
I
KJ =

∞

∑ zπ π θ  dθ.

Sol. Let f(z) = eaz

∴   f n(z) = an eaz

∴   f n(0) = an

⇒  an = 1
2 1πi

n
f z dz

zn!
( )

Cz +

⇒  
a
n i n

a e
z

dz
n n az

n! !

F
HG
I
KJ = z +

2

1
1

2
1

π C

⇒   
a
n i n

a e
z

dz
n n az

n! !

F
HG
I
KJ = z∑∑ +

∞∞ 2

1
00

1
2π C

 = 
1

2 1
0

πi
a e
n z

dz
n az

nCz ∑ +

∞

!

= 
1

2
1

1
0

πi
e

a
n z

dzaz
n

nCz ∑ +

∞

!
 = 

1
2

1

0
πi

e
a
z n

dz
z

az
n

Cz ∑ FHG
I
KJ

R
S|
T|

U
V|
W|

∞

!

  = 
1

2πi
e e

dz
z

az a z

Cz ( / )  = 
1

2

1

πi
e

dz
z

a z
z

Cz +FHG
I
KJ

= 1
2 0

2
2

π
θπ θ

θ

θi
e

i e d
e

a
i

iz cos

= 
1

2 0

2
2

π
θ

π θz e da cos

where the circle C is taken as
so that on C
=

| |z z e
dz i e d

i

i
= =

∴
1 θ

θ θ
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Example 18. Prove that for real k, k2
 < 1; 

n 0

nk
=

∞

∑  sin (n + 1) θ = 
sin

1 2 k cos k2
θ
θ− +

and
n 0

nk
=

∞

∑  cos (n + 1) θ = cos k
1 2k cos k2

θ
θ

−
− +

.

Sol.  1 1
1

11

0 0
1z k z

k
z z

k
z

k
zn

n

n

n

n−
= −FHG

I
KJ = F

HG
I
KJ =

−

=

∞

=

∞

+∑ ∑  ; | z | > k ...(1)

Again, put z = eiθ in (1),

 
1 1

0
z k e k

ki
n

n

−
=

−
=

=

∞

∑θ  e– (n+ 1) iθ

⇒  
1

0
cos sinθ θ+ −

=
=

∞

∑i k
k

n

n  [cos (n + 1) θ – i sin (n + 1) θ]

⇒    (cos ) sin
cos

θ θ
θ

− −
− +

=
=

∞

∑k i
k k

k
n

n

1 2 2
0

 [cos (n + 1) θ – i sin (n + 1) θ] ...(2)

Comparing real and imaginary parts of (2), we get the required results.

Example 19. (i) Show that cosec z = 
1
z

1
3 !

z
7

360
z3+ +  + ...... ; 0 < | z | < π.

(ii) Find the Taylor’s series expansion of f(z) = 
a

bz c+
 about the point z0.

Sol. (i) cosec z = 
1

sin z
 has singular points at z = 0, ± nπ.

We expand the series in 0 < | z | < π.

 cosec z = 
1 1

3 5 7

3 5 7sin
! ! !

...
z

z
z z z

=
− + − +

 = 
1

1
3 5 7

2 4 6

z
z z z− − + +
F
HG

I
KJ

L
N
MM

O
Q
PP! ! !

......

= 
1

1
3 5 7 3 5 7

2 4 6 2 4 6 2

z
z z z z z z+ − + +
F
HG

I
KJ + − + +
F
HG

I
KJ +

L
N
MM

O
Q
PP! ! !

......
! ! !

...... ......

= 
1

1
3 5 3

2 4 4

2z
z z z+ − + +

L
NM

O
QP! ! ( !)

......  = 
1

3
1

3
1
52z

z+ + −
RST

UVW! ( !) !
 z4 + ......

(ii)  f(z) = 
a

bz c
a

b z z bz c+
=

− + +( )0 0
 = 

1

10 0

0

bz c
a

b z z
bz c

+ + −
+

L

N

MMMM

O

Q

PPPP
( )

= 
a
d e z z

1
1 0+ −
L
NM

O
QP( )

where bz c d
b
d

e0 + = =,
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= 
a
d

e z z
n

n n n

=

∞

∑ − −
0

01( ) ( )  if | e (z – z0) | < 1

= 
a

bz c
b

bz c
z z

n

n
n

n

0 0 0
01

+
−

+
F
HG

I
KJ −

=

∞

∑ ( ) ( )  if | z – z0 | < 
1
e

.

Example 20. Find Taylor’s series expansion of 
4z 1
z 14

−
−

 about the point z = 0.

(U.P.T.U. 2007; M.T.U. 2012)

Sol.   f(z) = 
4 1

1
4 1

1 1 14 2
z

z
z

z z z
−
−

= −
− + +( ) ( ) ( )

= 
3
4

1
1

5
4 1

2
1
2

12z z

z

z−
F
HG
I
KJ +

+
+

− +F
HG

I
KJ

+( )

Expanding about the point z = 0, we get

   f(z) = – 
3
4

1
5
4

1 2
1
2

11 1 2 1
( ) ( )− + + + − +F

HG
I
KJ +− − −

z z z ze j

= – 
3
4

5
4

1 2
1
2

1
0 0 0

2

n

n

n

n n

n

n nz z z z
=

∞

=

∞

=

∞

∑ ∑ ∑+ − + − +F
HG

I
KJ −( ) ( ) .

ASSIGNMENT

Expand the following functions as a Taylor’s series (1–3):
1. (i) log (1 + z) about z = 0 [U.P.T.U. (C.O.) 2008]

(ii) tan–1 z in powers of z [U.P.T.U. (C.O.) 2009]

(iii) sin–1 z in powers of z (U.P.T.U. 2007)

2. (i) sin z about z = 
π
4

(ii) tan–1z about z = 
π
4

(U.P.T.U. 2015)

3.
z

z z( )( )+ +1 2
 about z = 2.

Expand the following functions in Laurent’s series (4–6):

4.
1

2z −
, for | z | > 2 5. 1

4 32z z− +
,  for 1 < | z | < 3 6.

1
1 2z z z( )( )− −

, for | z | > 2

7.  (i) Find Taylor’s expansion of 2 1
1

3z
z z

+
+( )

 about the point z = 1.

(ii) Define the Laurent series  expansion of a function. Expand f (z) = e

z
z( )− 2  in a Laurent series

about the point z = 2. (U.P.T.U. 2009)
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8. Expand f(z) = 
( )( )
( )(
z z
z z

− +
+ +

2 2
1 4)  in the region:

(a) | z | < 1 (b) 1 < | z | < 4 (c) | z | > 4.
[U.P.T.U. (C.O.) 2008]

9. Expand the function f(z) = 
1

62z z− −
 about (i) z = – 1 (ii) z = 1

10. (i) Find the Laurent’s series expansion of the function f(z) = 
z z

z z z

2 6 1
1 3 2

− −
− − +( )( )( )

in the region

3 < | z + 2 | < 5.

(ii) Find the Laurent’s series expansion of f(z) = 
7 2

1 2
z

z z z
−

+ +( ) ( )
 in the region 1 < | z + 1| < 3.

(G.B.T.U. 2012)

11. (i) Obtain the Taylor series expansion of f(z) = 
1

1 2 22z i z i+ + +( )
 about z = 0

(ii) Expand f (z) = 
z

z z( ) ( )− −1 2
 is Laurent series valid for

(a) | z – 1 | > 1 and (b) 0 < | z – 2 | < 1 (G.B.T.U. 2011, 2013)

(iii) Expand f(z) = 
z

z z( ) ( )− −1 2
 in Laurent’s series valid for region:

(a) | z – 1 | > 1 (b) 0 < | z – 2 | < 1 (M.T.U. 2014)

12. Find Laurent’s series of f(z) = 
1

12z +
 about its singular points. Determine the region of convergence.

13. Find all possible Taylor’s and Laurent’s series expansions of the function f (z) = 
1

1 2 2( ) ( )z z+ +
about the point z = 1. Consider the regions
(i) | z – 1 | < 2 (ii) 2 < | z – 1 | < 3 (iii) | z – 1 | > 3

14. The series expansions of the functions 
1

1 − z
 and 

1
1z −

 are

 
1

1 − z
 = 1 + z + z2 + ...... and 

1
1z −

 = 
1

1
1 1

2z z z
+ + +F
HG

I
KJ......

Adding, we get (1 + z + z2 + ......) + 
1

1
1 1

2z z z
+ + +F
HG

I
KJ......  = 0

Is this result true? If not, give the reason.

15. Expand f(z) = 
7 9 18

9

2

3
z z

z z

+ −
−

 in Laurent series valid for the regions:

(i) 0 < | z | < 3 (ii) | z | > 3 (G.B.T.U. 2013)

16. If f(z) = 
z

z z

+
+ −

4

3 1 2( ) ( )
, find Laurent’s series expansion in (i) 0 < | z – 1 | < 4 and (ii) | z – 1 | > 4.

(M.T.U. 2013)

17. Expand f(z) = 
z

z z( ) ( )2 21 4− +
 in Laurent series in 1 <  | z |  < 2. (G.B.T.U. 2011, 2012)

18. Find all Taylor and Laurent series expansion of the following function about z = 0.

   f(z) = 
− +

− +
2 3

3 22
z

z z
. (U.P.T.U. 2014)

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com


FUNCTION OF COMPLEX VARIABLE 83

7-D:\Engineering Mathematics (Bali)\MTU Sem III-IV\MTU 1-7

Answers

1. (i) z – 
z z z2 3 4

2 3 4
+ −  + ...... (ii) z

z z− + −
3 5

3 5
...... (iii) z

z
z+ + +

3
5

6
3

40
...

2. (i) 
1

2
1

4
1
2 4

1
3 4

2 3

+ −FHG
I
KJ − −FHG

I
KJ − −FHG

I
KJ +

L
N
MM

O
Q
PPz z z

π π π
! !

......

(ii) tan–1 z = tan – .
( – / )
( )

...− F
HG
I
KJ + FHG

I
KJ +

−
+

+1
2

2

2 24 4
16

16
64

4
16

π π
π

π π
π

z
z

3.
1
2

1
3

1

2

1

3
2

1

2

1

33 2 5 3−FHG
I
KJ − −FHG

I
KJ − + −FHG

I
KJ( )z  (z – 2)2 – ......

4. f(z) = 
1 2

0
z z

n

n

=

∞

∑ FHG
I
KJ 5. f(z) = − F

HG
I
KJ − F

HG
I
KJ

=

∞

=

∞

∑ ∑1
6 3

1
2

1

0 0n

n

n

nz
z z

6. f(z) = 
1

2
1 1 1

2
2

0 0
z z z z z

n

n

n

n

− F
HG
I
KJ + F

HG
I
KJ

=

∞

=

∞

∑ ∑

7.  (i) f(z) = 2 2 1 1
1
2

1
1

2
0 0

z z
zn n

n

n
n

n

− + − − + − −F
HG
I
KJ

=

∞

=

∞

∑ ∑( ) ( ) ( ) (ii) f(z) = e
n z

n

n

=

∞

∑ −
F
HG
I
KJ

0

1 2
2!

8. (a) f(z) = 1 1 1
4

0 0

− − − − F
HG
I
KJ

=

∞

=

∞

∑ ∑
n

n n

n

n
n

z
z

( ) ( )

(b) f(z) = 1
1

1
1

1
4

0 0

− − F
HG
I
KJ − − F

HG
I
KJ

=

∞

=

∞

∑ ∑z z
z

n

n
n

n

n
n

( ) ( )

(c) f(z) = 1
1

1
1 4

1
4

0 0

− − F
HG
I
KJ − − F

HG
I
KJ

=

∞

=

∞

∑ ∑z z z z
n

n
n

n

n
n

( ) ( )

9. (i) f(z) = – 
1

20
1

4
1
5

1 1
0 0n

n

n

n nz
z

=

∞

=

∞

∑ ∑+F
HG
I
KJ − − +( ) ( )

(ii) f(z) = – 
1

10
1

2
1

15
1

1
3

0 0n

n

n

n
nz z

=

∞

=

∞

∑ ∑−F
HG
I
KJ − − −F

HG
I
KJ( )

10. (i) f(z) = 
1

2
3

2
1
5

2
5

1
2

0 0
z z

z
z

n

n

n

n

+ +
F
HG
I
KJ + +F

HG
I
KJ +

+
=

∞

=

∞

∑ ∑ .

(ii) f(z) = 
9

1
1

1
1
1

0
z z z

n
n+

−
+ +=

∞

∑ ( )
 – 

8
1

1
1
1

0
z z

n

n
n+

−
+=

∞

∑ ( )
( )

11. (i) f(z) = 1
1 2

1
2

1
2

1
0 0

−
− F
HG
I
KJ − −

L

N
MM

O

Q
PP

=

∞

=

∞

∑ ∑i i
z
i

z
n

n
n

n

n n( ) ( )

(ii) (a) f(z) = 
1

1z −
 – 

2
1

1

1
0

z z
n

n− −=

∞

∑ ( )
(b) f(z) = 

n

n nz
z

=

∞

∑ − − −
−

0

1 2
2

2
( ) ( )
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(iii) (a) f(z) = 
−
−

+
− −

F
HG
I
KJ

=

∞

∑1
1

2
1

1
1

0
z z z

n

n

(b) f(z) = 
2

2
1 2

0
z

zn

n

n

−
− − −

=

∞

∑ ( ) ( )

12. (i) f(z) = 
1

2
1

2
0

i z i
z i

i
n

n
n

( )
( )

−
− −F
HG
I
KJ

=

∞

∑  ;| z – i | < 2

(ii) f(z) = 
−

+
+F
HG
I
KJ

=

∞

∑1
2 2

0
i z i

z i
i

n

n

( )
 ; | z + i | < 2

13. (i) 
1
2

1
1

2
1
3

1
1

3
0 0n

n
n

n

n
nz z

=

∞

=

∞

∑ ∑− −F
HG
I
KJ − − −F

HG
I
KJ( ) ( )  – 1

9
1 1

1
3

0n

n
n

n
z

=

∞

∑ − + −F
HG
I
KJ( ) ( )

(ii)
1

1
1

2
1

1
3

1
1

3
0 0

z z
z

n

n
n

n

n
n

−
−

−
F
HG
I
KJ − − −F

HG
I
KJ

=

∞

=

∞

∑ ∑( ) ( )  – 
1
9

1 1
1

3
0n

n
n

n
z

=

∞

∑ − + −F
HG
I
KJ( ) ( )

(iii)
1

1
1

2
1

1
1

1
3

1
0 0

z z z z
n

n
n

n

n
n

−
−

−
F
HG
I
KJ −

−
−

−
F
HG
I
KJ

=

∞

=

∞

∑ ∑( ) ( )  – 
1

1
1 1

3
12

0
( )

( ) ( )
z

n
z

n

n
n

−
− +

−
F
HG
I
KJ

=

∞

∑
14. No. The first series is valid for | z | < 1 and the second series is valid for | z | > 1. There is no

common point where both the series are valid.

15. (i) f(z) = 
2 1

3
1

3
4
3 3

0 0
z

z z

n

n
n

n

n

+ − F
HG
I
KJ − F

HG
I
KJ

=

∞

=

∞

∑ ∑( ) (ii) f(z) = 
2 1

1
3 4 3

0 0
z z z z z

n

n
n

n

n

+ − F
HG
I
KJ + F

HG
I
KJ

=

∞

=

∞

∑ ∑( )

16. (i) f(z) = 
1
64

1
1

4
1

16 1
5

4 1
0

2
n

n
nz

z z=

∞

∑ − −F
HG
I
KJ −

−
+

−
( )

( ) ( )

(ii) f(z) = 
1

16 1
1

4
1

1
16 1

5
4 1

0
2( )

( )
( ) ( )z z z z

n

n
n

−
−

−
F
HG
I
KJ −

−
+

−=

∞

∑

17. f(z) = 
1

10
1 1 1

1
1

0 0
z z z z

n

n

n

n
n

=

∞

=

∞

∑ ∑F
HG
I
KJ +

L

N
MMM

− F
HG
I
KJ( ) + F

HG
I
KJ − − F

HG
I
KJ
O

Q
PPP=

∞

=

∞

∑ ∑1
2 2

1
2

1
2

0 0
i

z
i i

z
i

n

n
n

n

n

( ) .

18. (i) f(z) = z
zn

n

n

n=

∞

=

∞

∑ ∑+ F
HG
I
KJ

0 0

1
2 2

 ; | z | < 1

(ii) f(z) = – 1 1 1
2 2

0 0
z z

zn

n

n

n

F
HG
I
KJ + F

HG
I
KJ

=

∞

=

∞

∑ ∑  ; 1 < | z | < 2

(iii) f(z) = – 
1 1 1 2

0 0
z z z z

n

n

n

n

F
HG
I
KJ − F

HG
I
KJ

=

∞

=

∞

∑ ∑  ; | z | > 2
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1.31 ZERO OF AN ANALYTIC FUNCTION [U.P.T.U. (C.O.) 2008]

A zero of an analytic function f(z) is a value of z such that f(z) = 0.
If f(z) is analytic in the neighbourhood of z = a, then by Taylor’s theorem

f(z) = a0 + a1(z – a) + a2(z – a)2 + a3(z – a)3 + ...... + an(z – a)n + ......∞
If a0 = a1 = a2 = ...... = an–1 = 0 but an ≠ 0, then f(z) is said to have a zero of order n at z = a.
The zero is said to be simple if n = 1.

∵ an = 
f a

n

n ( )
!

∴ for a zero of order m at z = a,
f(a) = f ′(a) = f ″(a) = ...... = f n–1(a) = 0 but f n(a) ≠ 0.

Thus in the neighbourhood of the zero at z = a of order n,
 f(z) = an(z – a)n + an+1(z – a)n+1 + ......= (z – a)n [an + an+1 (z – a) + ......] = (z – a)n φ(z)

where φ(z) = an + an+1(z – a) + ...... is analytic and non-zero at and in the neighbourhood of
z = a.

1.32 SINGULARITY [M.T.U. 2013, U.P.T.U. (C.O.) 2008, 2009]

A singularity of a function f(z) is a point at which the function ceases to be analytic.

1.33 ISOLATED AND NON-ISOLATED SINGULARITY [M.T.U. 2012]

If z = a is a singularity of f(z) and if there is no other singularity within a small circle surrounding
the point  z = a, then  z = a is said to be an isolated singularity of the function f(z), otherwise it
is called non-isolated.

Example. Consider the function f(z) = 
z

z z
+
−

1
2( )

.

It is analytic everywhere except at z = 0 and z = 2. Thus z = 0 and z = 2 are the only
singularities  of  this  function. There are no other singularities of f(z) in the neighbourhood of
z = 0, z = 2. Hence z = 0 and z = 2 are the isolated singularities of this function.

Again, consider the function

f(z) = 
1

tan
cot

π
π

z
zF

HG
I
KJ

= F
HG
I
KJ

It is not analytic at the points where tan 
π
z
F
HG
I
KJ  = 0 = tan nπ  i.e.,  at the points where 

π
z

 = nπ

⇒ z = 
1
n

 (n = 1, 2, 3, ......)

Thus z = 1, 
1
2

, 
1
3

,......, z = 0 are the singularities of the function all of which are isolated
except z = 0 because in the neighbourhood of z = 0, there are infinite number of other singularities

z = 
1
n

 where n is large. Therefore z = 0 is the non-isolated singularity of the given function.
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1.34 TYPES OF SINGULARITY

Let f(z) be analytic within a domain D except at z = a which is an isolated singularity. Draw a
circle C with its centre z = a and radius as small as we wish and another large concentric circle
C of any radius R lying wholly within the domain D. Now in the annulus between these two
circles, f(z) is analytic. If z is any point of the annulus, then by Laurent’s theorem,

 f(z) = a z a b z an
n

n
n( ) ( )− + − −

∞∞

∑∑
10

where 0 < | z – a | < R.

The second term b z an
n( )− −

∞

∑
1

 on the RHS is called the Principal Part of f(z) at the

isolated singularity z = a. Now there arise three possibilities :
(i) All bn’s are zero ⇒ no term in P.P. (Removable singularity) (M.T.U. 2012)

(ii) Infinite number of terms in P.P. (Essential singularity) (M.T.U. 2012)
(iii) Finite number of terms in P.P. (Pole) [U.P.T.U. (C.O.) 2008]

(i) Removable Singularity. Here f(z) = a z an
n( )−

∞

∑
0

 which is analytic for | z – a | < R except

at z = a. Let ϕ(z) be the sum function of the power series a z an
n( )−

∞

∑
0

. Now ϕ(z) differs from

f(z) only at z = a, where there is singularity. To avoid this singularity, we can suitably define
f(z) at z = a, so that we have

φ(z) = 
f z z a
a z a
( ) | }for R

for
0

0

< − <
=

RST
This type of singularity which can be made to disappear by defining the function suitably

is called removable singularity.

Example. The function 
sin ( )z a

z a
−

−
 has removable singularity at z = a because

  
sin ( )

( )
( )

!
( )

!
......

z a
z a z a

z a
z a z a−

−
=

−
− − − + − −
RST

UVW
1

3 5

3 5

= 1 – ( )
!

( )
!

......
z a z a− + − −

2 4

3 5
has no terms containing negative powers of z – a. However this singularity can be removed
and the function made analytic by defining

 
sin ( )z a

z a
−

−  = 1 at z = a.

(ii) Essential Singularity. Here the series ( )z a n− −
∞

∑
1

 does not terminate.

Example. f(z) = sin 
1

z a−
F
HG
I
KJ  has essential singularity at z = a, because

 sin
! ( ) ! ( )

......
1 1 1

3
1 1

5
1

3 5z a z a z a z a−
F
HG
I
KJ =

−
−

−
+

−
−

has infinite number of terms in the negative powers of z – a.
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(iii) Pole. Here the series ( )z a n−
∞

∑
1

 consists of finite number of terms. Then z = a is said to

be a pole of order m of the function f(z). When m = 1, the pole is said to be simple.

Example.  f(z) = 
sin ( )
( )

z a
z a

−
− 4  has a pole at z = a because

 
sin ( )
( ) ( )

( )
( )

!
( )

!
( )

!
......

z a
z a z a

z a
z a z a z a−

−
=

−
− − − + − − − +
L
NM

O
QP4 4

3 5 71
3 5 7

= 
1 1

3
1 1

5
1
73

3

( ) ! ( ) !
( )

!
( ) ......

z a z a
z a z a

−
−

−
+ − − − +

has finite number of terms (here first two terms only) in negative powers of  z – a.
Thus if z = a is a pole of order m of the function f(z), then

 f(z) = a z a
b

z a
b

z a

b

z a
n

n m
m( )

( )
......

( )
− +

−
+

−
+ +

−

∞

∑ 1 2
2

0

= 
1

0
1 1( )

( ) { ( ) ...... ( ) }
z a

a z a b b z a b z am n
n m

m m
m

−
−

F
HG

I
KJ + + − + + −

L
N
MM

O
Q
PP

+
∞

−∑

= 
1

( )z a m−
 ϕ(z)

Clearly, ϕ(z) → bm as z → a. Hence ϕ(z) is analytic in the neighbourhood of the pole z = a.

1.35 THEOREMS

(1) The limit point of the zeros of a function f(z) is an isolated essential singularity.

Proof. Let z1, z2, z3, ...... be an infinite set of zeros of f(z). Let z0 be their limit point.

(i) If z0 is a point of the set, then z0 will be a zero of f(z) and will have in its neighbour-
hood, a cluster of zeros. But zeros are isolated, so, z0 cannot be a zero of f(z) unless f(z) is
identically zero in D.

(ii) If f(z) is not identically zero in D, then z0 is not a zero of f(z). But z0 is surrounded by
many zeros. So z0 is a singularity. Also z0 is not a pole since f(z) does not tend to infinity in the
neighbourhood of z0. Therefore z0 is an essential singularity. But the singularity is isolated
since in the neighbourhood of z0, f(z) is analytic. Hence z0 is an isolated essential singularity.

(2) The limit point of the poles of a function f(z) is a non-isolated essential singularity.

Proof. Let p1, p2, p3,...... be an infinite set of poles of f(z). Let p0 be their limit point.

(i) If p0 is a point of the set, then p0 will be a pole of f(z) and will have in its neighbour-
hood a cluster of poles. But poles are isolated, so, p0 cannot be a pole of f(z).

(ii) p0 cannot be a zero of f(z) since the function is not analytic (has poles) in the neigh-
bourhood of p0. So,  p0 is an essential singularity. This singularity is not isolated, since these
are poles around p0. Hence p0 is a non-isolated essential singularity.
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1.36 DETECTION OF SINGULARITY

(1) Removable Singularity: lim
z a→

 f(z) exists and is finite.

Example.  f(z) = 
z a

z a

2 2–
−

lim
z a→

 f(z) = 2a

So, f(z) has a removable singularity at z = a.

(2) Pole:  lim
z a→

 f(z) = ∞.

Example.  f z
z a
z a

( )
–

= +2 2

  lim
z a→

 f(z) = ∞.

So, f(z) has a pole at  z = a.
Moreover, the pole is said to be of order n, if there are n terms in the principal part.

Example.
e

z a z a
z a

z az a−

−
=

−
+ − + − +
L
NM

O
QP( ) ( )

( )
( )

!
......2 2

21
1

2

= 
1 1 1

22( ) ( ) !
......

z a z a−
+

−
+ +

Since there are only two terms in the negative powers of z – a i.e., there are only 2
(a finite number) terms in the principal part of the function. Hence the function has a pole of
order 2.

(3) Essential singularity: lim
z a→

 f(z) does not exist.

Example. lim
z a

z ae
→

−
1

 does not exist, so f(z) has an essential singularity at z = a.

EXAMPLES

Example 1. Find  out  the  zero  and  discuss  the  nature  of  the  singularity  of

f(z) = 
z 2
z

sin
1

z 12
−

− .

Sol. Zeros of f(z) are given by f(z) = 0

⇒  z – 2 = 0, sin 
1

1z −
 = 0

⇒ z = 2, 
1

1z −  = nπ (n = 0, ± 1, ± 2, ......)

⇒ z = 2, 1 + 
1

nπ
 (n = 0, ± 1, ± 2, ......)

Clearly, z = 1 is an isolated essential singularity.
Poles of f(z) are given by

 z2 = 0
⇒ z = 0
Hence z = 0 is a pole of order 2.
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Example 2. Show that the function ez has an isolated essential singularity at z = ∞.

Sol. Put z = 
1
ρ

e
1

21
1 1

2
1ρ

ρ ρ
= + + + ∞

!
......

We have an infinite number of terms in the negative powers of ρ. So the function e
1
ρ  has

an isolated essential singularity at ρ = 0. This implies that ez has an isolated essential singu-
larity at z = ∞.

Example 3. Discuss singularity of 
1

1 ez−
 at z = 2πi.

Sol. f(z) = 
1

1 − ez

For poles 1 – ez = 0

⇒  ez = 1 = e2nπi

⇒ z = 2nπi (n = 0, ± 1, ± 2, ......)

Clearly, z = 2πi is a simple pole.

Example 4. Discuss singularity of 
cot z

(z – a)2
π

 at z = a and z = ∞ . [U.P.T.U. (C.O.) 2008]

Sol.  f(z) = 
cot

( – )
cos

sin ( – )
π π

π
z

z a
z

z z a2 2=

For poles  sin πz(z – a)2 = 0

⇒ z = a, πz = nπ (n ∈ I)

⇒ z = a, n

Clearly z = ∞ is the limit point of these poles. Hence z = ∞ is a non-isolated essential
singularity. Also z = a, being repeated twice, gives a double pole.

Example 5. Discuss the nature of singularity of  f(z) = 
z sin z

z3
−

at z = 0.

Sol.   f(z) = 
1
3z

 (z – sin z) = 
1

3 5 73

3 5 7

z
z z

z z z− − + − +
F
HG

I
KJ

L
N
MM

O
Q
PP! ! !

......

= 
1

3 5 73

3 5 7

z
z z z

! ! !
......− + −

F
HG

I
KJ  = 1

3 5 7

2 4

! ! !
......− + −z z

Since, there is no term in the principal part of given function hence z = 0 is a removable
singularity.
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ASSIGNMENT

1. Discuss singularity of 
1

4sin cosz z
z

−
=at

π
. [U.P.T.U. (C.O.) 2008]

2. Discuss the nature of singularity of the function f(z) = z cosec z at z = ∞.

3. What is the nature of the singularity at z = ∞ of the function f(z) = cos z – sin z?

4. Discuss the singularity of the function f(z) = 
1

1
cos

z

 at z = 0.

5. Discuss the nature of singularity of f(z) = sin 
1
z

 at z = 0. [U.P.T.U. (C.O.) 2009]

6. Find the singularity of the function g(z) = 
e

z

z1/

2 . [U.P.T.U. (C.O.) 2009]

7. Prove that the singularity of cot z at z = ∞ is a non-isolated essential singularity.

8. Find the nature of singularities of the following functions:

(i)
1

1

– e

e

z

z+
 at z = ∞  [U.P.T.U. (C.O.) 2008] (ii) cosec 

1
z

 at z = 0.

9. Discuss singularity of f(z) = sin
1

1 − z
 at z = 1.

Answers
1. Simple pole 2. Non-isolated essential 3. Isolated essential

4. Non-isolated essential 5. Isolated essential

6. Isolated essential singularity (z = 0)

8. (i) Non-isolated essential, (ii) Non-isolated essential 9. Isolated  essential.

1.37 DEFINITION OF THE RESIDUE AT A POLE

Let z = a be a pole of order m of a one valued function f(z) and γ any circle of radius r with
centre at z = a which does not contain any other singularities except at z = a, then f(z) is
analytic within the annulus r < | z – a | < R hence it can be expanded within the annulus in
a Laurent’s series in the form

 f(z) = a z a b z an
n

n
n

nn

( ) ( )− + − −

=

∞

=

∞

∑∑
10

...(1)

where an = 
1

2 1πi
f z dz
z a nCz − +

( )
( )

...(2)

and  bn = 
1

2 1π γi
f z

z a
dznz − − +

( )
( )

...(3)

 | z – a | = r being the circle γ.
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Particularly,    b1 = 
1

2π γi
f z dzz ( )

The  coefficient  b1  is  called  residue  of   f(z) at the pole z = a. It is denoted by symbol
Res. (z = a) = b1.

1.38 RESIDUE AT INFINITY

Residue of f(z) at z = ∞ is defined as – 
1

2πi
f z dz

Cz ( )  where the integration is taken round C in

anti-clockwise direction.

1.39 CAUCHY’S RESIDUE THEOREM OR THE THEOREM OF RESIDUES
[M.T.U. 2013, G.B.T.U. (C.O.) 2011]

Let f(z) be one valued and analytic within and on a closed contour C except at a finite number
of poles z1, z2, z3, ......, zn and let R1, R2, R3, ......., Rn be respectively the residues of f(z) at these
poles, then

 
C

f(z) dzz  = 2πi (R1 + R2 + R3 + ...... + Rn)

= 2πi (Sum of the residues at the poles within C).

Proof. Let γ1, γ2, γ3, ......, γn be the circles with centres at z1, z2, z3, ......, zn respectively and radii
so small that they lie entirely within the closed curve C and do not overlap. Then f(z) is analytic
within the region enclosed by the curve C and these circles. Hence by Cauchy’s theorem for
multi-connected regions, we have

C 1 2 3
z z z z z= + + + +f z dz f z dz f z dz f z dz f z dz

n

( ) ( ) ( ) ( ) ...... ( )
γ γ γ γ

But by definition of residue,

R1 = 
1

2 1π γi
f z dzz ( )

⇒
γ 1
z f z dz( )  = 2πi R1

Similarly, γ 2
z f z dz( )  = 2πi R2

 
γ 3
z f z dz( )  = 2πi R3

# #

γ n

f z dzz ( )  = 2πi Rn

Hence,
Cz f z dz( )  = 2πi R1 + 2πiR2 + 2πi R3 + ...... + 2πi Rn

= 2πi(R1 + R2 + R3 + ...... + Rn).
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1.40 METHODS OF FINDING OUT RESIDUES

(1) If f(z) has a simple pole (i.e., pole of order 1) at z = a, then

 Res {f(z)} = Lt
z a→

(z – a) f(z).

Since z = a is a pole of order 1, the Laurent’s series becomes

f(z) = a0 + a1(z – a) + a2(z – a)2 + ...... + b1(z – a)–1.

Multiplying both sides by (z – a), we get

  (z – a) f(z) = a0(z – a) + a1(z – a)2 + a2(z – a)3 + ...... + b1

∴  Lt
z a→

 (z – a) f(z) = b1 = Res {f(z)}

(2) If f(z) has a pole of order m at z = a, then

  Res {f(z)} = 
1

(m 1) !
Lt

d
dzz a

m 1

m 1− →

−

−  [(z – a)m f(z)]

Since z = a is a pole of order m, the Laurent’s series becomes

f(z) = a0 + a1(z – a) + a2(z – a)2 + ...... + b1(z – a)–1 + b2(z – a)–2 + ..... + bm(z – a)–m

Multiplying both sides by (z – a)m, we get

 (z – a)m f(z) = a0(z – a)m + a1(z – a)m+1 + a2(z – a)m+2 + ......

+ b1(z – a)m–1 + b2(z – a)m–2 + ...... + bm

Differentiating both sides (m – 1) times w.r.t. z and taking the limit as z → a, we get

Lt
z a

m

m
d
dz→

−

−

1

1  [(z – a)m f(z)] = b1(m – 1) !

or
1

1

1

1( ) !m
d
dzz a

m

m− →

−

−Lt  [(z – a)m f(z)] = b1 = Res {f(z)}.

Or

Res. {f(z)} = 
1

1

1

1( ) !
{( ) ( )}

m
d
dz

z a f z
m

m
m

z a
−

−
L
NM

O
QP

−

−
=

(3) If f(z) is of the form given by

f(z) = 
φ
ψ

( )
( )
z
z

 ; ψ(a) = 0, φ(a) ≠ 0

where z = a is the simple pole of f(z), then Residue of f(z) at z = a is = 
φ

ψ
( )
( )
a
a′

.

(4) Residue of f(z) at z = a pole {simple or of order m}

= Coefficient of 
1
t

 in f(a + t) expanded in powers of t, where t, is sufficiently small.
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(5) Residue of f(z) at z = ∞
= lim { ( )}

z
zf z

→ ∞
−

Or

= –  coefficient of 
1
z

 in the expansion of f(z) for values of z in the

 neighbourhood of z = ∞ .

EXAMPLES

Example 1. Determine the poles of the following functions and residue at each pole:

(i)
z

(z 1)(z 2)

2

2− −
(ii)

1
z 14 +

(iii)
1 e

z

2z

4
–

Sol. (i)  f(z) = 
z

z z

2

21 2( )( )− −
.

Poles are given by
 (z – 1)(z – 2)2 = 0 ⇒ z = 1, 2.

 z = 1 is a simple pole while z = 2 is a double pole.
Residue of f(z) at simple pole (z = 1) is

R1 = lim ( ) .
( )( )z

z
z

z z→
−

− −1

2

21
1 2

 = lim
( )z

z
z→ −1

2

22
 = 

( )
( )

1
1 2

2

2−
 = 1.

Residue of f(z) at double pole (z = 2) is

 R2 = 
1

2 1
2

1 2
2

2

2
2

( ) !
( ) .

( )( )−
−

− −

RST
UVW

L
N
MM

O
Q
PP =

d
dz

z
z

z z
z

= 
d
dz

z
z

z z z
z

z z
z

z z z

2

2

2

2
2

2

2
2

1
1 2

1
2
1−

F
HG
I
KJ

L
N
MM

O
Q
PP = − −

−

L
NM

O
QP

= −
−

L
NM

O
QP= = =

( ) .
( ) ( )

 = 0

(ii)  f(z) = 
1

14z +
Poles of f(z) are given by

 z4 + 1 = 0
⇒ z = (– 1)1/4 = {e(2n+1)πi}1/4

∴ Poles are, z = e(2n+1)πi/4 where, n = 0, 1, 2, 3, ......
These are all of order 1 since the four factors occur linearly in z4 + 1.
Since the roots repeat themselves, we can write them more conveniently as
e(2n+1)πi/4 where, n = – 2, – 1, 0, 1
i.e.,  emπi/4 where, m = ± 1, ± 3. Let denote it by zm.
Residue at (z = zm) is

R = lim ( ) .
z z

m
m

z z
z→

−
+
1

14  = lim
z zm z→

1
4 3 | By L’  Hospital’s Rule

= 
1

4 43 4z

z

zm

m

m

=  = – 
zm

4
1
4

= −  emπi/4 h where, m = ± 1, ± 3.

O
QP

L
NM
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(iii) Pole of 
1 2

4
− e
z

z

 is evidently z = 0. But this is not of the fourth order since

  
1 1

1 1 2
4
2

8
6

16
24

2

4 4

2 3 4− = − + + + + +
RST

UVW
L
N
MM

O
Q
PP

e
z z

z
z z zz

......

= – 
2 2

4
3

2
3

2 3

3

+ + + +F
HG

I
KJz z z

z

......
...(1)

Therefore the pole is of order 3.
Residue at this pole is

R = lim
!

( )
z

zd
dz

e z
z→

−RST
UVW0

2

2

2 3

4
1
2

1

= lim
! ! !

......
z

d
dz z

z
z z

→
− − − − −
F
HG

I
KJ

R
S|
T|

U
V|
W|

L
N
MM

O
Q
PP0

2

2

2 31
2

1
1 1 2

4
2

8
3

= lim ......
z

d
dz

z z
→

− − − −F
HG

I
KJ

L
NM

O
QP0

2

2
21

2
2 2

4
3

= lim . ......
z

z
→

− − −L
NM

O
QP = −

0

1
2

8
3

2
3

6
4
3

Example 2. Find the residue at z = 0 of the following functions:

(i)
1 e

sin z z cos z

z+
+

(ii) z cos 
1
z

.

Sol. (i) z = 0 is a pole of order 1.

   Residue = lim
( )

sin cosz

zz e
z z z→

+
+0

1
 = lim

sin
cos

z

ze
z

z
z

→

+
F
HG
I
KJ +

0

1
 = 

1 1
1 1

+
+  = 1.

(ii) Expanding the function in powers of z, we have

 z cos 1
1

1
2

1
42 4z

z
z z

= − + −
L
NM

O
QP!

......  = z – 1
2

1
24 3z z

+  – ......

This is the Laurent ’s expansion about z = 0.

The coefficient of 
1
z

 in it is – 
1
2

. So the residue of z cos 
1
z

 at z = 0 is – 
1
2

.

Example 3. (a) Give an example of a function having residue at infinity yet analytic
there.

(b) Find the residue of f(z) = 
z

z 1

3

2 −
 at z = ∞.
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Sol. (a)  f(z) = 
z

z z z

2

( )( )( )− − −α β γ
Residue of f(z) at z = ∞ is

= lim .
( )( )( )z

z
z

z z z→ ∞
−

− − −
RST

UVW
2

α β γ

= lim
z

z z z
→ ∞

−

−FHG
I
KJ −FHG

I
KJ −FHG

I
KJ

1

1 1 1
α β γ

 = –1

Now,   f 
1

1

1 1 1
2

λ
λ

αλ
λ

βα
λ

γλ
λ

F
HG
I
KJ = − − −( )

.
( )

.
( )  = 

λ
αλ βλ γλ( )( )( )1 1 1− − −

At λ = 0,    f 
1
λ
F
HG
I
KJ  = 0 (≠ ∞)

∴ f 
1
λ
F
HG
I
KJ  is analytic at λ = 0

⇒ f(z) is analytic at z = ∞.

(b) Required residue = Lt
z

z
z

z→ ∞
−

−

F
HG

I
KJ.

3

2 1
 which does not exist

Hence,  f(z) = 
z

z
z

z
z

3

2
2

2

1

1
1

1
1

−FHG
I
KJ

= −FHG
I
KJ

−

 = z 1
1 1 1 1
2 4 3+ + +F

HG
I
KJ = + +

z z
z

z z
......  + ......

Required residue = – coefficient of
1
z

F
HG

I
KJ  = – 1.

Example 4. Evaluate 
C

z

2
e

(z 1)
dzz +

, where C is the circle | z – 1 |= 3.

Sol. Here f(z) = 
e

z

z

( )+ 1 2  has only one singular point z = – 1 which is a pole of order 2 and

it lies inside the circle | z – 1 | = 3.

Residue of f(z) at z = – 1 is Lt
z

d
dz→ − 1

 [(z + 1)2 f(z)] = Lt Lt
z

z

z

d
dz

e
→ − → −

=
1 1

( )  ez = e–1

∴ By Residue theorem, we have 
C

ze
z

dz i e
i

ez +
= =−

( )
( )

1
2

2
2

1π π .
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Example 5. Determine the poles of the function f(z) = 
z

(z 1) (z 2)

2

2− +
 and the residue at

each pole. Hence evaluate 
C

2

2
z

(z 1) (z 2)
dzz − +

 where C ≡ |z| = 3. (U.P.T.U. 2015)

Sol. The function f(z) has a pole of order 2 at z = 1 and a simple pole at z = – 2.

Residue of f(z) at z = 1 is

 R1 = Lt
z

d
dz→ 1

 [(z – 1)2 f(z)] = Lt
z

d
dz

z
z→ +
F
HG
I
KJ1

2

2

or    R1 = Lt Lt
z z

z z z
z

z z
z→ →

+ −
+

= +
+

=
1

2

2 1

2

2
2 2 1

2
4

2
5
9

( ) . .
( ) ( )

Residue of f(z) at z = – 2 is

 R2 = Lt
z → −2

 [(z + 2) f(z)] = Lt
z

z
z→ − −

=
2

2

21
4
9( )

.

Since both the poles lie inside the given curve C ≡ | z | = 3,

∴  
C

1R Rz − +
= + = +LNM

O
QP

z

z z
dz i i

2

2 2
1 2

2 2
5
9

4
9( ) ( )

( )π π  = 2πi.

| By Cauchy’s Residue theorem

Example 6. Determine the poles of the following function and residues at each pole:

f(z) = 
z 1

(z 1) (z 2)2
−

+ −
 and hence evaluate 

C
f z dzz ( ) , where C is the circle | z – i | = 2.

(U.K.T.U. 2011)
Sol. Poles of f(z) are given by

(z + 1)2 (z – 2) = 0 ⇒ z = – 1 (double pole), 2(simple pole)
Residue of f(z) at z = – 1 is

R1 = 
1

2 1
1

1
1 2

2
2

1
( ) !

( ) .
( ) ( )−

+ −
+ −

RST
UVW

L
N
MM

O
Q
PP =−

d
dz

z
z

z z
z

= 
d
dz

z
z

z

−
−
F
HG
I
KJ

L
NM

O
QP =−

1
2

1

 = 
−
−
L
NM

O
QP

= −

=−

1
2

1
92

1( )z z

Residue of f(z) at z = 2 is

  R2 = Lt
z

z
z

z z→
− −

+ −2 22
1

1 2
( )

( ) ( )

= Lt
z

z
z→

−
+

=
2 2

1
1

1
9( )

The given curve C ≡ | z – i | = 2 is a circle whose centre is at z = i [i.e., at (0, 1)] and
radius is 2. Clearly, only the pole z = – 1 lies inside the curve C.

X

C
| z – i | 

= 2

≡

z = i(0, 1)

(0, 0)

(0, – 1)

(0, 3)

(–  3, 0) O

2

2

1

– 1

Y
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Hence, by Cauchy’s residue theorem

f z dz( )
Cz  = 2πi (R1) = 2πi 

−F
HG
I
KJ

1
9

 = – 
2
9
πi

.

Example 7. Evaluate 
C

2

2 2
z 2z

(z 1) (z 4)z −
+ +

 dz, where C is the circle | z | = 10.

(U.P.T.U. 2009)

Sol. Singularities are given by

(z + 1)2 (z2 + 4) = 0 ⇒ z = – 1 (double pole), ± 2i (simple poles)

All the poles lie inside the given circle c ≡ | z | = 10.

∴ Residue (at z = – 1) is

 R1 = 
1

2 1
1

2
1 4

2
2

2 2
1

−
+ −

+ +

RST
UVW

L
N
MM

O
Q
PP = −

!
( )

( ) ( )
d
dz

z
z z

z z
z

= 
d
dz

z z
z

z

2

2
1

2
4

−
+

F
HG

I
KJ

L
N
MM

O
Q
PP = −

 = 
2 8 8

4
14
25

2

2 2
1

z z
z z

+ −
+

L
NM

O
QP

= −
= −( )

Residue (at z = 2i) is

 R2 = lim
z i

z i
z z

z z i z i→
− −

+ − +2

2

22
2

1 2 2
( )

( ) ( ) ( )

= 
− −
+

= +
+

= +4 4
2 1

1
3 4

7
252

i
i i

i
i

i
( ) (4 )

Similarly, Residue (at z = – 2i) is

 R3 = 
7
25
− i

By Cauchy’s Residue theorem,

 
Cz −

+ +
z z

z z

2

2 2
2

1 4( ) ( )
 dz = 2πi (R1 + R2 + R3) = 2πi − + + + −L

NM
O
QP

14
25

7
25

7
25

i i
 = 0

Example 8. Evaluate 
C 2

12z 7
(z 1) (2z 3)

dzz −
− +

, where C is the circle

(i) | z | = 2 (G.B.T.U. 2011) (ii) | z + i | = 3 .

Sol.   f(z) = 
12 7
1 2 32

z
z z

−
− +( ) ( )

.

Poles are given by

 z = 1 (double pole) and z = – 
3
2

 (simple pole)

Residue at (z = 1) is

 R1 = 
1

2 1
1

12 7
1 2 3

2
2

1
( ) !

( ) .
( ) ( )−

− −
− +

RST
UVW

L
N
MM

O
Q
PP =

d
dz

z
z

z z
z
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98 A TEXTBOOK OF ENGINEERING MATHEMATICS

= 
d
dz

z
z

z

12 7
2 3

1

−
+

F
HG

I
KJ

L
NM

O
QP =

 = 
( ) . ( ) .

( )
2 3 12 12 7 2

2 3 2
1

z z
z z

+ − −
+

L
NM

O
QP =

= 
60 10

25
−

 = 2.

Residue at simple pole z = −F
HG

I
KJ

3
2

 is

 R2 = lim .
( ) ( )/z

z
z

z z→ −
+FHG
I
KJ

−
− +3 2 2

3
2

12 7
1 2 3

= lim .
( )
( )/z

z
z→ −

−
−3 2 2

1
2

12 7
1

 = – 2.

(i) The contour | z | = 2 encloses both the poles 1 and – 
3
2

.

∴ The given integral = 2πi (R1 + R2) = 2πi (2 – 2) = 0.

(ii) The contour | z + i | = 3  is a circle of radius 3  and centre at z = – i. The distances

of the centre from z = 1 and – 
3
2

 are respectively 2  and 13
4

. The first of these is < 3  and the

second is > 3 .
∴ The second contour includes only the first singularity z = 1.
Hence, the given integral = 2πi (R1) = 2πi (2) = 4πi.

Example 9. Evaluate 
C 2

z 3
z 2z 5

dzz −
+ +

, where C is the circle

(i) | z | = 1 (ii) |  z + 1 – i | = 2 (iii) | z + 1 + i | = 2.

(G.B.T.U. 2013)

Sol. The poles of  f(z) = 
z

z z
−

+ +
3

2 52  are given by

z2 + 2z + 5 = 0 ⇒ z = – 1 ± 2i

(i) Both the poles lie outside the circle | z | = 1.

∴ By Cauchy’s integral theorem, we have 
Cz −

+ +
z

z z
dz

3
2 52  = 0

(ii) Only the pole z = – 1 + 2i lies inside the circle | z + 1 – i | = 2

Residue of f(z) at z = – 1 + 2i is

   Lt
z i→ − +1 2

(z + 1 – 2i) f(z) = Lt
z

z z
z z→

− −
+ +α

α( )( )3
2 52

, where α = – 1 – 2i Form
0
0

= Lt
z

z z
z→

− + −
+α

α( ) ( )3
2 2

| By L’ Hospital’s Rule

= 
α
α

−
+

= − + −
− + +

= −3
2 2

1 2 3
2 4 2

2
2

i
i

i
i

∴ By Cauchy’s residue theorem, 
Cz −

+ +
= −F
HG
I
KJ

z
z z

dz i
i

i
3

2 5
2

2
22 π  = π(i – 2).
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(iii) Only the pole z = – 1 – 2i lies inside the circle | z + 1 + i | = 2.
Residue of f(z) at z = – 1 – 2i is

  Lt
z i→ − −1 2

(z + 1 + 2i) f(z) = Lt
z

z z
z z→

− −
+ +β

β( )( )3
2 52 , where β = – 1 – 2i Form

0
0

= Lt
z

z z
z→

− + −
+β

β( ) ( )3
2 2

| By L’ Hospital’s Rule

= 
β
β

−
+

= − −
−

= +3
2 2

4 2
4

2
2

i
i

i
i

∴ By Cauchy’s residue theorem, 
Cz −

+ +
= +F
HG
I
KJ

z
z z

dz i
i

i
3

2 5
2

2
22 π  = π(i + 2)

Example 10. Find the residue of f(z) = 
z

(z 1) (z 2)(z 3)

3

4− − −
 at its pole and hence evaluate

C
f z dzz ( ) , where C is the circle | z | = 5/2.

Sol. Poles of f(z) are given by (z – 1)4 (z – 2)(z – 3) = 0 ⇒ z = 1, 2, 3
z = 1 is a pole of order 4 while z = 2 and z = 3 are simple poles.
Residue of f(z) at z = 2 is

R1 = Lt
z

z
z

z z z→
−

− − −2

3

42
1 2 3

( )
( ) ( )( )

 = Lt
z

z
z z→ − −

=
−2

3

41 3
8
1( ) ( ) ( )

 = – 8

Residue of f(z) at z = 3 is

R2 = Lt
z

z
z

z z z→
−

− − −3

3

43
1 2 3

( ) .
( ) ( )( )

 = Lt
z

z
z z→ − −

=
3

3

41 2
27
16( ) ( )

Residue of f(z) at z = 1 is

R3 = 
1

4 1
1

1 2 3

3

3
4

3

4
1

( ) !
( ) .

( ) ( )( )−
−

− − −

RST
UVW

L
N
MM

O
Q
PP =

d
dz

z
z

z z z
z

= 
1
6 2 3

3

3

3

1

d
dz

z
z z

z
( )( )− −
RST

UVW
L
N
MM

O
Q
PP =

 = 
1
6

5
19 30

5 6

3

3 2
1

d
dz

z
z

z z
z

+ + −
− +

RST
UVW

L
N
MM

O
Q
PP =

= 
1
6

5
27

3
8

2

3

3
1

d
dz

z
z z

z

+ +
−

−
−

RST
UVW

L
NM

O
QP =

 = 
1
6

1
27

3
8
2

2

2 2 2
1

d
dz z z

z

−
−

+
−

RST
UVW

L
N
MM

O
Q
PP =

( ) ( )

= 
1
6

54
3

16
23 3

1

d
dz z z

z
( ) ( )−

−
−

RST
UVW

L
N
MM

O
Q
PP =

 = 
1
6

162
3

48
24 4

1

−
−

+
−

L
NM

O
QP =( ) ( )z z z

= 
1
6

162
16

48 8
27
16

101
16

− +L
NM

O
QP = − =

The given curve C ≡ | z | = 5/2 is a circle with centre at (0, 0) and radius 5/2.
Clearly, only the poles z = 1 and z = 2 lie inside this circle.
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Hence, By Cauchy’s Residue theorem,

 
Cz f z dz( )  = 2πi (R3 + R1) = 2πi 

101
16

8 2
27

16
−F

HG
I
KJ = −F
HG
I
KJπi  = – 

27
8
πi

.

Example 11. (i) Find the value of 
C

1/zze dzz  around the unit circle.

(ii) Using Residue theorem, evaluate 
1

2 i
e

z (z 2z 2)
dz

C

zt

2 2π z + +
, where C is the circle

|z| = 3. (U.P.T.U. 2009)
Sol. (i) The only singularity of ze1/z is at the origin. Expanding e1/z, we have

ze1/z = z 1
1 1

2
1

62 3+ + + +L
NM

O
QPz z z

......  = z + 1 + 1
2

1
6 2z z

+  + ......

Residue at origin = coefficient of 
1 1

2z
= .

Hence, the required integral = 2πi 
1
2
F
HG
I
KJ  = πi.

(ii) Singularities are given by
 z2 (z2 + 2z + 2) = 0 ⇒ z = 0, – 1 ± i

z = 0 is a pole of order 2.  z = – 1 ± i are simple poles. All these poles lie inside the circle
|z| = 3.

Residue (at z = 0) is

R1 = 
1

2 1 2 2 2
2

2 2
0

( ) !
.

( )− + +

RS|T|
UV|W|

L
N
MM

O
Q
PP =

d
dz

z
e

i z z z

zt

z
π

 = d
dz

e
i z z

zt

z
2 2 22

0
π ( )+ +

RS|T|
UV|W|

L
N
MM

O
Q
PP =

= 1
2

2 2 2 2
2 2

2

2 2
0

πi
z z t e e z

z z

zt zt

z

( ) ( )
( )

+ + − +
+ +

L
NMM

O
QPP =

 = 
1

2
1

2πi
t −F
HG
I
KJ

Let – 1 + i = α and – 1 – i = β then
Residue at (z = α = – 1 + i) is

 R2 = Lt
z

zt

z
i

e
z z z→

−
− −α

α
π α β

( ) .
( ) ( )

1
2 2  = 

1
2 2π α α β

α

i
e t

( )−
 = 

1
2

1
4

1

πi
e i t( )− +L
NM

O
QP

Residue at (z = β = – 1 – i) is

 R3 = 
1

2
1
4

1

πi
e i t( )− −L
NM

O
QP
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By Residue theorem,

1
2 2 22 2πi

e
z z z

dz
zt

Cz + +( )
 = 2

1
2

1
2

π
π

i
i

t −F
HG
I
KJ +

L
NM  

1
2 4

1 1

πi
e ei t i t( ) ( )(− + − −+RS|T|

UV|W|
O
Q
PP

 = 
t e

t
t− +

−1
2 2

cos .

Example 12. Obtain Laurent’s expansion for the function f(z) = 
1

z sinh z2  at the isolated

singularity and hence evaluate 
C 2

1
z sinh z

dzz , where C is the circle | z – 1 | = 2.

Sol. Here, f(z) = 
1 2

2 2z z z e ez zsinh ( )
=

− −

= 
2

1
2 3

1
2 3

2
2 3 2 3

z z
z z

z
z z+ + + +

F
HG

I
KJ − − + − +
F
HG

I
KJ

L
N
MM

O
Q
PP! !

......
! !

......

= 
2

2
2
3

2
5

2
3 5

z z
z z+ + +

F
HG

I
KJ! !

......

= 
1

1
3 5

3
2 4

z
z z+ + +

F
HG

I
KJ! !

......

= z–3 1
6 120

2 4
1

+ +
F
HG

I
KJ +

L
N
MM

O
Q
PP

−
z z

......

= z–3 1
6 120 36

2 4 4

− − + +
F
HG

I
KJ

z z z
......

= 
1 1

6
7

3603z z
z− +  + ......

Only pole z = 0 of order two lies inside the circle C ≡ | z  – 1 | = 2.

Residue of f(z) at (z = 0) is = coeff. of 
1
z

 in the Laurent’s expansion of f(z) = – 
1
6

.

By Cauchy’s Residue theorem,

  
Cz = −FHG

I
KJ

dz
z z

i2 2
1
6sinh

π  = – 
πi
3

.

X

C
| z – 1 | =

 2

≡

z = 1
O

Y
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ASSIGNMENT

Determine the poles of the following functions and the residue at each pole:

1.
2 1

22
z

z z

+
− − 2.

z

z z

+
−
1

22( )
3.

e

z

z

2 2+ π
.

Evaluate the following integrals using Cauchy’s residue theorem:

4.
Cz +

+ +

L
N
MM

O
Q
PP

cos sin
( ) ( )

π πz z
z z

dz
2 2

1 2
; C ≡ | z | = 3

5.
Cz + +

− +

L
N
MM

O
Q
PP

3 1

1 3

2

2
z z

z z
dz

( ) ( )
, where C is the circle | z | = 2.

6.
Cz + −

−
z z

z
dz

2 2 2
4

, where C is a closed curve containing the point z = 4 in its interior.

7.
Cz −

− −
1 2

1 2
z

z z z
dz

( )( )
, where C is the circle | z | = 1.5.

8.
Cz − −

z

z z
dz

( )( )1 2 2
, where C is the circle | z – 2 | = 1

2 .

9.
Cz +

− −
sin cos

( ) ( )

π πz z

z z
dz

2 2

21 2
, where C is the circle | z | = 3.

10.
Cz −

−
5 2

1
z

z z( )
 dz ; C ≡ | z | = 2 11.

Cz −
− −
e

z z i z

z 1
12( ) ( )

 dz ; C ≡ | z | = 1/2

12.
Cz

−FHG
I
KJ

z z

z

dz
cos

π
2

3 , where C ≡ | z – 1 | = 1 13.
Cz +

dz

z( 2 24)
, where C ≡ | z – i | = 2

14.
Cz +

− +
3 2

1 9

2

2
z

z z
dz

( )( )
, where C ≡ | z – 2 | = 2

15.
Cz +

−
2 1

2 1 2
z

z
dz

( )
, where C ≡ | z | = 1 16.

Cz + −
dz

z z
dz

( )(2 21 4)
, where C ≡| z |  = 1.5

17. (i)
Cz − +

− +
4 4 1

2 4

2

2
z z

z z
dz

( )( )
, where C ≡ | z | = 1.

(ii)
Cz −

− +
24 7

1 2 32
z

z z( ) ( )
 dz, where C is the circle of radius 2 with centre at the origin.

(M.T.U. 2012)

18.
Cz +

+ +
z

z z z

2

2
4

2 2( )
 dz, where C is

(i) | z | = 1 (ii) | z + 1 – i | = 1

(iii) | z + 1 + i | = 1 (iv) | z – 1 | = 5

19.  
Cz −e

z
dz

z

2  ; C ≡ | z | = 1 20.  
Cz z e dzz2 1/  ; C ≡ | z | = 1
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FUNCTION OF COMPLEX VARIABLE 103

21.
Cz 1

2z zsin
 dz where C is the triangle with vertices (0, 1), (2 – 2) and (7, 1). (G.B.T.U. 2012)

22. Determine the poles and residues at each pole of the function f(z) = 
z

z z2 3 2− +
 and hence evaluate

f z dz( )
Cz  where C is the circle | z – 2| = 1

2
. (G.B.T.U. 2011)

Answers

1. z = – 1, 2 ; 
1
3

5
3

, 2. z = 0, 2 ; – 
3
4

3
4

, 3. z = ± πi ; ± 
i

2π

4. – 4πi 5. − πi
4

6. 44πi

7. 3πi 8. – 2πi 9. 4πi(π + 1)
10. 10πi 11. 0 12. – 2πi
13. π/16 14. πi
15. πi 16. 0 17. (i) 0 (ii) 0
18. (i) 4πi (ii) – π (3 + i) (iii) π (3 – i) (iv) 2πi

19. – 2πi 20.
πi
3

. 21. 2 1
2

i

n

n( )−
π

22. z = 1, 2 ; – 1, 2 ; 4πi.

1.41 CONTOUR INTEGRATION

We take a closed curve C, find the poles of f(z) within C and calculate residue at these poles.
Then by Cauchy’s residue theorem

Cz f z dz( )  = 2πi [sum of the residues of f(z) at the poles within C]

The curve is called a contour.
The process of integration along a contour is called contour integration.

1.42 APPLICATION OF RESIDUE THEOREM TO EVALUATE REAL INTEGRALS

The residue theorem provides a simple and elegant method for evaluating many important
definite integrals of real variables. Some of these are illustrated below.

1.42.1. Integrals of the Type 
0

2
F(cos , sin ) d

π
θ θ θz , where F(cos θ, sin θ) is a Rational

Function of cos θ and sin θ.
Such integrals can be reduced to complex line integrals by the substitution z = eiθ, so

that

 dz = ieiθ dθ, i.e., dθ = 
dz
iz

.

Also,   cos θ = 
e e

z
z

i iθ θ+ = +FHG
I
KJ

−

2
1
2

1

  sin θ = 
e e

i i
z

z

i iθ θ– −
= −FHG

I
KJ2

1
2

1
.
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As θ varies from 0 to 2π, z moves once round the unit circle in the anti-clockwise direction.

∴  
0

2 1 1

2 2

π
θ θ θz z= + −F

HG
I
KJ

− −
F F

C
(cos , sin ) ,d

z z z z
i

dz
iz

where C is the unit circle | z | = 1.
The integral on the right can be evaluated by using the residue theorem.

EXAMPLES

Example 1. Using contour integration, evaluate 
0

2 d
a b cos

π θ
θz +

  where a > |b|

Hence or otherwise evaluate (U.K.T.U. 2010)

(i)
0

2 d

cos

π θ
θz −2

(ii)
0

d
a b cos

π θ
θz +

 ; a > |b|

Sol. Consider the integration round a unit circle C ≡ |z| = 1 so that z = eiθ

∴  dz = ieiθ dθ = iz dθ ⇒ dθ = 
dz
iz

Also,  cos θ = 
1
2

1
2

1
( )e e z

z
i iθ θ+ = +FHG

I
KJ

−

Then the given integral reduces to

  I = 
Cz

+ +FHG
I
KJ

L
NM

O
QP
F
HG
I
KJ

1

2
1

a
b

z
z

dz
iz

 = 
Cz + +

F
HG
I
KJ

2
22
z

bz az b
dz
iz

= 
2

2
12ib

dz

z
a
b

zCz + +
 = 

2
ib

dz
z zCz − −( ) ( )α β

where,  α = − +
−a

b
a b

b

2 2

and β = − −
−a

b
a b

b

2 2

Poles are given by (z – α) (z – β) = 0 ⇒ z = α, β
Both are simple poles.
Since  a > |b| ∴ |β| > 1
Since  αβ = 1
∴ |αβ| = 1

  |α| |β| = 1
⇒   |α| < 1 |∵ |β| > 1
Hence z = α is the only pole which lies inside the circle C ≡ |z| = 1.
Residue of f (z) at (z = α) is

 R = Lt
z

z f z
→

−
α

α( ) ( )  = Lt
z

z
ib z z→

−
− −α

α
α β

( ) .
( ) ( )

2
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= 
2 2

2 2 2ib
b

ib a b( )
( )

( )α β−
=

−
 = 

1
2 2i a b−

By Cauchy’s Residue theorem,

  I = 2πi(R) = 2πi
1

2 2i a b−

F
H
GG

I
K
JJ

 
0

2

2 2

2π θ
θ

πz +
=

−

d
a b a bcos

...(1)

(i) Putting a = 2  and b = – 1 in (1), we get

 
0

2

2
2
2 1

π θ
θ

πz −
=

−
d

cos
 = 2π

(ii) From (1),

2
2

0 2 2

π θ
θ

πz +
=

−

d
a b a bcos

| Using prop. of definite integrals

⇒
0 2 2

π θ
θ

πz +
=

−

d
a b a bcos

.

Example 2. Evaluate by contour integration:

0

2 d
a b sin

π θ
θz +

, where a > |b| [U.P.T.U. (C.O.) 2010; G.B.T.U. 2012]

Hence or otherwise evaluate 
0

2

2
d

1 2a sin a

π θ
θz − +

, 0 < a < 1.

Sol. Consider the integration round a unit circle C ≡ |z| = 1

so that z = eiθ ∴ dθ = 
dz
iz

.

Also,  sin θ = 
1
2

1
2

1
i

e e
i

z
z

i i( )θ θ− = −FHG
I
KJ

−

Then the given integral reduces to

 I = 
Cz

+ −FHG
I
KJ

L
NM

O
QP
F
HG
I
KJ

1

2
1

a
b
i

z
z

dz
iz

 = 
Cz + −

F
HG
I
KJ

2
22
iz

bz iaz b
dz
iz

= 
2

2
12b

dz

z
ia
b

zCz + −

Poles are given by

 z
ia
b

z2 2
1+ −  = 0
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⇒  z = 

− ± − +2 4
4

2

2

2
ia

b
a

b  = 
− ±

−ia
b

b a
b

2 2

= − ±
−ia

b
i a b

b

2 2

 = α, β (simple poles)

where,  α = 
− +

−ia
b

i a b
b

2 2

and β = 
− −

−ia
b

i a b
b

2 2

Clearly, |β| > 1
But   αβ = – 1
∴  |αβ| = 1 ⇒ |α| |β| = 1 ⇒ |α| < 1
Hence z = α is the only pole which lies inside circle C ≡ |z| = 1.
Residue of f (z) at (z = α) is

 R = Lt
z

z
b z z→

−
− −α

α
α β

( ) .
( ) ( )

2
 = 

2
b ( )α β−

= 
2

2

1
2 2 2 2

b
i a b

b

i a b−F
H
GG

I
K
JJ

=
−

∴ By Cauchy’s Residue theorem,

 I = 2πi (R) = 2
1 2
2 2 2 2

π π
i

i a b a b−

F
H
GG

I
K
JJ =

−

∴
0

2

2 2

2π θ
θ

πz +
=

−

d
a b a bsin

...(1)

If we replace a by 1 + a2 and b by – 2a, then

 
0

2

21 2

π θ
θz + −

d
a a( ) sin

 = 
2

1 42 2 2

π

( )+ −a a
 = 

2

1 24 2

π

+ −a a
 = 2

1 2
π

− a
.

Example 3. Use contour integration method to evaluate the following integral:

0 2 2
a d

a sin

π θ
θz +

, (a > 0).

Sol. I = 
0 2 1 2

2

π θ
θz

+ −
a d

a
( cos )

= 2a 
0 22 1 2

π θ
θz + −

d
a( ) cos

Put 2θ = φ, dθ = 
dφ
2

= a 
0

2

22 1

π φ
φz + −

d
a( ) cos

 I = 2a 
0

2

24 2

π

φ φ
φz + − + −

d

a e ei i( ) ( )
...(1)
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But z = eiφ so that dφ = 
dz
iz

 then (1) reduces to

    I = 2a 
Cz + +FHG

I
KJ

1

4 2
12( ) –

.
a z

z

dz
iz

 = 
2

4 2 12 2
a
i

dz
a z z zCz + − −

= 2ai 
Cz − + +

dz
z z a2 22 1 2 1( )

 = 2ai 
Cz − −

dz
z z( )( )α β

where, α = (1 + 2a2) + 2a 1 2+ a and β = (1 + 2a2) – 2a 1 2+ a

Clearly,   | α | > 1

∵  | αβ | = 1 ∴ | β | < 1

∴ Only β lies inside C.

Residue (at z = β) is = Lt
z

z
ai

z z→
−

− −β
β

α β
( ) .

( )( )
2

 = 
2ai

β α−
 = 

2

4 1 2 12 2

ai

a a

i

a− +
= −

+

By Cauchy Residue theorem,

 I = 2πi 
−

+

F
H
GG

I
K
JJ

i

a2 1 2
 = 

π

1 2+ a
.

Example 4. Apply Calculus of residues to prove that

0 2 2 2 3/2
d

(a b cos )
2 a

(a b )

2π φ
φ

πz +
=

− where a > 0, b > 0, a > b.

Sol. Let,  I = 
0

2

2

2

( )

π π

φ φ

φ
φ

φz z+
=

+ +RST
UVW

d
a b cos

d

a
b

(e e )i i0 2

2
–

...(1)

Put eiφ = z so that dφ = 
dz
iz

 then,

From (1),   I = 
Cz

+ +FHG
I
KJ

RST
UVW

1

2
1

2

a
b

z
z

dz
iz

 = 
Cz −

+ +
4
22 2
izdz

bz az b( )

= – 
4

2
1

2
2

2
i

b
z dz

z
az
b

Cz
+ +F

HG
I
KJ

Poles are given by,

z
az
b

2
22

1+ +F
HG

I
KJ  = 0 ⇒ (z – α)2(z – β)2 = 0 where, α + β = – 

2a
b

 and αβ = 1.
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Also, α = 
− + −

=
− + −

2 4
4

2

2

2 2 2
a
b

a
b a a b

b

 β = 
− −

=
− − −

2 4
4

2

2

2 2 2
a
b

a
b a a b

b

–

There are two poles, at z = α and at z = β each of order 2.
Since,  | αβ | = 1

or  | α | | β | = 1
But | β | > 1 ∴ | α | < 1 | ∵ a > b
∴ Only z = α lies inside the unit circle | z | = 1.
Residue of f(z) at the double pole z = α is

= 
1

2 1
42

2 2 2( ) !
( ) .

( ) ( )−
− −

− −
RST

UVW
L
N
MM

O
Q
PP =

d
dz

z
iz

b z z
z

α
α β

α

= 
d
dz

iz
b z

z

−
−

RST
UVW

L
N
MM

O
Q
PP =

4
2 2( )β

α

 = – 
4 1 2

2

2

4
i

b
z z z

z z

.
( ) . . ( )

( )
− − −

−

L
NM

O
QP =

β β
β α

= – 
4

2 3
i

b
z

z z

( )
( )
− −

−
L
NM

O
QP =

β
β α

 = – 
4 4

2 3 2 3
i

b
i

b
( )
( )

( )
( )

− −
−

= +
−

α β
α β

α β
α β

= 
4

2

22
2 2

3
i

b

a
b

b
a b

.
−FHG
I
KJ

−F
HG

I
KJ

 = – 
ia

a b( ) /2 2 3 2−

∴  I = 2πi 
−
−

L
NM

O
QP

=
−

ia
a b

a
a b( ) ( )/ /2 2 3 2 2 2 3 2

2π
.

Example 5. Apply Calculus of residues to prove that

0 2

2

2
cos 2 d

1 2p cos p
p

1 p

π θ θ
θ

πz − +
=

−
 (0 < p < 1).

Sol.  I = 
0 2

2
1 2

π θ θ
θz − +

cos
cos

d
p p

 = 
1
2

2
10

2

2

π

θ θ
θ θz − + +−

cos
( )

d
p e e pi i

= 
1
2

 real part of 
0

2 2

1 1

π θ

θ θ θz − − −
e

pe pe
d

i

i i( )( )

= 
1
2

 real part of 
Cz − −FHG

I
KJ

z

pz
p
z

dz
iz

2

1 1( )
writing e z d

dz
iz

iθ θ= =,

= 
1
2

 real part of 
Cz −

− −
iz

pz z p
dz

2

1( )( )

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com


FUNCTION OF COMPLEX VARIABLE 109

= 
1
2

 real part of 
Cz f z dz( ) where, f z

iz
pz z p

( )
( )( )

= −
− −

2

1

Poles of f(z) are given by (1 – pz)(z – p) = 0.

Thus  z = 
1
p

  and  z = p  are  the  simple poles. Only z = p lies within the unit circle C as

p < 1.
The residue of f(z) at z = p is

= lim
z p→

 (z – p) f(z) = lim
z p→

 (z – p) 
−

− −
= −

−
iz

pz z p
ip

p

2 2

21 1( )( )

Hence by Cauchy’s residue theorem, we have

   
Cz f z dz( )  = 2πi × [Sum of residues within the contour]

= 2πi −
−

F
HG

I
KJ =

−
ip

p
p
p

2

2

2

21
2
1

π
 which is purely real.

Hence,    I = 
1
2

 real part of 
Cz f z dz( )  = 

πp
p

2

21 −
.

Example 6. Use Complex integration method to prove that

0

2 2

2
2 2sin

a b cos
d

2
b

(a a b )
π θ

θ
θ πz +

= − − , where 0 < b < a.

Sol. Let    I = 
0

2 2

0

2 1 2
2

π πθ
θ

θ θ
θ

θz z+
= −

+
sin

cos
cos

( cos )a b
d

a b
d

= Real part of 
0

2 21
2 2

π θ

θ
θz −

+
e

a b
d

i

cos

Put z = eiθ so that   cos θ = 
1
2

1
z

z
+FHG
I
KJ  and dθ = 

dz
iz

Then 
0

2 2 2 2

2
1

2 2
1

2
1

1
2

π θ

θz z z−
+

=
−

+ +FHG
I
KJ
F
HG
I
KJ =

−
+ +

e
a b

dz
z

a b z
z

dz
iz

z

i bz az b
dz

i

cos ( )C C

where C is the circle | z | = 1.

The poles of the integrand are the roots of bz2 + 2az + b = 0, viz.

   z = 
− ± −

=
− ± −2 4 4

2

2 2 2 2a a b
b

a a b
b

Let  α = 
− + −a a b

b

2 2

and β = 
− − −a a b

b

2 2

Clearly, | β | > 1 so that z = α is the only simple pole inside C.
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Also,  bz2 + 2az + b = b(z – α)(z – β)

Residue at z = α is

 Lt Lt
z a z

z
z

ib z z
z

ib z ib→ →
− −

− −
= −

−
= −

−
( ) .

( )( ) ( ) ( )
α

α β β
α

α βα

1 1 12 2 2

= 
α

α
α

α β
α β α

α β

1 −FHG
I
KJ

−
= −

−ib ib( )
( )
( )

| ∵ αβ = 1

= – 
α
ib

a a b

ib
=

− −2 2

2

∴ By Residue theorem,

 
Cz −

+ +
=

− −
= − −FH IK

1
2

2
22

2

2 2

2 2
2 2z

i bz az b
dz i

a a b

ib b
a a b

( )
.π π

Hence I = Real part of 
Cz −

+ +
= − −FH IK

1
2

22

2 2
2 2z

i bz az b
dz

b
a a b

( )
π .

Example 7. Using complex integration method, evaluate 
0

2 cos 2
5 4 cos

d
π θ

θ
θz +

.

(M.T.U. 2012, G.B.T.U. 2010)

Sol. Let  I = Real part of 
0

2 2

5 2

π θ

θ θ θz + + −
e
e e

d
i

i i( )

= Real part of 
Cz + +FHG

I
KJ
F
HG
I
KJ

z

z
z

dz
iz

2

5 2
1

writing e z

d
dz
iz

iθ

θ

=

∴ =

= Real part of 
1

2 5 2

2

2i
z

z z
dz

Cz + +
Singularities are given by

 2z2 + 5z + 2 = 0 ⇒  z = – 
1
2

, – 2

z = − 1
2

 is the only pole which lies inside the unit circle C ≡ |z| = 1.

Residue of f (z) at z = −F
HG

I
KJ

1
2

 is

 R = Lt
z

z
z

i z z→ −
+FHG
I
KJ + +1

2

21
2 2 1 2

.
( ) ( )

 = Lt
z

z
i z→ − +1

2

2

2 2( )
 = 1

2
1
4

2
3

1
12i i

F
HG
I
KJ
F
HG
I
KJ =

Hence by Cauchy’s Residue theorem,

  I = 
Cz f z dz( )  = 2

1
12 6

π π
i

i
F
HG
I
KJ = .

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com


FUNCTION OF COMPLEX VARIABLE 111

Example 8. Evaluate: 
0

1 2 cos
5 4 cos

d
π θ

θ
θz +

+

Sol. Let I = 
0

2 1 2
5 4

π θ
θ

θz +
+

cos
cos

d  = Real part of 
0

2 1 2
5 4

π θ

θ
θz +

+
e

d
i

cos

= Real part of 
Cz +

+ +FHG
I
KJ
F
HG
I
KJ

1 2

5 2
1

z

z
z

dz
iz

Putting e z

d
dz
iz

iθ

θ

=

∴ =

= Real part of 
1 1 2

2 5 22i
z

z z
dz

Cz +
+ +

Poles are given by

 (2z + 1) (z + 2) = 0 ⇒ z = – 
1
2

, – 2 (simple poles)

z = – 
1
2

 lies inside unit circle C ≡ | z | = 1

Residue at z = −F
HG

I
KJ

1
2

 = Lt
z

z
i

z
z z→ −

+FHG
I
KJ

+
+ +1

2

1
2

1 1 2
2 1 2

.
( ) ( )

 = 
1
2

1 2
21

2
i

z
zz

F
HG
I
KJ

+
+→ −

Lt  = 0

Hence by Cauchy’s Residue theorem,
 I = 2πi (0) = 0

   
0

2 1 2
5 4

π θ
θ

θz +
+

cos
cos

d  = 0

⇒   
0

1 2
5 4

π θ
θ

θz +
+

cos
cos

d  = 0 | Using property of definite integrals

Example 9. Evaluate by Contour integration: 
0

2
cose

π θz  cos (sin θ – nθ) dθ.

Sol. Let   I = 
0

2π θz ecos  [cos (sin θ – nθ) + i sin (sin θ – nθ)] dθ

= 
0

2π θz ecos  . ei(sinθ–nθ) dθ = 
0

2π θθ
θz −e e de ini

. ...(1)

Put eiθ = z so that dθ = 
dz
iz

 then,

 I = 
Cz e

z
dz
iz

z
n. .
1

 = – i 
Cz +

e
z

dz
z

n 1

Poles are given by
z = 0 [of order (n + 1)]

It lies inside the unit circle.
Residue of f(z) at z = 0 is

  R = 
1
1 1

1
1

0
( ) !

.
n

d
dz

z
ie

z

n

n
n

z

n
z

+ −
−RS|T|
UV|W|

L
N
MM

O
Q
PP

+
+

=

 = 
− L
NM

O
QP =

i
n

d
dz

e
n

n
z

z
!

( )
0

 = 
− i
n !
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∴ By Cauchy’s Residue theorem,

I = 2πi 
−F
HG
I
KJ =i

n n! !
2π

Comparing real parts, we have

 
0

2π θz ecos  cos (sin θ – nθ) dθ = 
2π
n !

.

Example 10. Evaluate the integral: 
0

2cos 3
5 4 cos 2

π θ
θz –

 dθ (U.P.T.U. 2015)

Sol. Let, I = 1
2

3
5 4 20

2 2π θ
θz cos

– cos
dθ = 

1
4

1 6
5 4 20

2π θ
θz + cos

– cos
dθ ...(1)

Consider the integration round a unit circle c ≡ |z| = 1 so that z = eiθ

∴  dz = ieiθ dθ = iz dθ ⇒ dθ = 
dz
iz

Also,  cos 2θ = 
1
2

(e2iθ + e – 2iθ) = 
1
2

12
2z

z
+FHG
I
KJ

and   cos 6θ = 
1
2

16
6z

z
+FHG
I
KJ

Then the given integral (1) reduces to

 I = 
1
4

1
1

2

5 2
1

12

6

4

2

+ +F
HG

I
KJ

+F
HG

I
KJ

⋅z
z

z

z
z

dz
izc

–

 = – 
1

16
2 1
5
2

1

12 6

5 4 2i
z z

z z z
c

+ +

+F
HG

I
KJ

z
–

 dz

Singularities are, z = 0 (order 5), z = ± 2,  ± 
1
2

(order 1)

Clearly, z = 0 and z = ± 
1
2

 lie inside C.

 Now we will find residues at z = 0 and z = ± 
1
2

.

Let f(z) = 
z z

z z z

12 6

5 4 2

2 1
5
2

1

+ +

+F
HG

I
KJ–

 = 
z z

z
z z

12 6

5
2 42 1

1
5
2

+ + F
HG

I
KJ

L
NM

O
QP– –

–1

= 
( )

– – ...
z

z
z z z z z

6 2

5
2 4 4 8 61

1
5
2

25
4

5
+

+ + + +L
NM

O
QP

Residue of f(z) at z = 0 is the coefficient of 
1
z  in this laurent series expansion. Hence

  R1 = Residue of f(z) at z = 0 = – 1 + 
25
4

21
4

=
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  R2 = Residue of f(z) at z = 1
2

= Lt. –
( )

( – )z

z
z

z z z z→

F
HG

I
KJ .

+

−
F
HG

I
KJ +
F
HG

I
KJ

1
2

1
2

1

2
1
2

1
2

6 2

5 2

= Lt.
z

z

z z z→

+

+
F
HG

I
KJ

=
1
2

6 2

5 2

1

2
1
2

27
8

( )

( – )
–

  R3 = Residue of f(z) at z = – 1
2

= Lt
z

z
z

z z z z→
+
F
HG

I
KJ ⋅

+
F
HG

I
KJ +
F
HG

I
KJ

–

( )

( – ) –
1
2

1
2

1

2
1
2

1
2

6 2

5 2

= Lt
z

z

z z z→

+
F
HG

I
KJ

=
–

( )

( – ) –
–

1
2

6 2

5 2

1

2
1
2

27
8

Now, by Cauchy-Residue theorem,

 I = − + +1
16

2 1 2 3i
i[ ( )]π R R R  = − −FHG

I
KJ =π π

8
21
4

27
4

3
16

.

ASSIGNMENT

Evaluate the following integrals by using contour integration:

1. (i) 
0

2

5 3

π θ
θz −

d
cos

(U.K.T.U. 2011) (ii)
0

2

2

π θ
θz +

d
cos

(U.P.T.U. 2015)

2. (i) 
0 5 4

π θ
θz +

d
cos

(ii)
0 17 8

π θ
θz −

d
cos

(iii)
0 21 2 2

π θ
θz + −

a d

a cos
[G.B.T.U. (C.O.) 2011]

3. (i) 
0

2

5 4

π θ
θz +

d
sin

(G.B.T.U. 2011) (ii)
0 23

π θ
θz +

d

sin
(G.B.T.U. 2013)

4. (i) 
0

2

25 3

π θ
θz −

d

( cos )
(ii)

0 2

π θ
θz +

d

a( cos )

5. (i) 
0 2 2

π φ
φz +

a d

a cos
 (a > 0) (ii)

0

2

2
2

1 2

π θ
θ

θz − +
cos

cosp p
d , 0 < p < 1

6. (i) 
0

2 3
5 4

π θ
θ

θz −
cos

cos
d (U.P.T.U. 2009) (ii)

0

3
5 4

π θ
θ

θz −
cos

cos
d
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(iii) 
cos

cos
3

5 40

2 θ
θ

θ
π

+z d (U.P.T.U. 2007) (iv)
0

2
5 4

π θ
θ

θz +
cos

cos
d (U.P.T.U. 2014)

7.
−z +π

π θ
θ

θa
a

d
cos
cos

 ; a > 1 8.
0

2 2

5 4

π θ
θ

θz −
sin

cos
d

9.
0

2π
θ θ θ θz − +e n dcos cos ( sin ) ; n ∈ I

10. (i) 
0

2
2

π
θ θz cos n d  ; n ∈ I (ii)

0

2

3 2

π θ
θ θz − +

d
cos sin

[G.B.T.U. 2013; U.P.T.U. 2014]

Answers

1. (i) 
π
2

(ii)
2

3

π

2. (i) 
π
3

(ii)
π
15

(iii)
π

2 1 2+ a

3. (i) 
2
3
π

(ii)
π

2 3

4. (i) 
5
32

π
(ii)

πa

a( ) /2 3 21−
5. (i) π

1 2+ a
(ii)

2

1

2

2
πp

p−

6. (i) 
π
12

(ii)
π

24
(iii) − π

12 (iv) π
12

7. 2 1
12

πa
a

a
−

−

F
H
GG

I
K
JJ 8.

π
4

9.
2

1
π

n
n

!
( )−

10. (i) 
π ( ) !

( ) ( !)
2

2 2 1 2
n

nn − (ii) π.

1.42.2. Integrals of the Type 
−∞

∞z f(x)
F(x)

dx , where f(x) and F(x) are Polynomials in x

such that 
x f(x)
F(x)

 → 0 as x → ∞ and F(x) has no Zeros on the Real axis.

Consider the integral 
C Fz f z

z
dz

( )
( )

 over the closed contour C consisting of the real axis from – R

to R and the semi-circle CR of radius R in the upper half plane.

– R O R X

Y

CR
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We take R large enough so that all the poles of 
f z

z
( )
( )F

 in the upper half plane lie within C.

By residue theorem, we have

C F
sum of the residues of 

( )
F( )

in the upper half planez = L
NM

O
QP

f z
z

dz i
f z

z
( )
( )

2π

C R

R

R F F
sum of the residues of 

( )
F( )

in the upper half planez z+ = L
NM

O
QP

f z
z

dz
f x

x
dx i

f z
z

( )
( )

( )
( )–

2π

...(1) (∵ on the real axis, z = x)
If we put z = Reiθ in the first integral on the left side, then R is constant on CR and as z

moves along C1, θ varies from 0 to π.

∴  
CR F

R
F R

Rz z=f z
z

dz
f e

e
e

i

i
i( )

( )
( )
( )0

π θ

θ
θ  i dθ

For large R,
0

π θ

θ
θ θz f e

e
e id

i

i
i( )

( )
R

F R
R  → 0 is of the order 

R R
F R
f ( )
( )

∴
0

π θ

θz f e
e

i

i
( )
( )
R

F R
 Reiθ idθ → 0 when R → ∞

Hence from (1), we have

−∞

∞z f x
x

( )
( )F

 dx = 2πi sum of the residues of 
( )

F( )
 in the upper half plane

f z
z

L
NM

O
QP

EXAMPLES

Example 1. Using contour integration, prove that 
−∞

∞z +
=dx

(1 x ) 22 2
π

.

Hence or otherwise evaluate 
0

∞z +
dx

(1 x )2 2 .

Sol. Consider the integral 
Cz f z dz( )  where f(z) = 

1
(1 )2 2+ z

 taken round the closed contour

C consisting of the semi-circle CR which is upper half of a large circle | z | = R and the part of
real axis from – R to R.

For poles,  (1 + z2)2 = 0
⇒ z2 = –1
⇒  z = ± i (Poles of order 2)

 z = – i is outside C.
So z = i is the only pole inside C and is of order 2.
Residue of f(z) at z = i is

= 
d
dz

z i
z i z i

z i

( ) .
( ) ( )

−
− +

RST
UVW

L
N
MM

O
Q
PP =

2
2 2
1

= 
−
+
L
NM

O
QP

= −
=

2
43( )z i
i

z i

– R O R X

Y

CR
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By Cauchy’s residue theorem,

−z z+
+

+R

R

CR

dx
x

dz
z( ) ( )1 12 2 2 2  = 2πi 

−F
HG
I
KJ =i

4 2
π

Taking limit as R → ∞

−∞

∞

→ ∞z z+
+

+
=dx

x
dz
z( ) ( )1 1 22 2 2 2Lim

R CR

π
...(1)

Now,   
C CR R
z z+

≤
+

dz
z

dz
z( )

| |
| |1 12 2 2 2

≤ 
CR
z −

| |
{| | }

dz
z 2 21

= 
0 2 21

π θz −
R d

(R )

∵ | |
| |
z
dz d

=
=

< <

R on C
and R
also,

R
θ

θ π0

= 
πR

R( )2 21−
 → 0 as R → ∞

Hence,  
−∞

∞z +
=dx

x( )1 22 2
π

Now,  2 
0 2 21 2

∞z +
=dx

x( )
π

⇒
0 2 21 4

∞z +
=dx

x( )
π

.

Example 2. Apply calculus of residues to prove that

0 2 2 2 3
dx

(x a ) 4a

∞z +
= π

 ; a > 0. (M.T.U. 2013)

Sol. Consider  the  integral f z dz( )
Cz where

f(z) = 
1

2 2 2( )a z+
 taken round the closed contour C consist-

ing of the semi-circle cR which is upper half of a large circle
| z | = R and the part of real axis from – R to R.

Poles of f(z) are given by
 (a2 + z2)2 = 0

i.e.,  a2 + z2 = 0
or z = ± ai each repeated twice.

The only pole within the contour is z = ai, and is of the order 2.

Here,   f(z) = 
1

2 2( ) ( )z ai z ai− +
.

Residue (at z = ai) is = 
1

2 1
12

2 2( ) !
( ) .

( ) ( )−
−

− +
RST

UVW
L
N
MM

O
Q
PP =

d
dz

z ai
z ai z ai

z ai

= 
d
dz z ai

z ai

1
2( )+

RST
UVW

L
N
MM

O
Q
PP =

 = 
−
+
L
NM

O
QP =

2
3( )z ai z ai

= 
− = − =2

2
1

4
1

43 3 3 3( )ai a i a i
.

– R O R X

Y

CR
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Hence by Cauchy’s residue theorem, we have

Cz f z dz( )  = 2πi (Sum of residues within C)

i.e.,   
−z z+ = F

HG
I
KJR

R

CR

f x dx f z dz i
a i

( ) ( ) 2
1

4 3π

or
−z z+

+
+

=
R

R

CR

1 1
22 2 2 2 2 2 3( ) ( )a x

dx
a z

dz
a
π

...(1)

Now, 
C CR R
z z+

≤
+

1
2 2 2 2 2 2( )

| |
| |a z

dz
dz

a z

≤ 
CR
z | |

(| | – )
dz

z a2 2 2

= 
0 2 2 2

π θz −
R

R
d
a( )

, since z = Reiθ

= 
πR

(R2 − a2 2)
 → 0 as R → ∞

Hence taking R → ∞, relation (1) becomes,

 
−∞

∞z +
=1

( )a x
dx

a2 2 2 32
π

or  
0 2 2 2 34

∞z +
=1

( )a x
dx

a
π

.

Example 3. Apply Calculus of residues to prove that

−∞

∞z + +
=

+
x

(x a )(x b )
dx

a b

2

2 2 2 2
π

 (a > 0, b > 0).

Sol. Consider the integral 
Cz f z dz( )  where f(z) = 

z
z a z b

2

2 2 2 2( + +)( )
 taken round the

closed contour C consisting of the semi-circle CR which is upper half of a large circle | z | = R
and the part of real axis from – R to  R.

The poles of f(z) = 
z

z a z b

2

2 2 2 2( + +)( )
 are z = ± ia, ± ib. Of these, z = ia and z = ib lie in the

upper half of the z-plane.
Residue of f(z) at z = ia is

= lim ( )
)( )z ia

z ia
z

z a z b→
−

+ +

2

2 2 2 2(

= lim
)( )z ia

z
z ia z b→ + +

2

2 2(
 = – 

a
ia a b

2

2 22 ( )− +
 = 

a
i a b2 2 2( – )

.

Residue of f(z) at z = ib is

= lim ( )
( )( )z ib

z ib
z

z a z b→
−

+ +

2

2 2 2 2
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= lim
( )( )z ib

z
z a z ib→ + +

2

2 2  = 
−

− +
b

b a ib

2

2 2 2( )( )
 = 

−
−
b

i a b2 2 2( )
.

By Cauchy’s residue theorem,

−z z+ +
+

+ +
=

−
−

−

L
N
MM

O
Q
PPR

R 2

2 2 2 2 C

2

2 2 2 2( )( ) ( )( )R

x

x a x b
dx

z

z a z b
dz i

a

i a b

b

i a b
2

2 22 2 2 2π
( ) ( )

Taking limit as R → ∞

−∞

∞

→ ∞z z+ +
+

+ +
= −

−
L
NM

O
QP

x
x a x b

dx
z

z a z b
dz

a b
a b

2

2 2 2 2 R C

2

2 2 2 2( )( )
Lt

( )( )R

π 2 2

⇒
−∞

∞

→ ∞z z+ +
+

+ +
=

+
x

x a x b
dx

z
z a z b

dz
a b

2

2 2 2 2 R C

2

2 2 2 2( )( )
Lt

( )( )R

π
...(1)

Now,
C

2

2 2 2 2 C

2

2 2 2 2
R R( )( ) | || |z z+ +

≤
+ +

z
z a z b

dz
z

z a z b
dz

| |
| |

≤ 
C

2

2 2
R (| )(| )z | |

| – | –
| |

z
z a z b

dz2 2

= 
R

R R
R

2

2 2 2 2 0( )( )− − za b
d

π
θ | ∵ | z | = R on CR

= 
πR

R R

3

2 2 2 2( )( )− −a b
 → 0 as R → ∞

∴ From (1),
−∞

∞z + +
=

+
x

x a x b
dx

a b

2

2 2 2 2( )( )
π

.

Example 4. (i) Apply Calculus of residues to prove that

0 4 4 3
dx

x a
2

4a

∞z +
= π

, (a > 0).

(ii) Using contour integration, evaluate 
0 4

dx

1 x

∞z +
. (U.P.T.U. 2007)

 Sol. (i) Consider the integral 
Cz f z dz( )  where f(z) = 

1
4 4z a+

.

The poles of f(z) are given by
z4 + a4 = 0 ⇒ z4 = – a4 = a4eπi = a4e2nπi+πi

or     z = ae(2n+1)πi/4 ; n = 0, 1, 2, 3.
Since there is no pole on the real axis, therefore, we may take the closed contour C

consisting of the upper half CR of a large circle | z | = R and the part of real axis from – R to R.
∴ By Cauchy’s residue theorem, we have

−z z z+ =
R

R

C CR

f x dx f z dz f z dz( ) ( ) ( )

or  
−

+z z ∑+
+

+
=

R

R

CR

R
1 1

24 4 4 4x a
dx

z a
dz iπ ...(1)

| where R+∑  = sum of residues of f(z) at poles within C.
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The poles z = ae
iπ

4  and z = ae3πi/4 are the only two poles which lie within the contour C.
Let α denote any one of these poles, then

  α4 + a4 = 0 ⇒ α4 = – a4.

Residue of f(z) (at z = α) is = 1
4 4d

dz
z a

z
( )+

L
N
MM

O
Q
PP

=α

 = 
1

4 43 4α
α=

− a

∴ Residue at z = aeπi/4 is = −
1

4 3a
 eπi/4

and residue at z = ae3πi/4 is = − 1
4 3a

 e3πi/4 = 
e

a

i−π /4

34

∴ Sum of residues = −
−L

NM
O
QP

−1
2 23

4 4

a
e ei iπ π/ /

 = – 1
2 43a

i sin
π  = − = +∑i

a2 2 3
R .

∴ From (1),

−z z+
+

+
=
F
HG

I
KJ =

R

R

CR

dx
x a

dz
z a

i
i

a a4 4 4 4 3 32
2 2

2
2

π π–
...(2)

Now,
C C CR R R
z z z+

≤
+

≤
−

1
4 4 4 4 4 4z a

dz
dz

z a
dz

z a
| |

| |
| |

| | | |

= 
0 4 4

π θz −
R

R
d

a
| ∵ |z | = R on CR

= 
πR

R4 4− a
 → 0 as R → ∞.

Hence when R → ∞, relation (2) becomes

−∞

∞z +
=dx

x a a4 4 3
2

2
π

or  
0 4 4 3

2
4

∞z +
=dx

x a a
π

.

(ii) Consider the integral 
Cz f z dz( )  where f(z) = 

1
1 4+ z

 taken round a closed contour C,

consisting of the semi-circle CR which is upper half of a large circle | z | = R and the part of
real axis from – R to  R.

The poles of f(z) = 
1

14z +
 are obtained by solving z4 + 1 = 0.

Now  z4 + 1 = 0

⇒ z = (– 1)1/4 = (cos π + i sin π)1/4 = [cos (2nπ + π) + i sin (2nπ + π)]1/4

= cos 
( )

sin
( )2 1

4
2 1

4
n

i
n+ + +π π

where n = 0, 1, 2, 3.

| By De Moivre’s theorem

When n = 0, z = cos 
π π
4 4

1

2

1

2
+ = +i isin
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When n = 1, z = cos 
3
4

3
4

1

2

1

2

π π+ = − +i isin

When n = 2, z = cos 
5
4

5
4

1

2

1

2

π π+ = − −i isin

When n = 3, z = cos 
7
4

7
4

1

2

1

2

π π+ = −i isin

Of these, only the poles corresponding to n = 0, 1, viz, z = e
i

π
4  and z = e

i3
4
π

 lie in the
upper half of z-plane.

Residue of f(z) at z = e
i

π
4  is Lt

z e

i

i

z e
z

→

−
+π

π

4

4

4 1
Form

0
0

= Lt
z e

i z
→

π
4

1
4 3 | By L’ Hospital’s rule

= 
1

4

1
43

4

3
4

e

e
i

i

π

π

=
−

Similarly, residue of f(z) at z = e
i3

4
π

 is 1
4

9
4e

i− π

Sum of residues = 
1
4

  (e–3iπ/4 + e–9iπ/4)

= 
1
4

3
4

3
4

9
4

9
4

cos sin cos sin
π π π π− + −L

NM
O
QPi i

= 
1
4

1
2 2

1
2 2

− + −
F
HG

I
KJ–

i i
 = 

− i 2
4

By Cauchy Residue theorem

−z z+
+

+
= −F
HG
I
KJ =

R

R

CR

dx
x

dz
z

i
i

1 1
2

2
4

2
24 4 π π

Taking Limit R → ∞,

−∞

∞

→ ∞z z+
+

+
=dx

x
dz

z1 1
2

24 4Lt
R CR

π
...(1)

Now,  
C CR R
z z+

≤
+

dz
z

dz
z1 14 4
| |

| |
 ≤ 

CR
z −

| |
| |

dz
z 4 1

= 
R

R 14 − z0π θd | ∵ | z | = R on CR

= 
πR

R 14 −
 → 0  as  R → ∞

∴ From (1), 
−∞

∞z +
=dx

x1
2

24
π

or
0 41

2
4

∞z +
=dx

x
π

.

Note. The above method can also be applied to some cases where f(x) contains trigonometric functions
also.
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1.42.2. (a) Jordan’s Inequality

Consider the relation y = cos θ. As θ increases, cos θ decreases and therefore y decreases.

The mean ordinate between 0 and θ = 
1

0θ
θ θ θ

θ

θz =cos
sin

d

when θ = 0, ordinate is cos 0 i.e. 1

when θ = 
π
2

, mean ordinate is sin /
/
π

π
2

2
i.e. 

2
π

Hence,  when 0 < θ < π/2,

Mean ordinate lies between 1 and 
2
π

i.e.,  
2
π

θ
θ

< sin
 < 1

This is known as Jordan’s Inequality.

1.42.2. (b) Jordan’s Lemma

If f(z) → 0 uniformly as | z | → ∞, then Lt
R CR→ ∞ z eimzf(z) dz = 0, (m > 0)

where CR denotes the semi-circle | z | = R, I(z) > 0.
Example 5. Apply calculus of residues to evaluate

0 2 2
x sin x
x a

dx
∞z +

, a > 0. (G.B.T.U. 2010)

Sol. Consider the integral 
Cz f z dz( )  where f(z) = 

z e
z a

iz

2 2+
 taken round a closed contour

C, consisting of a semi-circle CR which is upper half of a large circle | z | = R and the part of
real axis from – R to R.

For poles,  z2 + a2 = 0
⇒    z = ± ai
z = ai is the only pole which lie inside C.

∴ Residue of f(z) at (z = ai) = lim ( ) .
( )( )z ai

iz

z ai
z e

z ai z ai→
−

− +
 = 

ai e
ai

ea a− −
=

2 2
∴ By Cauchy Residue theorem,

−

−z z+
+

+
=
F
HG
I
KJR

R

CR

x e
x a

dx
ze

z a
dz i

eix iz a

2 2 2 2 2
2

π  = πie–a

Taking limit as R → ∞,

Lt Lt
R R

R

R CR→ ∞ − → ∞z z+
+

+
x e

x a
dx

ze
z a

dz
ix iz

2 2 2 2  = πie–a

⇒     
−∞

∞

→ ∞z z+
+

+
x e

x a
dx

z e
z a

dz
ix iz

2 2 2 2Lt
R CR

 = πie–a ...(1)

Since 
z

z a2 2 0
+

→  as | z | → ∞, therefore by Jordan’s Lemma,

O

θ

P

X

Y

y
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 Lt
R CR→ ∞ z +

=ze
z a

dz
iz

2 2 0

∴ From (1),
−∞

∞z +
x e

x a
dx

ix

2 2  = πi e–a

Comparing imaginary parts,

−∞

∞z +
x x
x a

dx
sin

2 2  = πe–a

or  
0 2 2 2

∞ −z +
=x x

x a
dx e asin π .

Example 6. Evaluate by using Contour integration 
0 2

cos ax
x 1

dx
∞z +

 ; a ≥ 0.

(U.P.T.U. 2006, G.B.T.U. 2011)

Sol. Consider the integral 
Cz f z dz( )  where f(z) = 

e
z

iaz

2 1+
 taken round a closed contour C,

consisting of a semi-circle CR which is upper half of a large circle | z | = R and the part of real
axis from – R to R.

For poles, z2 + 1 = 0
⇒ z = ± i
z = i is the only pole which lies inside C.

∴ Res. (z = i) = Lt
z i

iaz

z i
e

z i z i→
−

− +
( ) .

( )( )
 = 

e
i

a−

2
∴ By Cauchy Residue theorem,

−

−z z+
+

+
=
F
HG
I
KJR

R

CR

e
x

dx
e

z
dz i

e
i

iax iax a

2 21 1
2

2
π  = πe–a

Taking Limit as R → ∞,

   
−∞

∞

→ ∞z z+
+

+
e

x
dx

e
z

dz
iax iaz

2 21 1
Lt

R CR

 = π e–a ...(1)

Since 
1

1
02z +

→  as | z | → ∞, therefore by Jordan’s Lemma,

 Lt
R CR→ ∞ z +

=e
z

dz
iaz

2 1
0 (a > 0)

∴ From (1),
−∞

∞z +
e

x
dx

iax

2 1
 = π e–a

Equating real parts, we get

−∞

∞z +
cos ax
x

dx2 1
 = πe–a

or   
0 2 1 2

∞ −z +
=cos ax

x
dx

e aπ
.
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Example 7. Apply calculus of residues to prove that

0

cosh ax
cosh x

dx
1
2

sec
a
2

∞z =
π

, – π < a < π. (M.T.U. 2014)

Sol. Consider 
c

f z dzz ( )  where f(z) = 
e

z

az

cosh π
, c is the rectangle with vertices at – R, R,

R + i and – R + i.
f(z) has simple poles given by

cosh πz = 0
or   eπz + e–πz = 0
or  eπz = – e–πz = e(2n+1)πi–πz

whence, z = 
( )2 1

2
n i+

 ; n = 0, ± 1, ± 2. Of these poles, only z = 
i
2

lies inside c.

 Residue at z
i=F

HG
I
KJ2  = e

d
dz

z

az

z
i

(cosh )π

L

N
MM

O

Q
PP

=
2

= 
e

i
e

i i
e

ia ia
ia

/ /
/

sinh sin

2 2
2

2 2

1

π π π π π
= =

By residue theorem, we get

 
C R

R
Rz z z= + +

−
f z dz f x dx f iy idy( ) ( ) ( ) .

0

1
 + 

R

R
R

−z z+ + − +f x i dx f iy idy( ) ( ) .
1

0

 = 2πi . 
1
πi

 eia/2 = 2eia/2 ...(1)

or  I1 + I2 + I3 + I4 = 2eia/2.

Now,  | I2 | = 
0

1z +

+
e

iy
idy

a iy( )

cosh ( )

R

Rπ

≤ 
0

1 2z + ++
e e i dy

e e

a aiy

iy iy

R

R R
| || |

| |( ) – ( )π π

= 
0

1 2z − −
e dy

e e

aR

R Rπ π  = 
2e

e e

aR

R Rπ π− −  → 0 as R → ∞ | since – π < a < π.

In the same way I4 → 0. Hence when R → ∞, we get from (1),

   
−∞

∞

∞

−∞ +z z+ +
e

x
dx

e
x i

dx
ax a x i

cosh cosh ( )

( )

π π
 = 2eia/2

or  
−∞

∞

−∞

∞z z− −
e

x
dx

e e
x

ax ax ai

cosh
.

coshπ π
 dx = 2eia/2 [∵ cosh π(x + i) = – cosh πx]

⇒
−∞

∞z +
=

( ) .
cosh

/1
2 2e e

x
dx e

ia ax
ia

π

⇒
−∞

∞ −z +( )
cosh

/ /e e e
x

dx
ia ia ax2 2

π
 = 2

Y

– R O R X

– R+ i R+ i
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or  
−∞

∞z =e
x

dx
a

ax

cosh cosπ
1

2

or  
−∞

∞z z+ =
0

0

1

2

e
x

dx
e

x
dx

a

ax ax

cosh cosh cosπ π
...(2)

Putting x = – t in the first integral, we get

   
−∞ ∞

− ∞ −z z z= − =
0 0

0

e
x

dx
e

t
dt

e
x

dx
ax at ax

cosh cosh coshπ π π
∴ From (2),

 
0

1

2

∞ −z +
=

e e
x

dx
a

ax ax

cosh cosπ

or
0

1

2
2

1
2 2

∞z = =
cosh
cosh cos

sec
ax

x
dx

a
a

π
.

Example 8. Using contour integration, prove that: 
0

2

2
log (1 x )

1 x
dx

∞z +
+

 = π loge 2.

Sol. Consider the integral 
Cz f z dz( )  where f(z) = 

log ( )z i
z

+
+2 1

 taken round a closed con-

tour C which consists of semi-circle CR, the upper half of a large circle | z | = R and the part
of real axis from –R to R.

For poles, z2 + 1 = 0 ⇒ z = ± i
Only the pole z = i lies inside C.

Res. (z = i) = Lt
z i

z i
z i

z i z i
i

i→
− +

− +
=( ) .

log ( )
( )( )

log ( )2
2

 = 
log 2

2
2

+ i

i

π

∴ By Cauchy Residue theorem,

 Lt Lt
R R

R

R CR→ ∞ − → ∞z z+
+

+ +
+

= +F
HG

I
KJ

log ( ) log ( )
log

x i
x

dx
z i
z

dz
i

i
i

1 1
2
2

2
22 2

π π
 = π log 2

2
+F

HG
I
KJ

πi ...(1)

Now,  Lt
z

z z i
z→ ∞

+
+

log ( )
2 1

 = Lt
z

z
z i

z i
z i→ ∞ −

+
+

L
NM

O
QP.

log ( )

= Lt Lt
z z

z
z i

z i
z i→ ∞ → ∞−

+
+

log ( )
 = 1.0 = 0

Hence, Lt
CRz

z z i
z

dz
→ ∞ z +

+
log ( )
1 2  = 0

⇒       Lt
CRz

z i
z

dz
→ ∞ z +

+
log ( )

1 2  = 0

From (1),
−∞

∞z +
+

= +F
HG

I
KJ

log ( )
log

x i
x

dx
i

1
2

22 π π
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Equating real parts, we get

−∞

∞z +
+

1
2

1
1

2

2
log ( )x

x
dx  = π log 2

⇒
0

2

2
1

1

∞z +
+

log ( )x
x

dx = π log 2.

ASSIGNMENT

Evaluate the following integrals using Contour integration:

1. (i) 
0 21

∞z +
dx

x
(ii)

−∞

∞z +
dx

x( )2 31

(iii)
−∞

∞z +
x

x
dx

2

2 21( )
(G.B.T.U. 2012) (iv)

−∞

∞z +
x

x a
dx

2

2 2 3( )
; a > 0

2.
−∞

∞z + +
dx

x a x b( )( )2 2 2 2 ; a > b > 0 3.
−∞

∞z + +
x

x x
dx

2

2 21 4)( )(
(U.P.T.U. 2008)

4.
0

2

2 2 29 4)

∞z + +
x

x x
dx

( )(
5.

−∞

∞z − +
+ +

x x

x x
dx

2

4 2
2

10 9

6. (i) 
− ∞

∞z + + +
x

x x x
dx

( ) ( )2 21 2 2
(ii)

− ∞

∞z + + +
x

x x x
dx

2

2 2 21 2 2( ) ( )

[U.P.T.U. (C.O.) 2009]

7.
− ∞

∞z + +
x

x x
dx

( )2 24 13
8.

−∞

∞z +
dx

x6 1

9. (i) 
0 2 2

∞z +
cos mx

x a
dx ; (m ≥ 0, a > 0) (ii)

0 2 2 2

∞z +
cos

( )
mx

a x
dx ; m ≥ 0, a > 0

[U.P.T.U. (C.O.) 2008]

10. (i) 
0 2 2

∞z +
x ax

x k
dx

sin ; a > 0 (ii)
− ∞

∞z + +
x x

x x
dx

sin π
2 2 5

[U.P.T.U. (C.O.) 2009]

11. (i) 
0 2 2 2 2

∞z + +
cos

( ) ( )

x

x a x b
 dx (a > b > 0) (ii)

0 2 2 2 2

∞z + +
sin

( ) ( )

x

x a x b
 dx (a > b > 0)

[U.P.T.U. (C.O.) 2008]

12.
−∞

∞z + +
sin x

x x
dx2 4 5

13.
0

3

2 2 2 2

∞z + +
x x

x a x b
dx

sin

( )( )
; (a > 0, b > 0)

14. If a > 0, prove that

(i)
− ∞

∞z +
+

a x x x

x a

cos sin
2 2  dx = 2πe–a (ii)

− ∞

∞z −
+

x x a x

x a

cos sin
2 2  dx = 0

[Hint: Consider f (z) = 
e

z ia

iz

−
. At last multiply both Nr and Dr by x + ia and separate real and

imaginary parts]
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15. Prove that 
0

2

2 2 21 2
1

3∞z +
= +FHG

I
KJ

cos
( )

x

x
dx

e

π
Hint: Take so thatf z

e

z
f x

x

x

iz
( )

( )
( )

cos

( )
= +

+
= +

+

L
N
MM

O
Q
PP

1

1

1 2

1

2

2 2 2 2

16. By integrating e z2−  round the rectangle whose vertices are 0, R, R + ia, ia, show that

(i)
0

2
2

2
2

∞
−

−z =e ax dx
ex

a
cos π  and (ii)

0 0

2 2 2
2

∞
− −z z=e ax dx e e dyx a

a
ysin .

17. Apply calculus of residues to prove that 
0

2

0

2 1
2 2

∞ ∞z z= =sin cosx dx x dx
π

.

Answers

1. (i) π/2 (ii) 3π/8 (iii)
π
2

(iv)
π

8 3a

2.
π

ab a b( )+
3. π/3 4.

π
200

5.
5
12

π

6. (i) − π
5

(ii) 7
50

π 7. − π
27

8. π/3

9. (i) π
2a

e ma− (ii)
π e am

a

am− +( )1
4 3 10. (i) 

π
2

e ak− (ii) – πe– 2π

11. (i) 
π

2 2 2( )a b

e
b

e
a

b a

−
−

F
HG

I
KJ

− −
(ii) 0 12. – 

π
e

sin 2

13. π
2

2 2

2 2
( )

( )

a e b e

a b

a b− −−
−

1.42.3. Integrals of the Type 
−∞

∞z f(x)
F(x)

dx, when F(x) has zeros on the real axis.

When the poles of f(z) lie on the real axis and also within the semi-circular region, then those
which lie on the real axis can be avoided by drawing small semi-circles Cr, Cr′ etc. about those
poles as centres and small radii r and r′ in the upper half of the plane.

This method is said to be ‘indenting the semi-circular contour’.
When the semi-circle of radius R has been indented then f(z) is analytic along this

modified contour C and the integral 
Cz f z dz( )  can be evaluated by Cauchy-Residue theorem.

Example. Evaluate 
0

sin mx
x

dx
∞z , m > 0. [G.B.T.U. (C.O.) 2008, G.B.T.U. 2007]

Sol.  Since sin mx is the imaginary part of eimx, we consider the function

φ(z) = 
e

z

imz

.

This has a simple pole at z = 0, which lies on the
real axis. Enclose this singularity by a small semi-circle
C2 : | z | = r. Evaluate the function φ(z) over the contour
C shown in the figure consisting of parts of the real axis
from –R to –r and r to R, the small semi-circle C2 and the
large semi-circle C1. Since the function has no singular-
ity within this contour, by Cauchy’s theorem, we have

Y

C2

C1

– R – r O r R X
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Cz φ( )z dz  = 0

⇒  
−

−z z z z+ + +
R C

R

C

r

r
x dx z dz x dx z dzφ φ φ φ( ) ( ) ( ) ( )

2 1

 = 0

⇒
−

−z z z z+ + +
R C

R

C

r imx imz

r

imx imze
x

dx
e

z
dz

e
x

dx
e

z
dz

2 1

 = 0 ...(1)

Substituting –x for x in the first integral and combining it with the third integral, we
get

  
r

imx imx imz imze e
x

dx
e

z
dz

e
z

dz
R

C Cz z z− + +
−

2 1

 = 0

or 2i 
r

imz imzmx
x

dx
e

z
dz

e
z

dz
R

C Cz z z+ +sin

2 1

 = 0 ...(2)

Now    
C C C2 2 2

1 1z z z= + −e
z

dz
z

dz
e

z
dz

imz imz
...(3)

On C2, z = reiθ

∴
C2

1 0

0z z z= = −
z

dz
re id

re
id

i

iπ

θ

θ

πθ θ  = – iπ

Also,
C C

M
2 2

1z z− ≤e
z

dz
dz
z

imz | |
| |

 = πM

where M is the maximum value on C2 of | eimz – 1 | = | eimr (cos θ +i sin θ) – 1 |
Clearly, M → 0 as r → 0

∴ From (3), 
C2
z = −e

z
dz i

imz

π

Putting z = Reiθ in the integral over C1, we get ...(4)

 
C

R
R

R
R

1 0 0z z z= =
+e

z
dz

e
e

e id i e
imz im i

i
i im

π θ θ

θ
θ π θθ

(cos sin )
cos  . e–mR sin θ dθ

Since, | eimR cos θ| ≤ 1

∴
C

R sin R

1 0 0

2
2z z z≤ =− −e

z
dz e d e d

imz
m m

π θ π θθ θ
/

sin

Also, sin θ
θ

 continually decreases from 1 to 
2
π

 as θ increases from 0 to 
π
2

.

∴ For 0 ≤ θ ≤ 
π θ

θ π2
2

,
sin ≥ or sin θ ≥ 

2θ
π

∴ e
z

dz e d
m

e
m

imz
m mz z≤ = −LNM

O
QP =− −2

0

2
2 2

0

2π θ π θ π
π

θ π π/
/ /

/
R R

R R
 (1 – e–mR)

As R → ∞, 
π

mR
 (1 – e–mR) → 0

∴
C1
z e

z
dz

imz

 = 0
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Hence from (2), on taking the limit as r → 0 and R → ∞, we get

 2i 
0

∞z −sin mx
x

dx iπ  = 0

or
0 2

∞z =sin mx
x

dx
π

.

ASSIGNMENT

Apply calculus of residues to prove that:

1. (i) 
0

1

1

∞ −z +
=x

x
dx

p

p π
πsin , 0 < p < 1 (M.T.U. 2013) (ii) 

0

1

1

∞ −z −
x

x

a

dx = π cot a π, 0 < a < 1

(iii) 
0

1

21 2 2

∞ −z +
= F

HG
I
KJ

x

x
dx

aa π π
cosec , 0 < a < 2

2. (i) 
0

∞z cos x
x

 dx = 0 (ii) 
− ∞

∞z −
=cos x

a x
dx

a2 2
π

 sin a, (a > 0)

3. (i) 
0 2 2 22

∞z +
=sin

( )

mx

x x a
dx

a

π
(1 – e–ma); a > 0 (ii)

0 21

∞z −
sin
( )

πx

x x
 dx = π

4. (i) 
0 2 21 4

∞z +
= −log

( )
x

x
dx

π
(ii)

0

2

2

2

1 8

∞z +
=(log )x

x
dx

π

5. (i) 
0 2 21 4

1
2

∞z +
= − F

HG
I
KJ

x

x
dx a

aa

( )
( ) sec

π π
; – 1 < a < 3

(ii) 
0 2 1

2
3

2
3

∞z − +
= F

HG
I
KJ

x

x x
dx

aa π π
sin  cosec (aπ); – 1 < a < 1

6.
0 2

2 2∞z −cos cosax bx

x
 dx = π(b – a) if a ≥ b ≥ 0.

TEST YOUR KNOWLEDGE

1. Define analytic function and state the necessary and sufficient condition for function to be analytic.
(M.T.U. 2012)

2. If f(z) = u + iv is analytic, then show that the family of curves u(x, y) = c1 and v(x, y) = c2 are
mutually orthogonal. (M.T.U. 2012)

3. Using the Cauchy-Riemann equations, show that f(z) = | z |2 is not analytic at any point.
(M.T.U. 2013)

4. Find the constants a, b and c such that the function f(z) = – x2 + xy + y2 + i (ax2 + bxy + y2) is
analytic. (M.T.U. 2013)

5. Evaluate 
0

1
2

+z i
z dz. (U.P.T.U. 2008)

6. Evaluate the integral 
Cz e

z

iz

3
dz where C : | z | = 1. (M.T.U. 2013)

7. Define isolated and non-isolated singular points. (M.T.U. 2012)
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8. Define removable and essential singular points with example. (M.T.U. 2012)
9. Define singular point of an analytic function. Find nature and location of the singularity of

f(z) = 
z z

z

− sin
2 (M.T.U. 2013)

10. Find the values of a and b for which the function f(z) = cos x (cosh y + a sinh y) + i sin x
(cosh y + b sinh y) is analytic.

11. If f(z) = u + iv is an analytic function and u = x2 – y2 – y then find its conjugate harmonic function
v(x, y).

12. If f(z) = u + iv is an analytic function and v = y2 – x2 then find its conjugate harmonic function u(x, y).

13. If u = 
x y

x y

2 2

2 2 2
−

+( )
 is the real part of analytic function f(z) = u + iv then find f(z) in terms of z.

14. Evaluate 
dz

z −z 2C
 around the circle | z – 2 | = 4.

15. Evaluate ( )5 24 3z z− +zC  dz around the unit circle | z | = 1.

16. If F(α) = 
5 4 32z z

z
− +

−z αC
 dz which C is the ellipse 16x2 + 9y2 = 144, then find F(2).

17. Evaluate 
dz

z2 9+zC  where C is | z – 3i | = 4.

18. Find residue of f(z) = 
z
z

+
−
F
HG
I
KJ

1
1

3

 at z = 1.

19. Find residue of f(z) = 
2 1

22
z

z z

+
− −

 at the pole z = –1. (M.T.U. 2014)

20. (i) Find residue of f(z) = 
z

z z

2

2 23 2( )+ +
 at the pole z = –1.

(ii) Find residue of f(z) = z

z z

2

2 3 2+ +
 at the pole –1. (U.P.T.U. 2014)

21. Evaluate 
4 3

2
−

−z z

z zC
 dz where C is any simple closed path such that 1 ∈ C, 0 ∉ C.

22. Find the nature of singularity of f(z) = 
z z

z

− sin
3  at z = 0.

23. Evaluate z

z z

−
+ +z 3

2 52C
 dz when C ≡ | z | = 1.

24. Let u(x, y) = 2x(1 – y) for all real x and y. Find a function v(x, y) so that f(z) = u + iv is analytic.

25. Let I = 
Cz − −

f z
z z

( )
( ) ( )1 2

 dz where f(z) = sin π πz z
2 2

+ cos  and C is the curve | z | = 3 oriented

anti-clockwise. Find the value of I.

26. Let 
n

n
nb z

= − ∞

∞

∑  be the Laurent’s series expansion of the function 1
z zsinh

, 0 < | z | < π, then find

b–2, b0 and b2.
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27. Let f(z) = 
n

nz
=
∑

0

15

 for z ∈ ^. If ^ : | z – i | = 2, then evaluate 
f z

z i

( )

( )−z 15C
 dz.

28. Let u(x, y) be the real part of an entire function f(z) = u(x, y) + i v(x, y) for z = x + iy ∈ C. If C is the

positively oriented boundary of a rectangular region R in R2 then evaluate ∂
∂

− ∂
∂

F
HG

I
KJz u

y
dx

u
x

dy
C

.

29. Consider the function f(z) = 
e

z z

iz

( )2 1+
. Find the residue of f at the isolated singular point in the

upper half plane {z = x + iy ∈ ^ : y > 0}.

30. Let S be the positively oriented circle given by | z – 3i | = 2. Then evaluate 
dz

zS 2 4+z .

31. Let f(z) be an analytic function. Then evaluate f eit( )
0

2πz  cos (t) dt.

32. Let f(z) = 
1
3 22z z− +

 then find the coefficient of 
1
3z

 in the Laurent’s series expansion of f(z)

for | z | > 2.
33. If u(x, y) = x3y – xy3 is the real part of analytic function f(z) = u(x, y) + i v(x, y), then find its

conjugate harmonic function v(x, y). (M.T.U. 2014)
34. Define Harmonic function.

Answers

4. a b c= − = − =1
2

2
1
2

, , 5. − +2
3

2
3

i 6. –πi

9. removable singularity at z = 0 10. a = –1, b = –1 11. 2xy + x + c

12. 2xy + c 13.
1
2z

c+ 14. 2πi 15. 0

16. 30πi 17. π/3 18. 6 19. 1/3
20. (i) – 4 (ii) 1 21. 2πi 22. removable singularity
23. 0 24. x2 – (y – 1)2 25. – 4πi
26. b–2 = 1, b0 = –1/6, b2 = 7/360 27. 2πi (1 + 15i) 28. 0

29. − 1
2e 30.

π
2 31. πf ′(0) 32. 3

33. x4 + y4 – 6x2y2 + c.
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UNIT 2
Integral Transforms

2.1 INTRODUCTION

The theory of integral transforms affords mathematical devices through which solutions of
numerous boundary value problems of engineering can be obtained e.g. conduction of heat,
transverse vibrations of a string, transverse oscillations of an elastic beam, transmission lines
etc.

The choice of a particular transform to be employed for the solution of an equation
depends on the boundary conditions of the problem and the ease with which the transform can
be inverted. An integral transform when applied to a partial differential equation reduces the
number of its independent variables by one.

2.2 DEFINITION

The integral transform f(p) of a function F(x) is defined as

I{F(x)} = f(p) = 
a

bz F(x) K(p, x) dx,

where K(p, x) is a known function of p and x, called the kernel of the transform : p is called the
parameter of the transform and F(x) is called the inverse transform of f(p).

Some of the well-known transforms are given below:
(i) Laplace Transform. K(p, x) = e–px

 L{F(x)} = f(p) = 
0

∞z F(x) e–px dx

(ii) Complex Fourier Transform. K(p, x) = eipx

 F{F(x)} = f(p) = 
−∞

∞z F(x) eipx dx

(iii) Hankel Transform.  K(p, x) = x Jn (px)

  Hn{F(x)} = f(p) = 
0

∞z F(x) x Jn (px) dx

where Jn (px) is the Bessel function of the first kind and of order n.
(iv) Mellin Transform.   K(p, x) = xp–1

 M{F(x)} = f(p) = 
0

∞z f(x) xp–1 dx.

Other special transforms arise when the kernel is a sine or a cosine function. These lead
to Fourier sine or cosine transforms respectively.
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2.3 FOURIER INTEGRAL THEOREM

Statement. If
(i) F(x) satisfies Dirichlet’s conditions in every interval (– c, c), however large.

(ii)
−∞

∞z |F(x)| dx converges;

then  F(x) = 
1

F t cos t x dt d
π

λ λ
−∞

∞∞ zz −( ) ( )
0

The integral on the right hand side is called Fourier integral of F(x).
Proof. We know that Fourier series of a function F(x) in (– c, c) is given by

 F(x) = 
a

a
n x

c
b

n x
cn n

n

0

1
2

+ +F
HG

I
KJ

=

∞

∑ cos sin
π π

...(1)

where, a0 = 
1
c

t dt
c

c

−z F( )

an = 1
c

t
n t
c

dt
c

c

−z F( ) cos
π

and bn = 
1
c

t
n t
c

dt
c

c

−z F( ) sin
π

Substituting the values of a0, an and bn in (1), we get

F(x) = 
1

2
1

1
c

t dt
c

n x
c

n t
c

n x
c

n t
cc

c

c

c

n
− −

=

∞z z∑+ +L
NM

O
QPF( ) cos cos sin sin

π π π π
 F(t) dt

 = 
1
2

1

1
c

t dt
c

n t x
cc

c

c

c

n
− −

=

∞z z∑+ −
F( ) cos

( )π
 F(t) dt ...(2)

If we assume that 
−∞

∞z | ( )|F x dx  converges i.e., F(x) is absolutely integrable on the x-axis,

the first term on right side of (2) approaches 0 as c → ∞ since
1

2
1

2c
t dt

c
t dt

c

c

− −∞

∞z z≤F F( ) | ( )|

From (2),    F(x) = Lim
c→ ∞

1

1
c

t
n t x

c
n

F( ) cos
( )

−∞

∞

=

∞ z∑ −π  dt

      = Lim
0Δλ →

=

∞

∑1

1
π

n

( ) ( ) cos { ( )( )}Δλ Δλ
−∞

∞z −F t n t x dt   ...(3) where
π
c

= Δλ

This resembles a Riemann sum of a definite integral and is of the form

Lim
Δλ

Δλ
→

=

∞

∑0
1

f n
n

( ) i.e.,
0

∞z f d( )λ λ

Hence as c → ∞, (3) reduces to

F(x) = 1
0π

∞

−∞

∞z z F( )t  cos λ(t – x) dt dλ ...(4)

which is known as Fourier integral of F(x). Eqn. (4) is true at a point of continuity.
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INTEGRAL TRANSFORMS 133

At a point of discontinuity, the value of the integral on the right is
1
2

 [F(x + 0) + F(x – 0)].

2.4 FOURIER SINE AND COSINE INTEGRALS

We know that
cos λ(t – x) = cos λt cos λx + sin λt sin λx

∴ Fourier integral of F(x) can be written as

F(x) = 
1

0π

∞

−∞

∞z z F( )t {cos λt cos λx + sin λt sin λx} dt dλ

= 1
0π

λcos ( )x t
∞

−∞

∞z z F  cos λt dt dλ + 
1

0π
λsin ( )x t

∞

−∞

∞z z F  sin λt dt dλ
...(1)

Case I. When F(x) is an odd function
F(t) cos λt is odd while F(t) sin λt is even. Thus the first integral in (1) vanishes and we get

 F(x) = 
2

0 0π
λ λ λ

∞ ∞z zsin x t dt dF( ) sin t

This is called Fourier sine integral.
Case II. When F(x) is an even function
F(t) cos λt is even while F(t) sin λt is odd. Thus, the second integral in (1) vanishes and

we get

   F(x) = 
2

0 0π
λ λ λ

∞ ∞z zcos ( ) cosx t t dt dF

This is called Fourier cosine integral.

2.5 COMPLEX FORM OF FOURIER INTEGRAL

Fourier integral of F(x) is

 F(x) = 
1

0π
λ λ

∞

−∞

∞z z −F( ) cos ( )t t x dt d ...(1)

Since cos λ(t – x) is an even function of λ, we have from (1),

F(x) = 
1

2π
λ λ

−∞

∞

−∞

∞z z −F( ) cos ( )t t x dt d ...(2)

Also, since sin λ(t – x) is an odd function of λ, we have

0 = 
1

2π
λ λ

−∞

∞

−∞

∞z z −F( ) sin ( )t t x dt d ...(3)

Multiplying (3) by i and adding to (2), we get

F(x) = 1
2π −∞

∞

−∞

∞z z F( )t  [cos λ(t – x) + i sin λ(t – x)] dt dλ

= 
1

2π
λλ

−∞

∞

−∞

∞ −z z F( ) . ( )t e dt di t x

   F(x) = 
1

2π
λλ λ

−∞

∞ −

−∞

∞z ze t e dt di x i tF( ) .

which is known as the complex form of Fourier integral.
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EXAMPLES

Example 1. Express the function F(x) = 1 , for|x| 1
0 , for|x| 1

<
>
UVW  as a Fourier integral. Hence

evaluate 
0

sin cos x
d

∞z λ λ
λ

λ .

Sol. Fourier integral for F(x) is

 F(x) = 
1

0π
λ λ

∞

−∞

∞z z −F( ) cos ( )t t x dt d

= 
1

0 1

1

π
λ λ

∞

−z z −cos ( )t x dt d ∵ F
otherwise

( )
,
,

t
t= − < <RST
UVW

1 1 1
0

= 
1

0 1

1

π
λ

λ
λ

∞

−
z −L
NM

O
QP

sin ( )t x
d

= 
1 1 1

0π
λ λ

λ
λ

∞z − − − −[sin ( ) sin ( )]x x
d

= 
1 1 1

0π
λ λ

λ
λ

∞z + + −L
NM

O
QP

sin ( ) sin ( )x x
d

= 
2

0π
λ λ

λ
λ

∞z sin cos x
d

∴  
0 2

2 1
0 1

∞z = =
<
>
UVW

sin cos
( )

/λ λ
λ

λ π πx
d x

, |x|
, |x|

F
for
for

At | x | = 1 i.e., x = ± 1, F(x) is discontinuous and integral has the value 
1
2 2

0
4

π π+FHG
I
KJ = .

Note. Putting x = 0, we get 
0 2

∞z =sin λ
λ

λ π
d or,

0 2

∞z =sin x
x

dx
π .

Example 2. Using Fourier sine integral, show that

0

1 cos
sin (x ) d /2, when 0 x

0, when x
∞z −F
HG

I
KJ = < <

>
RST

UVW
πλ

λ
λ λ π π

π .

Sol. Let,  F(x) = 
π π

π
/ ,

,
2 0
0

< <
>
UVW

x
x

Using Fourier sine integral, we have

F(x) = 2
0 0π

λ λ λ
∞ ∞z zsin ( ) sinx t t dt dF

 = 
2

20 0π
λ π λ λ

π∞z zLNM O
QPsin sinx t dt d

= 
0 0

∞z −F
HG

I
KJsin

cosλ λ
λ

λ
π

x
t

d  = 
0

1π πλ
λ

λ λz −F
HG

I
KJ

cos
sin ( )x d

∴
0

1 2 0
0

π πλ
λ

λ λ π π
πz −F

HG
I
KJ = = < <

>
RST

UVW
cos

sin ( ) F( ) / ,
,x d x x

x
.
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Example 3. Using Fourier integral representation, show that

(i)
0 2

xsin x
1

d
2

e
∞ −z +

=ω ω
ω

ω π
, x > 0 (ii)

0 2
xcos x

1
d

2
e

∞ −z +
=ω

ω
ω π

, x ≥ 0.

Sol. (i) Fourier sine integral is

   F(x) = 2
0 0π

λ λ λ
∞ ∞z zsin ( ) sinx t t dt dF

  e–x = 
2

0 0π
λ λ λ

∞ ∞ −z zsin sinx e t dt dt | Let F(x) = e–x

= 
2

10 2
0

π
λ

λ
λ λ λ λ

∞ − ∞

z +
− −

L
NM

O
QP

sin ( sin cos )x
e

t t d
t

= 
2

10 2π
λ λ

λ
λ

∞z +
F
HG

I
KJsin x d  = 

2
10 2π

λ λ
λ

λ
∞z +

sin x
d

⇒  
0 21 2

∞ −z +
=λ λ

λ
λ πsin x

d e x , x > 0

or,
0 21 2

∞ −z +
=ω ω

ω
ω πsin x

d e x , x > 0

(ii) Fourier cosine integral is

   F(x) = 2
0π

λ λ λ
0

∞ ∞z zcos ( ) cosx t t dt dF

  e–x = 
2

0 0π
λ λ λ

∞ ∞ −z zcos cosx e t dt dt | Let F(x) = e–x

= 
2

10 2
0

π
λ

λ
λ λ λ λ

∞ − ∞

z +
− +

L
NM

O
QP

cos ( cos sin )x
e

t t d
t

= 
2 1

10 2π
λ

λ
λ

∞z +
F
HG

I
KJcos .x d

⇒   
0 21 2

∞ −z +
=cos λ

λ
λ πx

d e x , x ≥ 0 or,
0 21 2

∞ −z +
=cos ω

ω
ω πx

d e x
, x ≥ 0.

Example 4. Using Fourier integral representation, show that

0 2
x

cos x sin x
1

d
0 , if x 0
/2 , if x 0
e , if x 0

∞

−z +
+

=
<
=
>

R
S|
T|

U
V|
W|

ω ω ω
ω

ω π
π

.

Sol. From example 3, we have

 
0 21 2

∞ −z +
=cos x

d e xω
ω

ω π
, x > 0 and

0 21 2

∞ −z +
=ω ω

ω
ω πsin x

d e x , x > 0

Adding, we get

0 21 2 2

∞ − −z +
+

= +cos sinx x
d e ex xω ω ω

ω
ω π π

, x > 0

= πe–x,   x > 0
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when x = 0, 
0 2 0 21 1

∞ ∞z z+
+

=
+

cos sinx x
d

dω ω ω
ω

ω ω
ω

 = tan−
∞F

HG
I
KJ

1

0

ω  = 
π
2

when x < 0,

  
0 2 0 21 1

∞ ∞z z+
+

= −
+

cos sin cos sinx x
d

x x
d

ω ω ω
ω

ω ω ω ω
ω

ω  = 
π π
2 2

e ex x− −−  = 0

Hence,

 
0 21

0 0
2 0

0

∞

−z +
+

=
<
=
>

R
S|
T|

U
V|
W|

cos sinx x
d

x
/ x
e xx

ω ω ω
ω

ω π
π

, if
, if

, if
.

Example 5. Find the complex form of the Fourier integral representation of

f(x) = e x 0 and k 0
0, otherwise

kx− > >RST
,

Sol. We know that the complex form of Fourier integral representation of f(x) is given by

 f(x) = 
1

2π
λλ λ

− ∞

∞ −

− ∞

∞z ze f t e dt di x i t( ) ...(1)

Here,  f(t) = e x kkt− > >RST
, 0 and 0

0, otherwise

∴ From (1),  f(x) = 1
2 0π

λ λ

− ∞

∞ − ∞ −z zLNM O
QPe e e dti x kt i t  dλ

   = 
1
2 0π

λ λ

− ∞

∞ − ∞ − −z zLNM O
QPe e dti x k i t( )  dλ

= 
1

2
0

π λ
λ

λ

− ∞

∞ −
− − ∞

z − −
L
NM

O
QP

e
e

k i
i x

k i t( )

( )
 dλ = 

1
2π λ

λ
λ

− ∞

∞ −z −
e
k i

d
i x

.

ASSIGNMENT

 1. Using Fourier integral representation, show that

 e–ax = 2
0 2 2

a x

a
d

π
λ

λ
λ

∞z +
cos ; a > 0, x ≥ 0.

2. Find Fourier sine integral for F(x) = e–αx.
3. Using Fourier integral representation, show that

0 2 2 2 2 2 22

∞ − −z + +
= −

−
λ λ

λ α λ β
λ π

β α

α βsin

( )( )

( )

( )

x
d

e ex x

.

Hence find the Fourier sine integral representation of e–x – e–2x.

4. If F(x) = 
0 0

0
0

,
,
,

x
x x

x

<
≤ ≤

>

R
S|
T|

U
V|
W|

π
π

, then show that

F(x) = 
1

2 0πλ

∞z  [λπ sin λ(π – x) + cos λ(π – x) – cos λx] dλ
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5. Using Fourier integral formula, prove that

(i)
0

2

4
2

4 2

∞
−z +

+

F
HG

I
KJ =λ

λ
λ λ π

cos x d e x  cos x, if x > 0

(ii)
0

3

4 4 2

∞
−z +

F
HG

I
KJ =λ

λ
λ λ π

sin x d e x  cos x, if x > 0.

6. Using Fourier integral method, prove that

(i)
0 21 2

0

0

∞z FHG I
KJ = ≤ ≤

>

R
S|
T|

U
V|
W|

sin
–

sin sin ,

,

πλ
λ

λ λ
π π

π
x d x x

x

if

if

(ii)
0 2

2
1

2 2

0
2

∞z
F
HG
I
KJ

−
=

<

>

R
S|

T|

U
V|

W|
cos cos cos , | |

, | |

πλ λ

λ
λ

π π

π

x
d

x x

x

if

if
.

7. Find Fourier sine integral representation of

(i)  F(x) = 
0 0 1

1 2
0 2

,
,
,

< <
< <

>

R
S|
T|

U
V|
W|

x
k x

x
 , where k is a constant. (ii)  F(x) = x2, 0 ≤ x ≤ 1.

8. Find Fourier cosine integral representation of

(i) F(x) = 
sin ,x x

x
0 ≤ ≤RST

UVW
π

π0, > (ii) F(x) = x x, 0 2≤ ≤RST
UVW0, otherwise

9. Find the complex form of the Fourier integral representation of

F(x) = 

0 1
1 0

0 0

,
,
,

− ∞ < < −
− < <

>

R
S|
T|

x
x x

x

10. If Fourier cosine integral of a function F(x) can be represented as

F(x) = 
0

∞z A( ) cosλ λ λx d where A(λ) = 
2

0π
λ

∞z F( ) cost t dt

Prove that  F(ax) = 
1

0a a

∞z FHG IKJA
λ

 cos xλ dλ. (a > 0)

Answers

2.
2

0 2 2π
λ λ
α λ

λ
∞z +

sin x
d 3.

6

1 4)0 2 2π
λ λ

λ λ
λ

∞z + +
sin

( )(

x
d

7. (i) F(x) = 
2

0

k
π

∞z  
cos cosλ λ

λ
−F

HG
I
KJ

2
 sin λx dλ

(ii) F(x) = 
2

0π

∞z  
−

+F
HG

I
KJ + −

L
NM

O
QP

1 2 2 2
3 2 3λ λ

λ
λ

λ λ
cos

sin
 sin λx dλ

8. (i) F(x) = – 
2 1

10 2π
λπ

λ

∞z +
−

F
HG

I
KJ

cos
 cos λx dλ

(ii) F(x) = 
2

0π

∞z  2 2 2 1
2

sin cosλ
λ

λ
λ

+ −F
HG

I
KJ  cos λx dλ

9. F(x) = 
1

2π − ∞

∞z  e–iλx 
1 1 1
2 2λ λ λ

λ+ −FHG
I
KJ

RST
UVW

−
i

e i
 dλ.
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2.6 COMPLEX FOURIER TRANSFORM

If a function F(x) defined on the interval (– ∞, ∞) is piecewise continuous in each finite partial
interval and absolutely integrable in (– ∞, ∞), then

f(p) = F{F(x)} = 
−∞

∞z F(x) . eipx dx

is defined as the Fourier transform of F(x) and is denoted by f(p). The function F(x) is called
the inverse Fourier transform of f(p).

The inverse formula for Fourier transform is given by

 F–1 {f(p)} = F(x) = 
1

2π −∞

∞z  f(p) . e–ipx dp.

Note. Some authors write the formulae as

  f(p) = 
1

2π −∞

∞z eipx . F(x) dx and F(x) = 
1

2π −∞

∞z e–ipx . f(p) dp.

2.7 FOURIER SINE TRANSFORM

The infinite Fourier sine transform of the function F(x), 0 < x < ∞ is denoted by Fs {F(x)} or fs(p)
and defined by

 fs(p) = 
0

∞z F(x) . sin px dx

and the function F(x) is called the inverse Fourier sine transform of Fs
 {F(x)}.

The inverse formula is given by

F(x) = Fs
–1 {fs (p)} = 

2
0π

∞z fs (p) . sin px dp.

2.8 FOURIER COSINE TRANSFORM

The infinite Fourier cosine transform of the function F(x). 0 < x < ∞ is denoted by Fc{F(x)} or
fc(p) and defined by

   fc(p) = Fc{F(x)} = 
0

∞z F(x) . cos px dx

and the function F(x) is called inverse Fourier cosine transform of fc(p).
The inverse formula for infinite Fourier cosine transform is given by

 F(x) = Fc
–1 [fc(p)] = 

2
0π

∞z fc (p) . cos px dp.

2.9 SOME IMPORTANT RESULTS

1.
0 2

∞z =sin mx
x

dx
π

, (m > 0) 2.
0

2

2

∞ −z =e dxx π

3.
0

1
2 2

∞ −

−z +
+

=e e
e e

dx
aax ax

x xπ π sec , (– π < a < π) 4.
0

1
2 2

∞ −

−z −
−

=e e
e e

dx
aax ax

x xπ π tan , (– π < a < π)

5.
−∞

∞ −z − +
=sin

( )
rx

x b a
dx

a
e ar

2 2
π  sin br, (r > 0).
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2.10 PROPERTIES OF FOURIER TRANSFORMS

2.10.1. Linear Property
If f1(p) and f2(p) are the Fourier transforms of F1(x) and F2(x) respectively then

F [c1F1(x) + c2F2(x)] = c1f1(p) + c2f2(p)

where c1 and c2 are constants.
Proof. We have,

F [c1F1(x) + c2F2(x)] = 
−∞

∞z +[ ( ) ( )] .c x c x e dxipx
1 1 2 2F F

= c1 −∞

∞

−∞

∞z z+F F1 2 2( ) . ( )x e dx c xipx  eipx dx

= c1 F [F1(x)] + c2F[F2(x)] = c1 f1(p) + c2 f2(p).

2.10.2. Change of Scale Property (Similarity Theorem)
If f(p) is the complex Fourier transform of F(x) then

 F [F(ax)] = 
1
a

f
p
a
F
HG
I
KJ   , a ≠ 0.

Proof.  F[F(ax)] = 
−∞

∞z e ax dxipx . ( )F
Put ax t

dx
dt
a

=

⇒ =

= 
−∞

∞z e t
dt
a

ip
t
a F( )  = 

1
a

e
i

p
a

t

−∞

∞
F
HG
I
KJz  F(t) dt = 

1
a

f
p
a
F
HG
I
KJ .

From this property, it is evident that if the width of a function is decreased while its
height is kept constant then its Fourier transform becomes wider and shorter. If its width is
increased, its transform becomes narrower and taller.
Remark. If fs(p) and fc(p) are Fourier sine and cosine transforms of F(x) respectively then

  Fs [F(ax)] = 
1
a

f
p
as
F
HG
I
KJ and Fc [F(ax)] = 

1
a

f
p
ac
F
HG
I
KJ .

2.10.3. Shifting Property
If f (p) is the complex Fourier transform of F(x) then

F [F(x – a)] = eiap f(p)

Proof.  F [F(x – a)] = 
−∞

∞z −F( ) .x a e dxipx Put x a u
dx du
− =

∴ =

 = 
−∞

∞ +z F( ) ( )u e duip u a  = eiap 
−∞

∞z F( )u e duipu  = eiap f(p).

2.10.4. Modulation Theorem
If f(p) is the complex Fourier transform of F(x) then

  F [F(x) cos ax] = 
1
2

 [f(p + a) + f(p – a)]
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Proof. F [F(x) cos ax] = 
−∞

∞z e xipx . ( )F  cos ax dx

= 
−∞

∞ −z +F
HG

I
KJe x

e e
dxipx

iax iax

. ( ) .F
2

= 
1
2 −∞

∞ +

−∞

∞ −z z+L
NM

O
QPe x dx e x dxi p a x i p a x( ) ( ). ( ) . ( )F F

= 
1
2

 [f(p + a) + f(p – a)].

This result has application in radio and television where the harmonic carrier wave is
modulated by an envelope.
Note. If fs(p) and fc(p) are Fourier sine and cosine transforms of F(x) respectively then

(i) Fs [F(x) cos ax] = 
1
2

 [fs(p + a) + fs(p – a)]

(ii) Fs [F(x) sin ax] = 
1
2

 [fc(p – a) – fc(p + a)]

(iii) Fc [F(x) sin ax] = 
1
2

 [fs(p + a) – fs(p – a)].

2.10.5. Convolution Theorem [M.T.U. 2014, U.P.T.U. 2010]
The convolution of two functions F(x) and G(x) over the interval (– ∞, ∞) is defined as

  F ∗ G = 
−∞

∞z F( )u  . G(x – u) du = H(x).

Statement. The Fourier transform of the convolution of F(x) and G(x) is the product of their
Fourier transform i.e.,

 F{F(x) ∗ G(x)} = F{F(x)} . F{G(x)}

Proof. We have,

 F{F(x) ∗ G(x)} = F 
−∞

∞z −RST
UVWF G( ) . ( )u x u du

= 
−∞

∞

−∞

∞z z −RST
UVWF G( ) . ( )u x u du e dxipx

= 
−∞

∞

−∞

∞z z −RST
UVWF G( ) ( ) .u x u e dx duipx on changing the order

of integration

= 
−∞

∞

−∞

∞ −z z − −RST
UVWF G( ) . . ( ) ( )( )u e x u d x u e duip x u ipu

= 
−∞

∞

−∞

∞z zRST UVWe u e t dtipu iptF G( ) ( )  du | where x – u = t (say)

= 
−∞

∞z e u du tipu F F( ) . {G( )}

= 
−∞

∞z e x dx xipx . ( ) . {G( )}F F  = F{F(x)} . F{G(x)}.
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2.10.6. If Fs [F(x)] = fs(p) and Fc [F(x)] = fc(p), then

(i) Fs [x F(x)] = – 
d
dp

 [fc(p)] (ii) Fc [x F(x)] = 
d
dp

 [fs(p)].

Proof. (i) fc(p) = 
0

∞z F( ) cosx px dx

 
d
dp  {fc(p)} = – 

0

∞z F( ) . sinx x px dx  = – Fs [x F(x)]

⇒  Fs [x F(x)] = – 
d
dp

 [fc(p)]

(ii) fs(p) = 
0

∞z F( ) . sinx px dx

  
d
dp

{fs(p)} = 
0

∞z F( ) . cosx x px dx  = Fc [x F(x)]

⇒  Fc [x F(x)] = 
d
dp  [fs(p)]

EXAMPLES

Example 1. Find the Fourier transform of following functions:

(i) F(x) = 
e , for a x b

0, otherwise

i xω < < U
V|
W|

(ii) F(x) = 
1
2

, |x|

0 , x
ε

ε

ε

≤

>

U
V|
W|

(iii) F(x) = e–|x| (iv) F(x) = e–a|x|, a > 0

(v) F(t) = 
t, for|t| a
0, for|t| a

<
>
UVW . (U.P.T.U. 2008, 2009)

Sol. (i) f(p) = 
−∞

∞z z=F( ) . .x e dx e e dxipx

a

b
i x ipxω

= 
e
i p

e e
i p

i p x

a

b i p b i p a( ) ( ) ( )

( ) ( )

ω ω ω

ω ω

+ + +

+
L
NM

O
QP

= −
+ .

(ii) f(p) = 
−∞

∞z F( ) .x e dxipx

 = 
− −z z=

∈
+

ε

ε

ε

ε

ε
1
2

1
2

e dx px i px dxipx (cos sin )

 = 
1
2

2
1

0 0ε ε
ε

ε

ε ε

. cos
sin sinz =
F
HG

I
KJ =px dx

px
p

p
p

.

(iii)  f(p) = 
−∞

∞

−∞

∞z z=F( )x e dxipx e–|x| eipx dx

 = 
−∞

∞z z+0

0
e e dxx ipx e–x eipx dx
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= 
e

ip
e

ip

ip x ip x( ) ( )

( )

1 0 1

0
1 1

+

−∞

− − ∞

+
L
NM

O
QP

+
− −
L
NM

O
QP  = 

1
1

1
1+

+
−ip ip

 = 
2

1 2+ p
.

(iv) We have just proved that

F{e–|x|} = 2
1 2+ p

using change of scale property, we get

 F{e–a|x|} = 
1
a

 
L

N

MMM

2

1
2

+ FHG
I
KJ

p
a

O

Q

PPP
 = 

2
2 2

a
p a+ .

(v)    f(p) = 
−∞

∞z  F(t) . eipt dt = 
−z aa  t eipt dt

= 
−z aa  t (cos pt + i sin pt) dt = 2i 

0

az  t sin pt dt

= 2i t
pt

p
pt

p
dt

a
a

.
cos

.
cos−

F
HG

I
KJ

RST
UVW

− −
F
HG

I
KJ

L
N
MM

O
Q
PPz

0
0

1

= 2i − +
F
HG

I
KJ

L
N
MM

O
Q
PP

a
p

ap
p

pt
p

a

cos
sin1

0

= 2i − +
L
NM

O
QP

=a
p

ap
p

ap
i

p
cos sin

1 2
2 2  (sin ap – ap cos ap).

Example 2. Find the Fourier transform of the function

(i) F(x) = xe–a|x|, a > 0 (ii) F(x) = 
sin ax

x
, a > 0

(iii) F(x) = 

1
x
a

, for a x 0

1
x
a

, for 0 x a

0, otherwise

+ − < <

− < <

R
S
||

T
||

U
V
||

W
||

.

Sol. (i) f(p) = 
−∞

∞z  x e–a| x | eipx dx

= 
−∞z0 x eax eipx dx + 

0

∞z  x e–ax eipx dx = 
−∞z0 x e(a+ip)x dx + 

0

∞z x e–(a–ip)x dx

= 
x e

a ip
e
a ip

dx x
e

a ip
e

a ip

a ip x a ip x a ip x a ip x( ) ( ) ( ) ( )

. .
( )

.
( )

+

−∞
−∞

+ − − ∞
∞ − −

+
RST|

UVW|
−

+
+

− −
RST|

UVW|
−

− −z z
0

0

0
0

1 1  dx

= – 
e
a ip

e
a ip a ip a ip

iap
a p

a ip x a ip x( ) ( )

( ) ( ) ( ) ( ) ( )

+

−∞

− − ∞

+

L
NM

O
QP

+
− −

L
NM

O
QP

= −
+

+
−

=
+2

0

2
0

2 2 2 2 2
1 1 4

(ii) f(p) = 
−∞

∞z sin ax
x

 eipx dx = 
−∞

∞z +sin
(cos sin )

ax
x

px i px dx

 = 2 
0

∞z sin
cos

ax
x

px dx  = 
0

∞z + +RST
UVW

sin ( ) sin ( – )a p x
x

a p x
x

dx ...(1)
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Case I. If |p| < a then a + p and a – p both are positive and then (1) gives

  f(p) = 
π π
2 2

+  = π.

Case II. If |p| > a then for positive values of p, (a + p) is positive whereas (a – p) is
negative and for negative values of p, (a + p) is negative while (a – p) is positive. Consequently,
we get

  f(p) = 
π π
2 2

− or – 
π π
2 2

+  = 0

Hence,   f(p) = 
π, | |
, | |

p a
p a

<
>

RST
UVW0

(iii)  f(p) = 
−∞

∞z F(x) . eipx dx = 
−z +FHG

I
KJa

x
a

0
1  eipx dx + 

0
1

a x
az −FHG
I
KJ  eipx dx

= 
−z aa eipx dx + 

1 0

a a−z x eipx dx – 
1

0a

az x eipx dx ...(1)

= 
e
ip a

x
e
ip

e
ip

dx
ipx

a

a ipx

a
a

ipxF
HG
I
KJ +

F
HG

I
KJ −

L
N
MM

O
Q
PP

− −
−z1

1
0

0
. .  – 

1
1

0
0a

x
e
ip

e
ip

dx
ipx a

a ipx

. .
F
HG

I
KJ −

L
N
MM

O
Q
PPz

= 
e e

ip a
a

e
ip ip

e
ip a

a
e
ip ip

e
ip

ipa ipa ipa ipx

a

ipa ipx a
−F

HG
I
KJ + −

F
HG
I
KJ

L
N
MM

O
Q
PP − −

F
HG
I
KJ

L
N
MM

O
Q
PP

− −

−

1 1 1 1
0

0

.

= 
1 1

1
1

12 2a p
e

p
eipa ipa( ) ( )− − −

L
NM

O
QP

−

= 
2 1

2 2ap ap
−  [e–ipa + eipa] = 

2
2ap

 (1 – cos ap) ; p ≠ 0

when p = 0,

f(p) = 
− −z z z+ −

a

a

a

a
dx

a
x dx

a
x dx1

1 10

0
. | From (1)

= 2a + 
1

2
1

2

2 0 2

0
a

x
a

x

a

aF
HG
I
KJ −

F
HG
I
KJ−

 = 2a – 
a a
2 2

−  = 2a – a = a

Hence, f(p) = 
2

1 0

0

2ap
ap p

a p

( cos ) ;

;

− ≠

=

R
S|
T|

U
V|
W|

.

Example 3. Find the complex Fourier transform of dirac delta function δ(x – a).

Sol.  F{δ(x – a)} = 
−∞

∞z δ(x – a) . eipx dx

 = Lim
h a

a h

h→

+z0 1
 eipx dx = Lim

h

ipx

a

a h

h
e
ip→

+F
HG
I
KJ0

1

= Lim
h

ipa
iph

e
e

iph→

−F
HG

I
KJ0

1
 = eipa ∵ Lt

iph

iphe
iph→

−F
HG

I
KJ =

0

1
1

Remark. For the function δ(t), F[δ(t)] = 1.
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Example 4. Find the Fourier transform of e x2− . Hence find the Fourier transform of

(i) F(x) = e ax2− , (a > 0) (ii) F(x) = e x /22−

(iii) F(x) = e 4(x 3)2− − (iv) F(x) = e x2−  cos 2x.

Sol.  f(p) = 
−∞

∞ −z e e dxx ipx2

.  = 
−∞

∞ − −z e dxx ipx( )2

= 
−∞

∞ − −FHG
I
KJ +

R
S|
T|

U
V|
W|z e dx

x
ip p
2 4

2 2

= e e dxp
x

ip
−

−∞

∞ − −FHG
I
KJz( / )2

2

4 2 Put x
ip

z

dx dz

− =

⇒ =
2

= e e dzp z−

−∞

∞ −z( / )2 24

⇒  F(e x− 2
) = 2

2 2 24

0

4e e dz ep z p− ∞ − −z =( / ) ( / )π ...(1)

(i) By change of scale property,

 F( ) ( / )e
a

e
a

eax
p
a p a−

− FHG
I
KJ −= =

2

2

21
1
4 4π π

(ii) Comparing with the result of deduction (i), we get a = 
1
2

Hence,   F( ) = 2e ex p− −2 22 2/ ( / )π
(iii) We have, from (1),

 F( ) =e ex p− −2 2 4π ( / )

∴  F( ) F } =e e ex x
p

−
− FHG
I
KJ=4 2

1
4 22 2

2

2
{ –( ) π

 = π
2

2 16e p−( / ) | By change of scale property

Hence,   F { }( –( / )e e ex ip p− − =4 3) 3 162 2

2
π

 = 
π

2
3 162

e ip p[ ( / )]− | By shifting property

(iv) We have, from (1),

F( ) ( / )e ex p− −=
2 2 4π

∴ F(e x− 2
 cos 2x) = 

π
2

 
L
NM e e

p p− + − −
+

1
4

2
1
4

22 2( ) ( ) O
QP . | By Modulation theorem

Example 5. Find the inverse Fourier transform of f(p) = e–|p|y.

Sol.   F(x) = 
1

2π −∞

∞ − −z e e dpp y ipx| | .

= 
1

2

0

0π −∞

− ∞ − −z z+L
NM

O
QPe e dp e e dppy ipx py ipx

= 
1

2

0

0
π

e
y ix

e
y ix

p y ix y ix p( ) ( )

( )

−

−∞

− + ∞

−
RST|

UVW|
+

− +
RST|

UVW|
L
N
MM

O
Q
PP

= 
1

2
1 1

π y ix y ix−
+

+
L
NM

O
QP  = 

y
y xπ( )2 2+

.
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Example 6. Find the Fourier transform of

  F(x) = 
1, |x| a
0, |x| a

<
>
UVW . (U.P.T.U. 2014, 2010, 2008)

Hence evaluate

(i)
−∞

∞z sin ap cos px
p

dp (ii)
0

sin p
p

dp
∞z .

Sol. f(p) = 
−∞

∞z F( ) .x e dxipx  = 
−z z=

a

a
ipx

a
e dx px dx1 2

0
. cos

= 
2 sin ap

p
, p ≠ 0

For p = 0, we find f(p) = 2a
Taking Inverse Fourier transform of f(p), we get

  F(x) = 
1

2π −∞

∞ −z f p e dpipx( ) .  = 
1

2
2

π −∞

∞ −z sin ap
p

e dpipx

= 
1
π −∞

∞z −sin (cos sin )ap px i px
p

dp

⇒  
1
0

1, | |
, | |

sin cosx a
x a

ap px
p

dp<
>

RST
UVW =

−∞

∞zπ | Second integral vanishes

⇒  
−∞

∞z = <
>

RST
UVW

sin cos , | |
, | |

ap px
p

dp x a
x a

π
0 ...(i)

Hence the first result.

Again, from (i), 2 
0 0
∞z = <

>
RST

UVW
sin cos , | |

, | |
ap px

p
dp x a

x a
π

⇒  
0

2
0

∞z = <
>

RST
UVW

sin cos / , | |
, | |

ap px
p

dp x a
x a

π

Putting x = 0 and a = 1, we get

0 2

∞z =sin p
p

dp
π

. ...(ii)

Example 7. Find the Fourier transform of F(x) = 1 x , if |x| 1
0, if |x| 1

2− <
>

RST
and use it to evaluate 

x cos x sin x
x

cos
x
2

dx30

−F
HG

I
KJ

∞z . (U.P.T.U. 2015)

Sol. Fourier transform of F(x) is given by

f(p) = 
–∞

∞z eipx . F(x) dx = 
−z 11 eipx (1 – x2) dx

= 
−z 11 cos px (1 – x2) dx + i 

−z 11 sin px (1 – x2) dx

= 2 1 2

0

1
cos ( )px x dx−z | Using property of Definite Integral
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= 2 1 2
42

0

1

0

1

0

1
( )

sin
( ) .

sin
sin−

RST
UVW − −

L
N
MM

O
Q
PP =z zx

px
p

x
px

p
dx

p
x px dx

= 
4

1
4 1

0

1

0

1

0

1

p
x

px
p

px
p

dx
p

p
p p

px
p

−F
HG

I
KJ

RST
UVW

− −F
HG

I
KJ

L
N
MM

O
Q
PP =

− +
F
HG

I
KJ

L
N
MM

O
Q
PPzcos

.
cos cos sin

= 
4

3p
p p p(sin cos )−

By inversion formula for Fourier transform

F( ) (sin cos ) .x
p

p p p e dpipx= − −

−∞

∞z12 4
3π

= 
2

3π
(cos sin ) .

sin cos
px i px

p p p
p

dp− −F
HG

I
KJ−∞

∞z
= 

4
30π

sin cos
. cos

p p p
p

px dp
−F

HG
I
KJ

∞z | Using prop. of definite integral

Put x = 
1
2

,   F
1
2

4
230

F
HG
I
KJ = −∞zπ (sin cos )

. cos
p p p

p
p

dp

⇒  
3
4

4
230

= − −F
HG

I
KJ

∞zπ p p p
p

p
dp

cos sin
. cos ...(2)

where F
1
2
F
HG
I
KJ = − FHG

I
KJ = − =1

1
2

1
1
4

3
4

2

From eqn. (2), ( cos sin )
. cos

p p p
p

p
dp

− = −
∞z 30 2

3
16

π

Replacing p by x, we get

( cos sin )
cos

x x x
x

x
dx

− = −
∞z 30 2

3
16

π
.

Example 8. Find the Fourier transform of the function
shown in the adjoining figure.

Sol. Here, F(t) = 
2 1 1
1 2 1
1 1 2

,
,
,

for
for
for

− < <
− < < −

< <

R
S|
T|

U
V|
W|

t
t

t

Fourier transform is given by,

 f(p) = 
−

−

−z z z+ +
2

1

1

1

1

2
1 2 1. . .e dt e dt e dtipt ipt ipt

= 
e
ip

e
ip

e
ip

ipt ipt iptF
HG
I
KJ +

F
HG
I
KJ +
F
HG
I
KJ−

−

−2

1

1

1

1

2

2

= 
e e

ip
e e

ip
e e

ip

ip ip ip ip ip ip− − −−F
HG

I
KJ + −F
HG

I
KJ + −F
HG

I
KJ

2 2

2

– 2 – 1 0 1

1

2

2

t

F(t)
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= 
e e

ip
e e

ip

ip ip ip ip−F
HG

I
KJ + −F
HG

I
KJ

− −2 2

= 1
2

1
2 2

2
p

p
p

p
p

( sin ) sin+ =  sin p (1 + 2 cos p).

Example 9. Find the Fourier sine transform of e–| x |. Hence evaluate 
0

∞z x sin mx
1 x2+

 dx.

Sol. In the interval (0, ∞), x is positive so that e–| x | = e–x.
Fourier sine transform of f(x) = e–x is given by

 Fs{f(x)} = 
0

∞z f(x) sin px dx = 
0

∞z e–x sin px dx

  = 
e

p
px p px

x− ∞

+
− −

L
NM

O
QP1 2

0

( sin cos )  = 
p
p1 2+

Using inversion formula for Fourier sine transform, we get

   f(x) = 
2
π

 
0

∞z Fs{f(x)} sin px dp or e–x = 
2
π 0

∞z p
p1 2+

sin px dp

Replacing x by m, we have e–m = 
2
π 0

∞z p
p1 2+

 sin mp dp = 
2
π 0

∞z x mx
x

sin
1 2+

 dx

Hence,  
0

∞z x mx
x

sin
1 2+

 dx = 
π
2

 e–m.

Example 10. Find Fourier sine transform of  
e

x

ax−
, a > 0. Hence find Fourier sine

transform of 
1
x

 . (G.B.T.U. 2011; U.P.T.U. 2008, 2015)

Sol. fs (p) = 
0

∞z  F(x) sin px dx = 
0

∞z e

x

ax−
 . sin px dx = I (say) ...(1)

∴
d
dp

I
 = 

d
dp  

e
x

px dx
ax−∞zFHG I

KJ. sin
0

| Differentiating (1) w.r.t. p

= 
0

∞z  
e

x

ax−
 

∂
∂p  (sin px) dx = 

0

∞z  
e

x

ax−
 . x cos px dx = 

0

∞z  e–ax cos px dx

 = e
a p

a px p px
ax− ∞

+
− +

L
NM

O
QP2 2

0

( cos sin )  = 
a

a p2 2+
Integration w.r.t. p yields,

  I = tan–1 
p
a
F
HG
I
KJ  + c ...(2)

Initially when p = 0, I = 0 ∴ c = 0 | From (2)

∴ From (2),  I = tan–1 
p
a
F
HG
I
KJ

∴
0

∞z  
e

x

ax−
 . sin px dx = tan–1 

p
a
F
HG
I
KJ

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.LN
http://www.LN
http://www.cgaspirants.com


148 A TEXTBOOK OF ENGINEERING MATHEMATICS

Take limit as a → 0

0

∞z  
1
x

 sin px dx = 
π
2

Example 11. Find Fourier cosine transform of the following functions:

(i) F(x) = 

x 0 x
1
2

1 x
1
2

x 1

0 x 1

,

,

,

< <

− < <

>

R

S
|||

T
|||

(U.P.T.U. 2009)

(ii) F(x) = 
cos x 0 x a

0 x a

,

,

< <

>

R
S|
T|

(iii) F(x) = 
e e
e e

ax ax

x x
+
+

−

−π π  or 
cosh ax
cosh xπ

, – π < a < π

(iv) F(x) = e–2x + 4e–3x (v) F(x) = sin 
x
2

2

.

Sol. (i) fc(p) = 
0

∞z F(x) cos px dx = 
0

1/2z  x cos px dx + 
1/2

1z (1 – x) cos px dx

 = 
x px

p
sinF
HG

I
KJ 0

1/2

 – 
0

1/2z sin px
p

 dx + ( )
sin

1
1/2

1

−
RST

UVWx
px

p
 – 

1/2

1z (–1) 
sin px

p
 dx

 = 
1

2p
 sin 

p
2

 + 
cos px

p2
0

1/2F
HG

I
KJ  – 

1
2p

 sin 
p
2

 – 
1
2p

 cos px
F
HG

I
KJ 1/2

1

 = 
1
2p

 cos
p

p2
1

1
2−F

HG
I
KJ −  cos cosp

p−F
HG

I
KJ2

 = 
1
2p

 2
2

1cos cos
p

p− −F
HG

I
KJ

(ii) fc(p) = 
0

∞z  F(x) cos px dx

 = 
0

az  cos x cos px dx = 
1
2 0

az [cos (1 + p) x + cos (1 – p)x] dx

 = 
1
2

sin ( ) sin ( )1
1

1
1 0

+
+

+ −
−

L
NM

O
QP

p x
p

p x
p

a

 = 
1
2

sin ( ) sin ( )1
1

1
1

+
+

+ −
−

L
NM

O
QP

p a
p

p a
p

(iii) fc(p) = 
0

∞z  
e e
e e

ax ax

x x
+
+

F
HG

I
KJ

−

−π π  cos px dx = 
0

∞z e e
e e

ax ax

x x
+
+

F
HG

I
KJ

−

−π π  
e eipx ipx+F
HG

I
KJ

−

2  dx

 = 
1
2

 
e e

e e
dx

e e
e e

dx
a ip x a ip x

x x

a ip x a ip x

x x

( ) ( ) ( ) ( )+ − +

−

∞ − − −

−

∞+
+

+ +
+

L
NM

O
QPz zπ π π π0 0

 = 
1
2

 
1
2 2

1
2 2

sec sec
a ip a ip+F
HG
I
KJ + −F

HG
I
KJ

L
NM

O
QP  = 

1
4

1

2

1

2
cos cos

a ip a ip+F
HG
I
KJ

+
−F
HG
I
KJ

L

N

MMMM

O

Q

PPPP
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 = 
1
4

 . 
2

2 2

2 2

cos cos

cos cos

a ip

a ip a ip+F
HG
I
KJ

−F
HG
I
KJ

 = 
cos cosh

cos cosh

a p

a p
2 2

+
∵ cos coship p=

(iv)  fc(p) = 
0

∞z  (e–2x + 4e–3x) cos px dx

 = 
0

∞z  e–2x cos px dx + 4 
0

∞z e–3x cos px dx = 
2

42p +
 + 

12
92p +

(v)  fc (p) = 
0

∞z sin 
x2

2
 cos px dx = 

1
2 0

∞z sin sin
x

px
x

px
2 2

2 2
+

F
HG

I
KJ + −
F
HG

I
KJ

R
S|
T|

U
V|
W|

 dx

 = 
1
2 0

∞z sin x
px

2

2
+

F
HG

I
KJ  dx – 

1
2 0

–∞z sin x
px

2

2
+

F
HG

I
KJ  dx = 

1
2 − ∞

∞z  sin 
x

px
2

2
+

F
HG

I
KJ  dx

 = Im. part of 
1
2 − ∞

∞z e
i

x
px

2

2
+

F
HG

I
KJ  dx = Im. part of 

1
2 − ∞

∞z  e
i x px2

2 2( )+  dx

 = Im. part of 
1
2 − ∞

∞z e
i x p p2

2 2{( ) }+ − dx = Im. part of 
1
2

 e ip− 2 2/
− ∞

∞z e
x p

i
− +( )2

2  dx

 = Im. part of 
1
2

 e ip−( / )2 2  
π
1
2i

 = Im. part of 
π
2

 cos sin
p

i
p2 2

2 2
−

F
HG

I
KJ cos sin

π π
4 4

+F
HG

I
KJi

 = 
π
2

 cos sin
p p2 2

2 2
−

F
HG

I
KJ  . 

1

2
 = 

π
2

 cos sin
p p2 2

2 2
−

F
HG

I
KJ .

Example 12. Find Fourier cosine transform of 
1

1 x2+
 and hence find Fourier sine

transform of 
x

1 x2+
. (M.T.U. 2014)

Sol.   fc(p) = 
0

∞z 1
1 2+ x

 cos px dx = I (say) ...(1)

∴  
d
dp

I
 = 

0

∞z −
+

x px
x

sin
1 2  dx = – 

0

∞z  
( ) sin

( )
1 1

1

2

2
+ −

+
x px
x x

 dx

 = – 
0

∞z  
sin px

x
 dx + 

0

∞z  
sin
( )

px
x x1 2+

 dx

 
d
dp

I
 = – 

π
2

 + 
0

∞z  
sin
( )

px
x x1 2+

 dx ...(2)
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Again,    
d
dp

2

2
I

 = 
0 2 0 21 1

∞ ∞z z+
=

+
x px
x x

dx
px
x

dx
cos
( )

cos
 = I | From (1)

⇒  
d
dp

2

2
I

 – I = 0 ...(3)

Solution of (3) is,  I = c1 e
p + c2 e

–p ...(4)

∴  
d
dp

I
 = c1 e

p – c2 e
–p ...(5) | From (4)

When p = 0,  I = 
0

∞z 1
1 2+ x

 dx = 
π
2

| From (1)

and
d
dp

I
 = – 

π
2

| From (2)

Applying to (4) and (5), we get
 c1 + c2 = π/2 and c1 – c2 = – π/2

so that,   c1 = 0, c2 = π/2

∴ From (4),  I = 
π
2

 e–p

⇒  
0

∞z  
cos px

x1 2+
 dx = 

π
2

 e–p

Differentiating w.r.t. p, we get

0

∞z  
−

+
x px

x
sin

1 2  dx = – 
π
2

 e–p ⇒
0

∞z  
x px

x
sin

1 2+
 dx = 

π
2

 e–p.

Example 13. Find the Fourier cosine transform of e x2− .

Sol. Fourier cosine transform of e x2− is given by

 Fc {e x2− } = 
0

∞z e x2−  cos px dx = I (say) ...(1)

Differentiating w.r.t. p, we have

    
d
dp

I
 = – 

0

∞z xe x− 2

sin px dx = 
1
2 0

∞z (sin px) (– 2x e x2− ) dx

= 
1
2

 sin cospx e p px e dxx x−
∞

−∞
−L

NM
O
QPz2 2

0 0
{ } (Integrating by parts)

= – 
p
2 0

∞z e x− 2

 cos px dx = – 
p
2

 I

d
dp

I
 = – 

p
2

 dp

Integrating, we have  log I = – 
p2

4
 + log A or I = A e

p−
2

4 ...(2)

Now when p = 0, from (1), I = 
0

∞z e x− 2

 dx = 
π

2

∴ From (2),   
π

2
 = A
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Hence, I = Fc {e x− 2
} = 

π
2

 e
p−

2

4 .

Example 14. If  f (p)
1
2

tan
2

p
c

1
2=
F
HG
I
KJ

− , then find F(x). (M.T.U. 2014)

Sol.   tan
2

tan
2

( 1) 1
1

2
1

2
− −F
HG
I
KJ =

− +
L
NM

O
QPp p

=
−
F
HG
I
KJ −

+
F
HG
I
KJ

− −tan
1

1
tan

1
1

1 1

p p

  F( ) tan cosx
p

px dp=
F
HG
I
KJ

∞ −z2 1
2

2
0

1
2π

 =
−
F
HG
I
KJ −

+
F
HG
I
KJ

RST
UVW

− −∞z1 1
1

1
1

1 1

0π
tan tan cos

p p
px dp

 =
−
F
HG
I
KJ −

L
NM

−∞z1 1
1

1

0π
tan cos

p
px dp tan cos−∞

+
F
HG
I
KJ

O
QPz 1

0

1
1p

px dp

 = I1 + I2 (say) ...(1)

where I1
1

0

1 1
1

=
−
F
HG
I
KJ

RST
UVW

−
L
N
MM

−
∞

π
tan .

sin
p

px
x

−
−

+
−

RST
UVW

∞z 1
1

1

1
1

1

2

2

0 ( )
.

( )

.
sin

p

p

px
x

dp O
QP

=
− +

∞z1 1 120πx
px

p
dp

sin
( )

Similarly,   I2 20

1
1 1

= −
+ +

∞zπx
px

p
dp

sin
( )

From (1),   I =
− +

−
+ +

RST
UVW

∞z1 1 1 1 12 20πx
px

p
px

p
dp

sin
( )

sin
( )

  = − −L
NM

O
QP

− −1
2 1 1π

π π
x

e x e xx xsin sin ( )  =
−e x

x

x sin
.

Example 15. Solve the integral equations:

(i) f(x) cos x dx e
0

λ λ= −∞z (ii) F(x) tx dx
1, 0 t 1
2, 1 t 2
0, t 2

0
sin =

≤ <
≤ <

≥

R
S|
T|

∞z .

Sol. (i) f x e x d( ) cos–=
∞z2 0π

λ λλ  =
+

2 1
1 2π

.
x

∵ f ec ( ) –λ λ=

(ii)   F( ) ( ) sinx f t tx dts=
∞z2 0π

= +L
NM

O
QPzz2

2
1

2

0

1

π
sin sintx dt tx dt

 = −F
HG

I
KJ − FHG

I
KJ

L
N
MM

O
Q
PP

2
2

0

1

1

2

π
cos costx

x
tx

x

 = − − −F
HG

I
KJ

L
NM

O
QP

2 1
2

2
π x

x
x

x
x

x
x

cos cos cos
= + −2

1 2 2
πx

x x( cos cos ).
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Example 16. Solve the integral equation

F(x) cos px dx
1 p, 0 p 1

0, p 10
=

− ≤ ≤
>

RST
∞z

Hence prove that 
sin t

t
dt

2

2

20
=

∞z π
 .

Sol. Let F( ) cos ( )x px dx f pc=
∞z0 , then f p

p p
pc ( )

,
,

=
− ≤ ≤

>
RST
1 0 1

0 1

∴ By inversion formula for Fourier cosine transform, we have

F( ) ( ) cosx f p px dpc=
∞z2 0π

 = − +L
NM

O
QP

∞zz2
1 0

10

1

π
( ) cos . cosp px dp px dp

= − − −L
NM

O
QP

2
1 1 2

0

1

π
( ) .

sin
(– ) .

cos
p

px
x

px
x

= − +L
NM

O
QP =

−2 1 2 1
2 2 2π π

cos ( cos )x
x x

x
x .

Deduction. Since F( ) cos
,
,

x px dx
p p

p
=

− ≤ ≤
>

RST
∞z 1 0 1

0 10
 where F(x) = 

2 1
2

( cos )− x
xπ

∴
2 1

2
0π

−∞z cos x
x

 . cos
,
,

px dx
p p

p
=

− ≤ ≤
>

RST
1 0 1

0 1

When p = 0, we have 
2 1

12
0π

− =
∞z cos x

x
dx or

2
2

2

2

2
0

sin
x

x
dx

∞z = π

Putting x = 2t so that dx = 2dt, we get
sin2

2
0 2

t
t

dt =
∞z π

 .

Example 17. Taking the function F(x) 1, 0 x
0, x

= < <
>

RST
π

π

show that
1 cos p

p
. sin px dp 2

, 0 x

0, x0

−F
HG

I
KJ = < <

>

R
S|
T|

∞z π π π

π
 .

Sol. Consider F( )
,
,

x
x

x
= < <

>
RST
1 0
0

π
π

Taking sine transform,

f p x px dxs ( ) ( ) . sin=
∞z F0

 = = −z 1
1

0
. sin

cos
px dx

p
p

ππ

By inversion formula for Fourier sine transform.

2 1
0π

π−F
HG

I
KJ

∞z cos
sin

p
p

px dp = < <
>

RST
1 0
0

,
,

x
x

π
π

⇒  
1

2
0

0
0

−F
HG

I
KJ =

< <

>

R
S|
T|

∞z cos
sin

,

, .

p
p

px dp
x

x

π
π π

π

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com


INTEGRAL TRANSFORMS 153

Example 18. Find Fourier sine and cosine transform of F(x) = xn e–ax ; a > 0, n > – 1
Hence find Fourier sine and cosine transforms of
(i) xm–1 (ii) x–m.
Sol. Here  F(x) = xn e–ax

 fs(p) = 
0

∞z  xn e–ax . sin px dx = 
0

∞z  xn e–ax . 
e e

i

ipx ipx−F
HG

I
KJ

−

2
 dx

 = 
1
2i

 x e dx x e dxn a ip x n a ip x− − − +∞∞
−L

NM
O
QPzz ( ) ( )

00

 = 
1
2i

 
Γ Γ( )

( )
( )

( )
n

a ip
n

a ipn n
+

−
− +

+
L
NM

O
QP+ +

1 1
1 1

∵ e x dx
n

z
zx n

n
− −∞

=z 1

0

Γ( )

Put a = r cos θ, p = r sin θ
so that,     a + ip = r(cos θ + i sin θ)

∴  (a + ip)n+1 = rn+1 {cos (n + 1) θ + i sin (n + 1) θ}
and  a – ip = r (cos θ – i sin θ)

∴   (a – ip)n+1 = rn+1 {cos (n + 1) θ – i sin (n + 1) θ}

Also,   r2 = a2 + p2 and tan θ = 
p
a

Now,  fs(p) = 
Γ( )n

i
+ 1

2
 

2 11

2 1
i r n

r

n

n

+

+
+L

NM
O
QP

sin ( )
( )

θ

 = 
Γ( ) sin ( )n n

rn
+ +

+
1 1

1
θ

 = 
Γ( ) sin ( )

( )( )/
n n
a p n

+ +
+ +
1 1

2 2 1 2
θ

 where tan θ = 
p
a

Similarly,  fc (p) = 
Γ( ) cos ( )

( )( )/
n n
a p n

+ +
+ +
1 1

2 2 1 2
θ

 where tan θ = 
p
a

∴ We have the relations,

 
0

∞z  e–ax . xn sin px dx = 
Γ( ) sin ( )

( )( )/
n n
a p n

+ +
+ +
1 1

2 2 1 2
θ

...(1)

and
0

∞z e–ax xn cos px dx = 
Γ( ) cos ( )

( )( )/
n n
a p n

+ +
+ +
1 1

2 2 1 2
θ

...(2)

where tan θ = 
p
a

Put a = 0 and replace n by m – 1 in (1) and (2), we get

 
0

∞z  xm–1 sin px dx = 
Γ( ) sin /m m

pm
π 2

...(3)

and
0

∞z  xm–1 cos px dx = 
Γ( ) cos /m m

pm
π 2

...(4)

Replace m by m + 1 in (3) and (4), we get

0

∞z  xm sin px dx = 
Γ( ) sin ( ) /m m

pm
+ +

+
1 1 2

1
π

 = 
Γ( ) cos /m m

pm

+
+

1 2
1

π
...(5)
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and
0

∞z  xm cos px dx = 
− +

+
Γ( ) sin /m m

pm
1 2

1
π

...(6)

Replacing m by – m in (5) and (6), we get

 
0

∞z  x–m sin px dx = 
Γ( ) cos /1 2

1

−
−

m m

p m

π

 = 
π

π
π

sin
.

( )
.

cos /
m m

m

p m

1 2
1Γ −

∵ Γ Γ( ) ( )
sin

;m m
m

m

1

0 1

− =

< <

π
π

 = 
p

m

m

m
m

m−1
2

2
2 2

Γ( )
.

cos

sin cos

π π

π π  = 
π π
2 2

1

.
( )

p
m

mm−

Γ
cosec

Similarly, 
0

∞z  x–m cos px dx = 
π π
2 2

1

.
( )

p
m

mm−

Γ
sec

ASSIGNMENT

1. Find Fourier transform of F(x) = 
0
1
0

,
,
,

for
for
for

x a
a x b
x b

<
< <
>

R
S|
T|

U
V|
W|

.

2. (i) Show that the Fourier transform of

F(x) = a x x a
x a

− <
> >

RST
UVW

| |, | |
, | |

for
for0 0

 is 2
2p

 (1 – cos ap). Hence show that 
0

2

2 2

∞z =sin t

t
dt

π
.

(ii) Find the Fourier transform of

F(x) = 
1 1
0 1
, | |
, | |

x
x

<
>

RST
UVW  hence evaluate 

0

∞z sin x
x

 dx. (G.B.T.U. 2011)

3. If f(p) is the Fourier transform of F(x), prove that F[eiax
 F(x)] = f(p + a).

4. Find the Fourier transform of the single gate function (rectangular pulse)
shown in the adjoining figure.

5. Find the Fourier transform of the function F(t)as shown in the figure:

Hint. F
A
T

T

A, T T
( ) ,t

t
t

t
= < <

< <

R
S|
T|

U
V|
W|

L

N
MM

O

Q
PP

0

2

6. Find Fourier transform of F(x) = 
x x a

x a

2

0
,

, | |
| |<

>
RST

UVW .
7. Find Fourier sine and cosine transform of

(i) F(x) = e–x, x ≥ 0 (ii) F(x) = 2e–5x + 5e–2x

(iii) F(x) = cosh x – sinh x (iv) F(x) = 
1
0

,
,

0 ≤ <
>

RST
UVW

x a
x a

(v) x e–ax, a > 0.

– T/2 T/2

1

t

F(t)

O

A M N

F(t)

T 2T t

Fig. of Q. 5
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8. Obtain Fourier cosine transform of F(x) = 
x x

x x
x

,
,

,

for
for
for

0 1
2 1 2

0 2

< <
− < <

>

R
S|
T|

U
V|
W|

Also find its Fourier sine transform.
9. Find Fourier sine transform of

(i) F(x) = 
0

0

,
,
,

0 < x a
x a x b

x b

<
≤ ≤
>

R
S|
T|

U
V|
W|

(ii) F(x) = 
1

2 2x x a( )+

(iii) F(x) = xe x− 2 2/ (iv) F(x) = 
e e

e e

ax ax

x x
+
−

−

−π π  or cosh
sinh

ax
xπ

, – π < a < π

(v)
e e

x

ax bx− −−

10. Find Fourier sine transform of 1

e ex xπ π− −  and deduce that fs (cosec h πx) = 
1
2

 tanh (p/2)

11. Find Fourier cosine transform of F(x) = sech πx.

12. Find Fs
–1 

e
p

ap−F
HG
I
KJ  and hence evaluate Fs

–1 
1
p
F
HG
I
KJ .

13. By taking e–ax
 for F(x); a > 0, x > 0; show that

0 2 2

∞z +
cos px

a p
 dp = 

π
2a

 e–ax and
0 2 2

∞z +
p px

a p

sin
 dp = 

π
2

 e–ax.

14. Find F(x) if its Fourier sine transform is

(i)
p

p1 2+ (ii)
π
2

(iii) (2πp)1/2 (iv) sin ,
,
p p

p
0 < < π

π0 ≥
RST

UVW .
15. Find Fourier cosine transform of e a x− 2 2

and hence evaluate Fourier sine transform of xe a x− 2 2
.

16. Find Fourier sine and cosine transform of 
1

x
.

17. If f(p) is the Fourier transform of F(x), prove that F[xn F(x)] = (– i)n 
d

dp

n

n  {f(p)}.

18. A certain function of time F(t) has the following Fourier transform f(p) = 
1

12p +
 e p p− +{ /( )}2 12 2

Using the properties of the Fourier transform, obtain the Fourier transforms of
(i) F(2t) (ii) F(t – 2)

(iii) F(t) cos 2t (iv) e2it F(t).
19. State and prove the convolution theorem for the Fourier transform. Verify this theorem for the

functions f(t) = e–t and g(t) = sin t. (U.P.T.U. 2010)

Answers

1.
( )e e

ip

ibp iap−
2. (ii) 

2 sin p
p

 , p ≠ 0 ; 
π
2

4. T sin c 
p

c
T

where
2
F
HG
I
KJ =F
HG

I
KJsin

sinθ θ
θ 5.

A

T

AT T

p
e

ip
eip ip

2
21( )− +
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6.
2 42

3
a
p p

−
F
HG

I
KJ  sin ap + 

4
2
a

p
 cos ap

7. (i) 
p

p p1

1

12 2+ +
; (ii) p 2

25

5

4
10

1

25

1

42 2 2 2p p p p+
+

+

F
HG

I
KJ +

+
+

F
HG

I
KJ;

(iii)
p

p p1

1

12 2+ +
; (iv)

1 −F
HG

I
KJ

cos
;

sinap
p

ap
p (v)

2
2 2 2

2 2

2 2 2
ap

a p

a p

a p( )
;

( )+
−

+

8.
2
2p

 cos p (1 – cos p) ; 
2
2p

 sin p (1 – cos p)

9. (i) ( cos cos ) (sin sin )a ap b bp
p

bp ap

p

− + −
2

(ii)
π

2 2a
 (1 – e–ap)

(iii)
π

2
 pe p−( /2 2) (iv)

sinh
(cos cosh )

p
a p2 +

(v) tan–1 
p
a

p
b

F
HG
I
KJ − F

HG
I
KJ

−tan 1

10.
1
4

 tanh 
p
2

11.
1
2

sech
2
p

12.
2
π  tan–1 

x
a
F
HG
I
KJ  ; 1

14. (i) e–x (ii)
1
x

(iii)
1

x x (iv)
2

1 2π
π

.
sin

( )

x

x−

15.
π π

2 4

2 2 2 24
3

4

a
e

p

a
ep a p a− −( / ) ( / ); 16.

π π
2 2p p

,

18. (i) 2

42

2
4

2

2

p
e

p
p

+

−
+

F
HG

I
KJ (ii) e2ip . 

1

12
2 12 2

p
e p p

+
− +{ / ( )}

(iii)
1
2

 
1

2 1

1

2 12

2 2)
2) 1

2

2 2)
2) 1

2

2

2

2

( ) ( )

(
(

(
(

p
e

p
e

p
p

p
p

+ +
+

− +

L

N

MMMM

O

Q

PPPP

− +
+ +

RS|T|
UV|W|

− −
− +

RS|T|
UV|W| (iv) 1

2 12

2 2)
2) 1

2

2

( )

(
(

p
e

p
p

+ +

− +
+ +

RS|T|
UV|W| .

2.11 FOURIER TRANSFORMS OF THE DERIVATIVES OF A FUNCTION

Let u p t( , ) be the Fourier transform of the function u(x, t).

Then u p t( , )  = u x t e dxipx( , )
−∞

∞z
Suppose u and 

∂
∂
u
x

 both vanish as x → ± ∞. Then the Fourier transform of 
∂
∂

2

2
u

x
 is given

by

 F
∂
∂

∂
∂

2

2

2

2
u

x
u

x
e dxipxRST

UVW
=

− ∞

∞z
 = −RST

UVW +
L
N
MM

O
Q
PP− ∞

∞

− ∞

∞ze
u
x

ipe u ip e u dxipx ipx ipx∂
∂

. ( ) .2  = − = −
− ∞

∞zp ue dx p uipx2 2

Hence, F 
∂
∂

2

2
u

x

F
HG
I
KJ  = – p2 u where u  = F(u)
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If u p ts ( , )  and u p tc ( , )  be the Fourier sine and cosine transforms of u(x, t), then

u p t u px dxs ( , ) sin=
∞z0 and u p t u px dx( , ) cos=

∞z0
The Fourier sine transform of 

∂
∂

2

2
u

x
 is given by

Fs
u

x
u

x
px dx

∂
∂

∂
∂

2

2

2

20

RST
UVW

=
∞z sin

= −RST
UVW −

L
N
MM

O
Q
PP

∞ ∞zsin cos . sin .px
u
x

p px u p px u dx
∂
∂ 0

2

0

 = p u p u px dx
x

RST
UVW −

L
N
MM

O
Q
PP=

∞z
0

2

0
sin  = p u p u

x
s

RST
UVW −

= 0

2

Hence, Fs 
∂
∂

2

2
u

x

F
HG
I
KJ  = p(u)x = 0 – p2us where us  = Fs(u)

Similarly, we have,

 Fc 
∂
∂

2

2
u

x

F
HG
I
KJ  = – 

∂
∂
u
x x

F
HG
I
KJ = 0

 – p2uc where uc  = Fc(u) (U.P.T.U. 2008)

In general, the Fourier transform of the nth derivative of F(x) is given by

F 
d
dx

n

n
FF

HG
I
KJ  = (– ip)n F{F(x)}

Note. s may also be used as a parameter in place of p.

2.12 CHOICE OF INFINITE FOURIER SINE OR COSINE TRANSFORM

For exclusion of 
∂
∂

2

2
u

x
 from a differential equation, we require

(i) (u)x = 0 in sine transform. (ii)
∂
∂
u
x x

F
HG
I
KJ = 0

 in cosine transform.

2.13 APPLICATIONS OF FOURIER TRANSFORMS TO HEAT CONDUCTION
(TRANSFER) EQUATIONS

In one dimensional heat transfer eqns, the partial differential equation can easily be trans-
formed into an ordinary differential equation by applying Fourier transforms. The required
solution is then obtained by solving this equation and inverting by means of the complex inversion
formula. This is illustrated through the following examples.
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EXAMPLES

Example 1. Solve the equation ∂
∂

∂
∂

u
t

u
x

x 0 t 0
2

2= > >, ,  subject to the conditions

  (i) u = 0 when x = 0, t > 0 (ii) u
1, 0 x 1
0, x 1

= < <
≥

RST when t = 0

and (iii) u(x, t) is bounded. (G.B.T.U. 2011; U.P.T.U. 2009, 2015)
Sol. Since (u)x = 0 is given, taking Fourier sine transform of both sides of the given

equation, we have

∂
∂

∂
∂

u
t

px dx
u

x
px dxsin sin=

∞∞ zz 2

200

⇒  
d
dt

u px dx
0

∞zFHG I
KJsin  = p(u)x = 0 – p2 u

⇒   
du
dt

 + p2u  = 0 ...(1) where u u px dx=
∞z0 sin

 Solution to (1) is u  = c1e p t− 2

, ...(2)
where c1 is a constant.

Now, when t = 0, Fourier sine transform of u(x, t)

 (u )t = 0 = 
0

∞z  u(x, 0) sin px dx = 
0

1

1
1 0z z+ ∞
. sin . sinpx dx px dx

 = 
−F
HG

I
KJ = −cos cospx

p
p

p0

1
1

∴ From (2),  (u )t = 0 = c1

⇒  c1 = 
1 − cos p

p

∴ From (2), u  = 
1 −F
HG

I
KJ

cos p
p

 e p t− 2

Applying inverse Fourier sine transform, we have

u(x, t) = 
2 1

0

2

π

∞ −z −F
HG

I
KJ

cos
sin

p
p

e px dpp t

which is the required solution.
Example 2. Determine the distribution of temperature in the semi-infinite medium x ≥ 0

when the end x = 0 is maintained at zero temperature and the initial distribution of tempera-
ture is F(x).

Sol. Let u(x, t) be the temperature at point x at any time t. Heat flow equation is

∂
∂
u
t

 = c2 
∂
∂

2

2
u

x
 , (x > 0, t > 0) ...(1)

Subjected to the initial condition u(x, 0) = F(x) ...(2)
and the boundary condition u(0, t) = 0 ...(3)
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Taking Fourier sine transform of eqn. (1), we get

0

∞z ∂
∂
u
t

px dxsin  = c2 
0

2

2

∞z ∂
∂

u
x

px dxsin

⇒   
du
dt

 = c2 [p (u)x = 0 – p2 u ] = – c2p2u ∵ ( )u x = =0 0

⇒  
du
dt

 + c2p2u  = 0 ...(4) where u u px dx=
∞z0 sin

Solution to (4) is  u  = c1e c p t− 2 2

...(5)
Taking Fourier sine transform of (2), we get

 (u )t = 0 = 
0

∞z F( ) sinx px dx  = fs(p) | say

From (5), (u )t = 0 = c1 ⇒ c1 = fs(p)

∴ From (5),   u  = fs(p) e c p t− 2 2

Now Taking its inverse Fourier sine transform, we get

 u(x, t) = 
2

0

2 2

π

∞ −z f p e px dps
c p t( ) sin

Example 3. Use Fourier sine transform to solve the equation 
∂
∂
u
t

 = 2 
∂
∂

2

2
u

x
 under the

conditions
(i) u(0, t) = 0 (ii) u(x, 0) = e–x (iii) u(x, t) is bounded.
Sol. The given equation is

∂
∂
u
t

 = 2 
∂
∂

2

2
u

x
...(1)

Taking Fourier sine transform on both sides of eqn. (1), we get

0

∞z ∂
∂
u
t

px dxsin  = 2 
0

∞z ∂
∂

2

2
u

x
px dxsin

⇒  
du
dt

 = 2 [p(u)x = 0 – p2u ]

⇒  
du
dt

 + 2p2u  = 0 where u u px dx=
∞z0 sin

Its solution is  u  = c1e p t− 2 2
...(2)

where c1 is a constant.

At t = 0,  (u )t = 0 = 
0

0

∞

=z ( )u t  sin px dx = 
0

∞ −z e px dxx sin  = 
p
p1 2+

...(3)

From (2), (u )t = 0 = c1 ...(4)

∴ From (3) and (4), c1 = 
p
p1 2+

From (2),    u  = 
p
p1 2+

 e p t− 2 2

...(5)

Taking inverse Fourier sine transform, we get

 u(x, t) = 
2

10 2
2 2

π

∞ −z +
p
p

e p t  sin px dp.
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Example 4. The temperature u in the semi-infinite rod 0 ≤ x < ∞ is determined by the

differential equation 
∂
∂
u
t

 = k 
∂
∂

2

2
u

x
 subject to conditions

(i) u = 0 when t = 0, x ≥ 0 (ii)
∂
∂
u
x

 = – μ (a constant) when x = 0 and t > 0

Making use of cosine transform, show that u(x, t) = 
2 cos px

p
(1 e )

0 2
kp t2μ

π

∞ −z − dp.

Sol. Taking Fourier cosine transform on both sides of given equation, we get

 
0

∞z ∂
∂
u
t

px dx. cos  = k 
0

2

2

∞z ∂
∂

u
x

px dxcos

⇒    
du
dt

 = k − FHG
I
KJ −

L
NM

O
QP=

∂
∂
u
x

p u
x 0

2

= kμ – kp2u where u u px dx=
∞z0 cos

⇒
du
dt

 + kp2u  = kμ ...(1)

I.F. = e kp t2

Solution to (1) is

  u  . e kp t2

 = k e dt ckp tμz +.
2

1 = 
μ
p2  e kp t2

 + c1

⇒  u  = 
μ
p2  + c1e kp t− 2

...(2)

At t = 0,  (u )t = 0 = ( ) cosu px dxt =

∞z 0
0

 = 0 ...(3)

From (2),  (u )t = 0 = 
μ
p2  + c1 ...(4)

⇒  c1 = – 
μ
p2 | From (3) and (4)

∴ From (2),   u  = 
μ
p2  (1 – e kp t− 2

)

Taking inverse Fourier cosine transform, we get

u = 
2
π 0

(1 )
2∞z −μ

p
e kp t

2
–  cos px dp.

Example 5. (i) If the initial temperature of an infinite bar is given by

   θ θ
(x)

for x a
0 for x a

0= <
>

RST
, | |

, | |
determine the temperature at any point x and at any instant t.

(ii) If the initial temperature of an infinite bar is given by

μ(x, 0) = 
1, for c x c
0, otherwise

− < <RST
UVW

determine the temperature of an infinite bar at any point x and at any time t > 0.
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Sol. (i) To determine the temperature θ(x, t), we have to solve the heat-flow equation

      
∂θ
∂

∂ θ
∂t

c
x

t= >2
2

2 0, ...(1)

subject to the initial condition θ θ
( , )

, | |
, | |

x
x a
x a

0
0

0= <
>

RST
for
for

...(2)

Taking Fourier transform of (1), we get

∂θ
∂

∂ θ
∂t

e dx c
x

e dxipx ipx=
−∞

∞

−∞

∞ zz 2
2

2

or
d
dt

e dx c pipxθ θ= −
− ∞

∞z 2 2

or
d
dt

c p
θ θ= − 2 2 ...(3) where θ θ=

∞

∞z– e dxipx

Now taking the Fourier transform of (2), we get

θ θ θ θ( , ) ( , )p x e dx e dx
e
ip

ipx ipx
ipx

a

a

a

a
0 0 0 0= = =

L
NM
O
QP−−− ∞

∞ zz
= θ

θ
0

02
2

e e
ip p

e e
i

ipa ipa ipa ipa−L
NM

O
QP

= −L
NM

O
QP

− −

 =
2 0θ sin pa

p ...(4)

From (3),   
d

c p dt
θ

θ
= − 2 2

Integrating,   log logθ = − +c p t2 2 A or θ = −A e c p t2 2

Since θ
θ

=
2 0 sin pa

p
 when  t = 0, from (4), we get A = 

2 0θ sin pa
p

∴ θ
θ

= −2 0 2 2sin pa
p

e c p t

Taking its inverse Fourier transform, we get

 θ π
θ

( , )
sin

. .x t
ap

p
e e dpc p t ipx= − −

−∞

∞z12 2 0 2 2

= −−

−∞

∞zθ
π
0 2 2sin

. (cos sin )
ap

p
e xp i xp dpc p t

= −
L
NM

O
QP

− −

−∞

∞

−∞

∞ zzθ
π
0 2 2 2 2sin

. cos
sin

. sin
ap

p
e xp dp i

ap
p

e xp dpc p t c p t

= −

−∞

∞zθ
π
0 2 2sin

. cos
ap

p
e xp dpc p t

(The second integral vanishes since its integrand is an odd function)

= −∞z2 0

0

2 2θ
π

sin
. cos

ap
p

e xp dpc p t =
−∞zθ

π
0

0

2 2

2
e

p
ap xp dp

c p t

. sin cos

= + + −F
HG

I
KJ

−∞zθ
π
0

0

2 2

e
a x p a x p

p
dpc p t sin ( ) sin ( )
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= + +
RST

UVW
−∞zθ

π
0

0

2

e
a x v

c t

a x v

c t

dv
v

v sin
( )

sin
( – )

where v2 = c2p2t

= +F
HG
I
KJ + −F
HG
I
KJ

RST
UVW

θ0

2 2 2
erf

a x

c t
erf

a x

c t
.  ∵

0

2

2

∞ −z =
F
HG
I
KJe ct x

dt
t

erf
c

x
t sin ( / ) .

π
2

.

(ii) To determine the temperature μ(x, t), we have to solve the heat-flow equation

  
∂μ
∂t

 = k2 
∂ μ
∂

2

2x
 , t > 0 ...(1)

subject to the initial condition μ(x, 0) = 1
0
,
,

for
otherwise

− < < UVW
c x c ...(2)

Taking Fourier transform of (1), we get

 
− ∞

∞z ∂μ
∂t

e dxipx.  = k2 
− ∞

∞z ∂ μ
∂

2

2x
e dxipx.

⇒    
d
dt

eipx

− ∞

∞z μ dx = – k2p2μ

⇒   
d
dt
μ

 = – k2p2μ where μ μ=
− ∞

∞z e dxipx

⇒   
dμ
μ

 = – k2p2 dt

Integrating, we get
  log μ  = – k2p2t + log A | A is a constant

or,   μ  = A e k p t− 2 2
...(3)

Now, taking Fourier transform of (2), we get

μ (p, 0) = 
− ∞

∞z  μ(x, 0) eipx dx

= 
−z c

c
 eipx dx = 

e e
ip

ipc ipc− −
 = 

2
p

 sin cp ...(4)

From (3), At t = 0, 2
p

 sin cp = A

∴ μ  = 
2
p

 sin cp e k p t− 2 2

Taking its inverse Fourier transform, we get

    μ(x, t) = 
1

2π
 

− ∞

∞z  2
p

 sin cp e k p t− 2 2
 . e–ipx dp

which is the required solution.
Example 6. Use Fourier cosine transform to show that the steady temperature u in the

semi-infinite solid y > 0 when the temperature on the surface y = 0 is kept at unity over the strip
| x | < a and at zero outside the strip is

1
tan

a x
y

tan
a x

y
1 1

π
− −+F
HG
I
KJ +

−F
HG
I
KJ

L
NMM

O
QPP

The results e x sin rx dx tan
r
p

(r , p 0)px 1

0

1− −∞ −z =
F
HG
I
KJ >  may be assumed.
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Sol. Taking Fourier cosine transform of 
∂
∂

∂
∂

2

2

2

2 0
u

x
u

y
+ = ,  we have

 
∂
∂

∂
∂

2

2

2

200
0

u
x

px dx
u

y
px dx. cos . cos+ =

∞∞ zz
–

∂
∂
u
x x

F
HG
I
KJ = 0

− + =p u
d
dy

u2
2

2 0( ) where u u px dx=
∞z cos
0

⇒  
d u
dy

p u
2

2
2 0− = ∵ ∂

∂
u
x

as x→ → ∞0 ...(1)

Its solution is   u c e c epy py= + −
1 2 ...(2)

But u  is finite so c1 = 0, otherwise u  → ∞ as y → ∞

∴ From (2),  u c e py= −
2 ...(3)

But  u u px dx=
∞z cos
0

∴  ( ) ( ) cosu u px dxy y= =

∞
= z0 0

0
 = =z 1

0
. cos

sin
px dx

pa
p

a
...(4)

From (3), ( )u cy = =0 2

∴   c
pa

p2 = sin

∴ From (3),  u
pa

p
e py= −sin

Applying inverse Fourier cosine transform, we get

u
pa

p
e px dppy= −∞z2 0π

sin
cos =

−∞z1 2
0π

e
p

pa px dp
py

( sin cos )

 = + + −
−∞z1 0π

e
p

a x p a x p dp
py

[sin ( ) sin ( ) ]

 =
+F
HG
I
KJ + −F

HG
I
KJ

L
NM

O
QP

− −1 1 1

π
tan tan

a x
y

a x
y  .

ASSIGNMENT

1. Apply appropriate Fourier transform to solve the partial differential equation

∂
∂

∂
∂

V V2

2t x
x t= > >; ,0 0

subject to the conditions

(i) Vx (0, t) = 0 (ii) V(x, 0) = 
x x

x
,
,

0 1
0 1

≤ ≤
>

RST (iii) V(x, t) is bounded.

2. Solve 
∂
∂

∂
∂

u
t

k
u

x
=

2

2  for x ≥ 0, t ≥ 0 under the conditions

(i) u(0, t) = u0, t > 0 (ii) u(x, 0) = 0, x ≥ 0 (iii) u(x, t) is bounded.
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3. Using the method of Fourier transform, determine the displacement y(x, t) of an infinite string
given that the string is initially at rest and that the initial displacement is f(x), – ∞ < x < ∞. Show

that the solution can also be put in the form y(x, t) = + + −1
2

[ ( ) ( )]f x ct f x ct .

4. Using Fourier transform, solve

∂
∂

∂
∂

V V
V

t x
x t x f x= − ∞ < < ∞ > =

2

2 0 0, , ; ( , ) ( ) (U.P.T.U. 2008, 2014)

5. Using Fourier transforms, solve the following initial boundary value problem:

∂
∂

∂
∂

u
t

c
u

x
x t= − ∞ < < ∞ >2

2

2
0, , ;  u x

x
x( , )

,
,
,

0
1 1 0
1 0 1
0

=
− < <

− < <
U
V|
W|otherwise

(U.P.T.U. 2008)

Answers

1. V(x, t) = 
2 1

0 2

2

π

∞
−z + −F

HG
I
KJ

sin cosp
p

p

p
e p t  cos px dp

2. u(x, t) = 
2 10

0

2
u e

p

kp t

π

∞ −z −F
HGG

I
KJJ

 sin px dp.

4. V(x, t) = 
1

2

2

π
F( ) .p e e dpp t ipx− −

−∞

∞z  where F( ) ( )p f x e dxipx=
− ∞

∞z
5. u(x, t) = 

1 1
1

2 2

i p
p e e dpc p t ipx

π − ∞

∞
− −z −( cos ) .

2.14 FINITE FOURIER TRANSFORMS

The finite Fourier sine transform of F(x), 0 < x < l is defined as

f p x
p x

l
dx ps

l
( ) ( ) . sin ;= ∈z F I

π
0

Similarly, the finite Fourier cosine transform of F(x), 0 < x < l is defined as

     f p x
p x

l
dx pc

l
( ) ( ) . cos ;= ∈z F I

π
0

Generally, the choice of π as the upper limit of integration in these transforms is found
convenient and can easily be arranged by having suitable substitutions to actual problems,
then

f p x px dxs ( ) ( ) . sin= z F0

π
and f p x px dxc ( ) ( ) . cos .= z F

0

π

Note. fs(p) is always zero when p = 0.

2.15 INVERSE FINITE FOURIER TRANSFORMS

Inversion formulae are given as follows:
(1) When upper limit is π

For sine transform:

 F( ) ( ) sinx f p pxs
p

=
=

∞

∑2

1
π
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For cosine transform:

   F( ) ( ) ( ) cosx f f p pxc c
p

= +
=

∞

∑1
0

2

1
π π

 where fc(0) stands for F( )x dx
0

πz .

(2) When upper limit is l
For sine transform:

   F( ) ( ) sinx
l

f p
p x

ls
p

=
=

∞

∑2

1

π

For cosine transform:

    F( ) ( ) ( ) cosx
l

f
l

f p
p x

lc c
p

= +
=

∞

∑1
0

2

1

π
 where fc(0) stands for F( ) .x dx

l

0z
EXAMPLES

Example 1. Find finite Fourier sine transform of F(x) 1
x= −
π

.

Sol. The finite Fourier sine transform of F(x) is given by,

f p
x

px dxs ( ) sin= −FHG
I
KJz 1

0 π

π

  = 1
1

0
0

−FHG
I
KJ −
F
HG

I
KJ

RST
UVW

− −FHG
I
KJ −
F
HG

I
KJzx px

p
px

p
dx

π π

π
πcos

.
cos

 = −
F
HG

I
KJ =1 1 1

0p p
px

p pπ

π
sin

.

Example 2. Find finite Fourier cosine transform of F(x)
cos k( x)

k sin k
= − −π

π
.

Sol.  f p
k x

k k
px dxc ( )

cos ( )
sin

cos= − −z0π π
π

= –
sin

[cos { ( – ) } cos { ( – ) – }]
1

2 0k k
k x px k x px dx

π
π π

πz + +

= – sin
sin ( – )

–
–

sin ( – – )1
2 0k k

k kx px
p k

k kx px
p kπ

π π
π

+
+

L
NM

O
QP

=
−

−
+

L
NM

O
QP

1
2

1 1
k p k p k  = 

1
0 1 22 2p k

k
−

≠, , , , ...

Example 3. Find F.F.S.T. and F.F.C.T. of F(x) = 2x, 0 < x < 4.

Sol. (i) f p x
p x

dxs ( ) . sin= z 2
40

4 π
(Here l = 4)

=
−

F
HG
I
KJ

R
S
||

T
||

U
V
||

W
||

L

N

MMMM

O

Q

PPPP
−

−

F
HG
I
KJ

R
S
||

T
||

U
V
||

W
||

z2 4

4

2 4

4
0

4

0

4
x

p x

p

p x

p
dx.

cos
.

cos
π

π

π

π  =
− ≠

=

R
S|
T|

32
1 0

0 0
p

p p

p
π

π( cos ) ,

,
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(ii)  f p x
p x

dxc ( ) . cos= z 2
40

4 π

 
= F

HG
I
KJ

R
S
||

T
||

U
V
||

W
||

L

N

MMMM

O

Q

PPPP
− F

HG
I
KJ

R
S
||

T
||

U
V
||

W
||

z2 4

4

2 4

4
0

4

0

4
x

p x

p

p x

p
dx.

sin
.

sin
π

π

π

π

 = 
32 8 4

4 0

4

p
p

p

p x

pπ
π

π

π

π
sin

cos
−

−

F
HG
I
KJ

R
S
||

T
||

U
V
||

W
||

= 
32

1 02 2p
p p

π
π(cos ),− ≠

When p = 0,  f p f x dxc c( ) ( )= = =z0 2 16
0

4
.

Example 4. Find F(x) if f (p)
sin p /2

2p
p 1, 2 , ...

/4 p 0
c =

=

=

R
S|
T|

U
V|
W|

π

π

,

,
 where 0 < x < 2π.

Sol. F( ) .x = +1
2 4

2
2π

π
π

 
sin /

. cos
p
p

p x

p

π π
π

2
2 2

1=

∞

∑

= +1
2 4

2
2π

π
π

.  
sin /

cos
p
p

px

p

π 2
2 2

1=

∞

∑

  F( )
sin ( / )

cos .x
p
p

px

p

= +
=

∞

∑1
8

1 2
2 2

1
π

π

ASSIGNMENT

1. Find finite Fourier sine and cosine transforms of
(i) F(x) = x2, 0 < x < π (ii) F(x) = 1, 0 < x < π (iii) F(x) = x, 0 < x < π.

2. Find finite Fourier cosine transform of F( ) .x
x= −FHG
I
KJ1

2

π
3. Find finite Fourier sine transform of

(i) F(x) = 
x
π (ii) F(x) = sin nx, n ∈ I (iii) F(x) = x(π2 – x2)

(iv) F(x) = x (π – x) (v) F(x) = ecx (vi) cos mx.

4. Find finite Fourier cosine transform of

(i) F( )x x
x= − +π
π3 2

2
(ii) sin nx, n ∈ I (iii) F( )

, /
, /

.x
x

x
= < <

− < <
UVW

1 0 2
1 2

π
π π

5. Find finite Fourier sine transform of F( )
, /

,
x

x x

x x
=

≤ ≤

− ≤ <

R
S|
T|

U
V|
W|

0 2

2

π

π π π .

6. Find inverse finite Fourier sine transform of

(i) f p
p

p xs

p
( )

( )
, , , ... ( )= − = < <

−2 1
1 2 0

1

3
π π (ii) f p

p

p
xs( )

cos
,= − < <1
02 2

π
π

π .
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Answers

1. (i) (a) fs(p) = 
− − + − − ≠

=

R
S|
T|

U
V|
W|

π2

3
1 2

1 1 0

0 0

( )
[( ) ],

,

p
p

p p p

p
 (b) fc( p) = 

2 1
0

3
0

2

3

π

π

( )
,

,

− ≠

=

R
S
||

T
||

U
V
||

W
||

p

p
p

p

(ii) (a) fs(p) = 
1

1 1 0

0 0
p

p

p

p{ ( ) },

,

− − ≠

=

R
S|
T|

U
V|
W|

(b) fc( p) = 0 0
0

,
,

if
if

p
p

≠
=

RST
UVWπ

(iii) (a) fs(p) = 

π
p p

p

p( ) ,

,

− ≠

=

R
S|
T|

U
V|
W|

+1 0

0 0

1
(b) fc( p) = 

{( ) }
,

,

− − ≠

=

R
S
||

T
||

U
V
||

W
||

1 1
0

2
0

2

2

p

p
p

p
π

2. fc( p) = 

2
0

3
0

2π
π
p

p

p

,

,

≠

=

R
S
||

T
||

U
V
||

W
||

3. (i)
( )− +1 1p

p
(ii)

0
2
,

/ ,
if
if

p n
p n

≠
=
UVWπ (iii)

6
13

1π
p

p( )− +

(iv)
2

1 13p
p[ ( ) ]− − (v)

p

p c
ep c

2 2 1 1
+

− −[ ( ) ]π (vi)
p

p m
mp

2 2 1 1
−

− −[ ( ) cos ]π

4. (i) 
1
2p

(ii)
2

2 2
n

n p
n p

−
−; ( )  is odd and 0 if even

(iii)
2

2
0 0 0

p
p

p psin ;
π ≠ =and if 5.

2
22p

p
sin

π

6. (i) 
2 2 1 1

3
1

π
π( )

sin
− −∞

∑
p

p
px (ii)

2 1
3 2

1
π

π−F
HG

I
KJ

∞

∑ cos
sin .

p

p
px

2.16 PARSEVAL’S IDENTITY FOR FOURIER TRANSFORMS

M.A. Parseval (1755–1836), a French Mathematician, gave the following result.
If the Fourier transforms of F(x) and G(x) are f(p) and g(p) respectively, then

(i)
1
2π –

( ) ( )
∞

∞z f p g p  dp = 
–

( ) ( )
∞

∞z F Gx x dx

(ii)
1
2

2 2

π − ∞

∞

− ∞

∞z z=| ( )| ( )|f p dp x dx|F

where bar implies the complex conjugate.

Proof.  
− ∞

∞

− ∞

∞

− ∞

∞z z z= RST
UVWF G F( ) ( ) ( ) ( )x x dx x g p e dp dxipx1

2π
Using inversion formula
for Fourier transform

= 
1
2π − ∞

∞

− ∞

∞z zRST UVWg p x e dx dpipx( ) ( )F

|Changing order of integration

= 
1
2π − ∞

∞z f p g p dp( ) ( ) ...(1) | By definition
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Now, take G(x) = F(x) in (1), we get

1
2π − ∞

∞

− ∞

∞z z=f p f p dp x x dx( ) ( ) ( ) ( )F F

⇒
1
2

2

π –
| ( )|

∞

∞z f p dp = 
–

| ( )|
∞

∞z F x dx2 ...(2)

Hence the results.
Corollary 1. Following Parseval’s identities for Fourier cosine and sine transforms can be
proved as above:

(i)
2

0π

∞z f pc ( )  gc(p) dp = 
0

∞z F( )x  G(x) dx (ii)
2

0

2

π

∞z | ( )|f pc  dp = 
0

2
∞z | ( )|F x  dx

(iii)
2

0π

∞z f ps ( )  gs(p) dp = 
0

∞z F G( ) ( )x x dx (iv)
2

0

2

π

∞z | ( )|f ps  dp = 
0

2
∞z | ( )|F x dx .

EXAMPLES

Example 1. Using Parseval’s identity, show that 
0

2

2 2 2 2
x

a x b x
dx

2 a b
∞z + +

=
+( ) ( ) ( )

π

Hence find
0

2

2 2
x

x 1
dx

∞z +( )
. (U.P.T.U. 2015)

Sol. If F(x) = e– ax then fs(p) = 
p

a p2 2+
∴ By Parseval’s identity for sine transform,

2
0π
∞z f p g p dps s( ) ( )  = 

0

∞z F G( ) ( )x x dx

⇒
2

0 2 2 2 2π
∞z +

⋅
+

p
a p

p
b p

dp  = 
0

∞z e e dxax bx– –.

⇒
0

2

2 2 2 2

∞z + +
p

a p b p
dp

( )( )
 = 

π π
2 2

0

e
a b a b

a b x– ( )

– ( ) ( )

+ ∞

+
L
N
MM

O
Q
PP =

+

Thus,

0

2

2 2 2 2

∞z + +
x

a x b x( ) ( )
 dx = π

2( )a b+
For a = b = 1, we get

 
0

2

2 21

∞z +
x

x( )
 dx = π

4

Example 2. Using Parseval’s identity, show that 
0 2 2

a

2

ax

x a x
dx

2
1 e

a

2
∞ −z +

=
−sin

( )
( )π

.
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Sol. Let   F(x) = e–ax and G(x) = 
1 0
0
,
,

< <
>

RST
UVW

x a
x a

then   fc (p) = 
a

a p2 2+
and gc(p) = 

sin ap
p

Parseval’s identity for Fourier  cosine transform is

  
2

0π

∞z f pc ( )  gc (p) dp = 
0

∞z F G( ) ( )x x dx

⇒ 2
0 2 2π
∞z +

a ap

p a p
dp

sin
( )

 = 
0

∞z e ax– . 1 dx = 
1

2

– –e
a

a

∴  
0 2 2

∞z +
sin

( )

ax

x a x
 dx = 

π
2

12

2

a
e a( – )–

ASSIGNMENT

1. Using Parseval’s identity, show that 
0 2 2 2 2 2

∞z + +
=

+
dx

a x b x ab a b( ) ( ) ( )
π

.

Hence evaluate
0 2 21

∞z +
dx

x( )

2. If F(x) = 
1
0
, | |
, | |

x a
x a

<
>

RST
UVW , prove  that 

0

2

2 2

∞z =sin ax

x
dx

aπ
 using Parseval’s identity.

3. Evaluate using Parseval’s identity:

(i)
0

21∞z FHG I
KJ

– cos x
x

dx (ii)
0

4

2

∞z sin x

x
dx Hint: Take F( ) ,

,x x
x= ≤ ≤

≥
L
NM

O
QP

1 0 1
0 1

4. Prove that: 
0

4∞z FHG I
KJ

sin x
x

dx  = π/3 Hint: Take F otherwise( ) –| |, | |
,x x x= <RST

UVW
L
NM

O
QP

1 1
0

5. Use Parseval’s identity to prove that: 
0

2

6 15

∞z ( =x x x

x
dx

cos – sin ) π

Answers

1. π/4 3. (i) π/2 (ii) π/2

2.17 THE Z-TRANSFORM

The Z-transform plays an important role in the field of Communication Engineering and Control
Engineering at the stage of analysis and representation of discrete-time linear shift invariance
system. When continuous signals are sampled, discrete-time functions arise. The application
of Z-transform in discrete time systems is similar to that of the Laplace transform in continuous
time systems.
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2.18 DEFINITIONS

2.18.1. One-Sided Z-transform
Let {f(k)} be a sequence defined for all positive integers ‘k’. Then the Z-transform of f(k) is
defined as

 Z{f(k)} = F(z) = 
k

kf k z
=

∞
−∑

0

( ) ...(1)

where z is an arbitrary complex number and Z is an operator of Z-transform.

This is one-sided Z-transform.

2.18.2. Two-Sided Z-transform

If {f(k)} is a sequence defined for k = 0, ± 1, ± 2, ....

then Z{f(k)} = F(z) = 
k

kf k z
= − ∞

∞
−∑ ( ) ...(2)

where z is an arbitrary complex number and Z is an operator of Z-transform.

This is two sided Z-transform.
Note 1. If f(k) = 0 for k < 0 then {f(k)} is called a casual sequence.

2. If f(k) is a non-casual sequence, f(k) = 0 for k ≥ 0, then its Z-transform is F(z) = 
− ∞

−
−∑

1

f k z k( )  and

is also called one sided Z-transform.

3. The curly bracket {  } represents sequence. Sequence {f(k)} is an ordered list of real or complex
numbers.

4. The infinite series on R.H.S. of (1) will be convergent only for certain values of z depending on
sequence {f(x)}.

5. The inverse Z-transform of Z{f(k)} = F(z) is defined as Z–1[F(z)] = {f(k)}.

2.19 UNIT STEP AND UNIT IMPULSE SEQUENCES

Unit step sequence is defined as

 u(k) = 
1 0
0 0

,
,

k
k

≥
<

RST
UVW

Unit impulse sequence is defined as

δ(k) = 
1 0
0 0

,
,

k
k

=
≠

RST
UVW

2.20 RELATION BETWEEN UNIT IMPULSE SEQUENCE AND UNIT STEP
SEQUENCE

u(k) = 
k

k
= − ∞

∞

∑ δ( ) and δ(k) = u(k) – u(k – 1)

1

–2 –1 0 1 2 3 k

1

δ(k)

–2 –1 0 1 2 3 k
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We have δ(n – k) = 
1
0

,
,

k n
k n

=
≠

RST
UVW

Also, f(n) = 
k

f k n k
= − ∞

∞

∑ −( ) ( )δ .

2.21 Z-TRANSFORM OF UNIT IMPULSE FUNCTION

We know that δ(k) = 
1 0
0 0

,
,

k
k

=
≠
UVW

∴  Z{δ(k)} = 
k

kk z
= − ∞

∞
−∑ δ( )  = [...... + 0 + 0 + 1 + 0 + 0 + ......] = 1

Hence, Z{δ(k)} = 1

2.22 Z-TRANSFORM OF DISCRETE UNIT STEP FUNCTION

We know that u(k) = 
1 0
0 0

,
,

k
k

≥
<
UVW

∴ Z{u(k)} = 
k

ku k z
= − ∞

∞
−∑ ( )  = 

k

kz
=

∞
−∑

0

 = 1 + z–1 + z–2 + ...... = 
1

1 1− −z
 = 

z
z − 1

 ; | z | > 1.

2.23 Z-TRANSFORM FOR DISCRETE VALUES OF t

If f(t) is a function defined for discrete values of t, where t = nT, n = 0, 1, 2, ......, T being the
sampling period, then Z-transform of f(t) is defined as

Z{f(t)} = f n z zk

k

( T) F( ).−

=

∞

=∑
0

Note. The important element of discrete-time systems is the samples in which a switch close to admit
an input signal in every T seconds. A samples is a conversion device which converts a continuous signal
into a sequence of pulses occurring at sampling instants 0, T, 2T, ...... where T is the sampling  period.

EXAMPLES

Example 1. Find the Z-transform of the following sequences:

(i) f(k) = { }15,10,7, 4,1, 1, 0, 3,6A − (ii) f(k) = {5, 6, 1, 2, – 1, 0, 8, 4, 3}

(iii) f(k) = 
1

4k
RST
UVW (iv) f(k) = 

1
2k
RST
UVW , – 3 ≤ k ≤ 3

(v) f(k) = 
5 k 0
2 k 0

k

k
,
,

<
≥

RST
UVW .
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Sol. (i) The symbol ↑ is used to denote the term in zeroth position i.e., when k = 0. k is
an index of position of a term in a sequence.

   Z{f(k)} = 15z3 + 10z2 + 7z + 4 + 
1 1

0
3 6

2 4 5z z z z
− + + +

⇒ F(z) = 15z3 + 10z2 + 7z + 4 + 
1 1 3 6

2 4 5z z z z
− + +

(ii) In case the symbol ↑ is not given, extreme left term is considered as zeroth term
corresponding to k = 0. Here, the zeroth term is 5.

∴    Z{f(k)} = 5 + 
6 1 2 1

0
8 4 3

2 3 4 6 7 8z z z z z z z
+ + − + + + +

⇒  F(z) = 5
6 1 2 1 8 4 3

2 3 4 6 7 8+ + + − + + +
z z z z z z z

(iii) Z{f(k)} = f k z k

k

( ) −

= − ∞

∞

∑  = −

= − ∞

∞

∑ 1
4k

k

k

z

 = ...... + 64z3 + 16z2 + 4z + 1 + 
1

4
1

16
1

642 3z z z
+ + + ......

(iv)  Z{f(k)} = f k z k( ) −

−
∑

3

3

(since – 3 ≤ k ≤ 3)

= −

−
∑ 1

23

3

k
kz  = 8z3 + 4z2 + 2z + 1 + 

1
2

1
4

1
82 3z z z

+ +

(v)  Z{f(k)} = 5 2
1

0

k k

k

k k

k

z z−

= − ∞

−
−

=

∞

∑ ∑+

= [...... + 5–3z3 + 5–2z2 + 5–1z] + 1
2 4 8

2 3+ + + +L
NM

O
QPz z z

......

=
−

+
−

=
−

+
−

−

−
5

1 5
1

1 2 5 2

1

1
z

z z
z

z
z

z( / )
 ;  | z | < 5, | z | > 2.

Example 2. Find the Z-transform of

(i) f(k) = {a| k |} (ii) f(k) = 
1
k

 , k ≥ 1 (iii) f(k) = 
1

k(k 1)+
 , k ≥ 0

(iv) f(k) = cos 
k
2
π

 , k ≥ 0 (v) f(k) = 
0, k 0
1, k 0

>
≤
UVW .

Sol. (i)  Z{f(k)} = 
k

kf k z
= − ∞

∞
−∑ ( )

= +− −

= − ∞

−
−

=

∞

∑ ∑a z a zk k

k

k k

k

1

0

 = (...... + a3z3 + a2z2 + az) + 
a
z

k

k

F
HG
I
KJ

=

∞

∑
0

=
−

+ −FHG
I
KJ

−az
az

a
z1

1
1

 =
−

+
−

az
az

z
z a1

. ∵ ( )1 1

0

− =−

=

∞

∑x x
k

k
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(ii)  Z 
1 1

1
k k

z
k

kF
HG
I
KJ =

=

∞
−∑

= 
1 1

2
1

32 3z z z
+ +  + ...... = – log 1

1 1−FHG
I
KJz z

if  < 1

= log 
z

z −
F
HG
I
KJ1  if | z | > 1.

(iii)  Z Z
1

1
1 1

1k k k k( )+
RST

UVW = −
+

F
HG

I
KJ  = Z 

1 1
1k k

F
HG
I
KJ −

+
F
HG
I
KJZ

=
−
F
HG
I
KJ −

+
−

=

∞

∑log
z

z k
z k

k
1

1
1

0
 =

−
F
HG
I
KJ − + + +F
HG

I
KJlog ......

z
z z z1

1
1

2
1

3 2

=
−
F
HG
I
KJ − + FHG

I
KJ + FHG

I
KJ +

R
S|
T|

U
V|
W|

log ......
z

z
z

z z z1
1 1

2
1 1

3
12 3

=
−
F
HG
I
KJ − − −FHG

I
KJ

RST
UVWlog log

z
z

z
z1

1
1

=
−
F
HG
I
KJ −

−
F
HG
I
KJlog log

z
z

z
z

z1 1  = (1 – z) log 
z

z −
F
HG
I
KJ1 .

(iv)  Z cos cos
k k

z k

k

π π
2 2

0

F
HG

I
KJ = −

=

∞

∑

= − + − ∞ = +FHG
I
KJ

−

1
1 1

1
1

2 4 2

1

z z z
......  = 

z
z

2

2 1+
if | z | > 1.

(v) Z{f(k)} = f k z z
z

k

k

k

k

( ) −

= − ∞

∞

=

∞

∑ ∑= =
−
1

1
0

 ; if | z | < 1.

Example 3. Find the Z-transform of

(i) f(k) = 
a
k !

, k 0

0, otherwise

k

≥
R
S|
T|

U
V|
W|

(ii) f(k) = 
1

k 1 !( )+
, k ≥ 0.

Sol. (i) Z{f(k)} = 
a
k

z
az

k
e

k
k

k
az

kk
!

( )
!

−
−

=

∞

=

∞

= =
−∑∑

1

00

1

= ea/z.

(ii)  Z 
1

1( ) !k +
L
NM

O
QP  = 

k =

∞

∑
0

 1
1( ) !k +

 z–k = 1 + 
1
2 !

 z–1 + 
1
3 !

 z–2 + ......

= z z z z− − −+ + +
L
NM

O
QP

1 2 31
2

1
3! !

......

= z 1
1
2

1
3

11 2 3+ + + + −
L
NM

O
QP

− − −z z z
! !

......

= z (ez−1

 – 1) = z(e1/z –1).
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Example 4. Find the Z-transform of
(i) u(k – 1) (ii) 4 k δ(k – 1) ; k ≥ 0

(iii) δ(k – n) ; k ≥ 0 (iv) { nCk} ; 0 ≤ k ≤ n. (M.T.U. 2014)

Sol. (i) Z{f(k)} = 1
1 1 1

2 3
1

. ......z
z z z

k

k

−

=

∞

= + + +∑  = 
1
z

 1
1 1

2+ + +F
HG

I
KJz z

......

= 
1
z

 
1

1
1−FHG
I
KJz

if 
1
z  < 1

  = 
1

1z −  if | z | > 1.

(ii)  Z{f(k)} = 
k =

∞

∑
0

 4k δ(k – 1) z–k = 
4
z

.

(iii) Z{f(k)} = 
k =

∞

∑
0

δ(k – n) z–k = 
1
zn  , n is (+)ve integer.

(iv) Z{f(k)} = 
k

n

=
∑

0

 nCk z
–k = 1 + nC1 z

–1 + nC2 z
–2 + ...... + nCn z–n = (1 + z–1)n.

Example 5. Determine the Z-transform of the sequence given by

f(k) = 

2 k 0
1
2

k 0, 2, 4, ......

1
3

k 1, 3, 5,......

k

k

k

,

,

,

<
F
HG
I
KJ =

F
HG
I
KJ =

R

S

|||

T

|||

U

V

|||

W

|||
What is the region of convergence for the Z-transform F(z)?

Sol.  F(z) = 
k

f k
= − ∞

∞

∑ ( )  z–k

= 
k = − ∞

−

∑
1

 2k z–k + 
k =

∞

∑
0

1
2
F
HG
I
KJ

k

 z–k + 
k =

∞

∑
0

1
3
F
HG
I
KJ

k

 z–k

(k-even)  (k-odd)

= 
m

m m

p

p
pz z

=

∞
−

=

∞
−∑ ∑+ F

HG
I
KJ

1 0

2
22

1
2

 + 
q

q
qz

=

∞ +
− +∑ FHG

I
KJ

0

2 1
2 11

3
( )

where m k

p
k

q
k

= −

= = −
,

,
2

1
2

= F1(z) + F2(z) + F3(z)

= z
z

z

z

z

z

/
/

/2
1 2 1

4

3
1
9

2

2 2−
+

−
+

−
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Region of convergence for F1(z): | z | < 2

Region of convergence for F2(z): | z | > 
1
2

Region of convergence for F3(z): | z | > 
1
3

Hence, Region of convergence for F(z): 
1
2

 < | z | < 2.

ASSIGNMENT

1. Determine the Z-transform of the following sequences :

(i) f(k) = { , , , , , , }2 4 5 7 0 1 2A (ii) f(k) = {3, 1, 2, 5, 7, 0, 1}A
(iii) f(k) = {0, 0, 1, 2, 5, 4, 0, 1} (iv) f(k) = {1, 2, 5, 4, 0, 1}
(v) f(k) = δ(k + n).

2. Find the Z-transform of

 f(k) = 

0 0
1 0 5
2 6 10
3 10

,
,
,
,

for
for
for
for

k
k
k

k

<
≤ ≤
≤ ≤
>

R
S|

T|

U
V|

W|
.

3. Find the Z-transform of

(i) u(k – 4) (ii) δ(k – 5) (iii)
1
3

0

2 1

F
HG
I
KJ ≥

− ≤ −

R
S|
T|

k

k

k

k( )
.

4. Determine Z-transform for the sequences given below :
f(0) = 1 ; f(1) = 4.7 ; f(2) = 0 ; f(3) = 0

f(4) = 0.75 ; f(5) = 2  ; f(k) = 0 ; k ≥ 6.

5. Express the signals shown below in terms of unit impulse functions and hence find the Z-trans-
form.

(i)

0.5

–2 –1 0 1

1

2

2
2

f(k)

k

(ii)

–2

–1

–1

1

0 1

3

1

– 0.5

2

2

f(k)

k

Answers

1. (i) 2z2 + 4z + 5 + 
7 1 2

3 4z z z
+ + (ii) 3z3 + z2 + 2z + 5 + 

7 1
3z z

+

(iii) z–2 + 2z–3 + 5z–4 + 4z–5 + z–7 (iv) 1 + 2z–1 + 5z–2 + 4z–3 + z–5 (v) zn

2. 1 + z–1 + z–2 + z–3 + z–4 + z–5 + 2(z–6 + z–7 + z–8 + ...... + z–10) + 3(z–11 + z–12 + ......)

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com


176 A TEXTBOOK OF ENGINEERING MATHEMATICS

3. (i)
z

z

−

−−

4

11
; | z | > 1 (ii) z–5 (iii)

z

z

z
z−

−
+1

3
2

4. F(z) = 1 + 4.7 z–1 + 0.75 z–4 + 2 z–5

5. (i)  f(k) = 0.5 δ(k + 1) + 2δ(k) + 2δ(k – 1) + δ(k – 2); F(z) = 0.5z + 2 + 2z–1 + z–2

(ii) f(k) = δ(k + 2) – δ(k + 1) + 2δ(k) + δ(k – 2) – 0.5 δ(k – 3); F(z) = z2 – z + 2 + z–2 – 0.5 z–3.

2.24 PROPERTIES OF Z-TRANSFORMS

2.24.1. Linearity Property

Z{a f(k) ± bg(k)} = a Z{f(k)} ± b Z {g(k)}

Proof. Z{a f(k) ± b g(k)} = ± −

= − ∞

∞

∑ { ( ) ( )}a f k b g k z k

k

| by definition

= ±− −

= − ∞

∞

= − ∞

∞

∑∑a f k z b g k zk k

kk

( ) ( )  = a Z{f(k)} ± b Z{g(k)}.

Remark. If Z{f(k)} = F(z) and Z{g(k)} = G(z), then Z–1 [a F(z) ± b G(z)] = a Z–1 {F(z)} ± b Z–1 {G(z)}
where a and b are constants and Z–1 is inverse Z-transform operator.

2.24.2. Change of Scale Property

 If Z{f(k)} = F(z), then  Z{|ak f(k)|} = F 
z
a
F
HG
I
KJ

Proof.  F(z) = Z{f(k)} = f k z k

k

( ) −

= − ∞

∞

∑

Substituting 
z
a

 for z, we get

 F 
z
a
F
HG
I
KJ  = f k

z
a

k

k

( ) FHG
I
KJ

−

= − ∞

∞

∑  = −

= − ∞

∞

∑a f k zk k

k

( )  = Z{|ak
 f(k)|}.

Remark (i) Z{ak U(k)} = 
z a

z
a

z
z a

/

−
=

−1
 if | z | > | a |

(ii) Z{ak} = 
z

z a−
 since Z(1) = 

z
z − 1

.

2.24.3. Multiplication by kn

If Z{f(k)} = F(z), then Z{kn f(k)} = −FHG
I
KJz

d
dz

n

 F(z)

Proof.   Z{k f(k)} = k f k z k

k

( ) −

= − ∞

∞

∑
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 = − − − −

= − ∞

∞

∑z f k kz k

k

( ) ( )1
 = − = −−

= − ∞

∞

∑z f k
d
dz

z z
d
dz

zk

k

( ) ( ) ( )F

In general,  Z{|kn f(k)|} = −FHG
I
KJz

d
dz

z
n

F( ).

Remark. Z{(k ak)} = − z
d
dz

ak[ ( )]Z  = −
−
F
HG
I
KJ =

−
z

d
dz

z
z a

az
z a( )2

.

Note. Since Z(1) = 
z

z − 1 , we have the following results.

(i) Z(k) = z

z( )− 1 2
(ii) Z(k2) = 

z z

z

( )

( )

+
−

1

1 3

(iii) Z(k3) = 
z z z

z

3 2

4
4

1

+ +
−( )

(iv) Z(k4) = 
z z z z

z

4 3 2

5
11 11

1

+ + +
−( )

.

2.24.4. Shifting Property

  If Z{f(k)} = F(z), then Z{f(k ± n)} = z±n F(z)

Proof.  Z{f(k ± n)} = f k n z z f k n zk n

k

k n

k

( ) ( ) ( )± = ±− ±

= − ∞

∞
− ±

= − ∞

∞

∑ ∑

= ± −

= − ∞

∞

∑z f r zn r

k

( ) (r = k ± n)

= z±n F(z).
Corollary 1. For casual sequence,

 Z{f(k – n)} = z–n F(z)
Also,   Z{f(k + 1)} = z F(z) – z f(0)

and   Z{f(k + 2)} = z2 F(z) – z2f(0) – z f(1)

= z z f
f

z
2 0

1
F( ) – ( ) –

( )RST
UVW and so on.

Corollary 2. Z–1[z–n F(z)] = f(k – n) = Z–1[F(z)]k → k – n.

2.24.5. Division by k

 If Z{f(k)} = F(z), then Z 
f(k)
k

z F(z) dz1
zRST

UVW = − −z
Proof.   Z 

f k
k
( )RST
UVW  = 

f k
k

z k

k

( ) −

= − ∞

∞

∑

 =
F
HG
I
KJ

−

= − ∞

∞

∑ f k
k

z k

k

( )
1

 = − − −

= − ∞

∞ z∑ f k z dzk
z

k

( ) 1

 = − z ∑ − −

= − ∞

∞z
k

k

f k z dz( ) 1
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 = −
F
H
GG

I
K
JJz ∑ −

= − ∞

∞z
k

k

z f k z dz–1 ( )  = −z– )z z dz
z

1 F( .

2.24.6. Initial Value Theorem

  If Z{f(k)} = F(z), k ≥≥≥≥≥ 0, then f(0) = Lt F(z)
z → ∞

Proof.  Z{f(k)} = f k z k

k

( ) −

=

∞

∑
0

⇒  F(z) = f(0) + f(1) z–1 + f(2)z–2 + ......
Taking limit as z → ∞, we get

    f(0) = Lt F(
z

z
→ ∞

) .

2.24.7. Final Value Theorem

 If Z{f(k)} = F(z) ; k ≥≥≥≥≥ 0, then Lt f(k) = Lt (z 1) F(z)
k z 1→ ∞ →

−

Proof.  Z{f(k + 1) – f(k)} = 
k

kf k f k z
=

∞
−∑ + −

0

1{ ( ) ( )}

z F(z) – f(0) – F(z) = Lt
n

k

n
kf k f k z

→ ∞
=

−∑ + −
0

1{ ( ) ( )}

 Lt F Lt Lt
z z n

k

k

n

z z f f k f k z
→ → → ∞

−

=

− = + + −∑1 1
0

1 0 1( ) ( ) ( ) . { ( ) ( )}

= + + −
→ ∞ →

−

=
∑f f k f k z

n z

k

k

n

( ) { ( ) ( )}0 1
1

0

Lt Lt

| Changing the order of limits

= + + −
L
N
MM

O
Q
PP→ ∞

=
∑Lt

n
k

n

f f k f k( ) { ( ) ( )}0 1
0

= +
→ ∞

Lim
n

f n( )1  = =
→ ∞ → ∞

Lim Lim
n k

f n f k( ) ( ) .

2.24.8. Differentiation Property
Let Z[{f(k)}] = F(z). An infinite series can be differentiated term by term within its region of
convergence. F(z) may be treated as a function of z–1.

F(z) = 
k =

∞

∑
0

 f(k) z–k = 
k =

∞

∑
0

 f(k) (z–1)k

Differentiating on both sides w.r.t. z–1

  
d

dz−1  F(z) = 
k =

∞

∑
0

 kf(k) (z–1)k–1 ...(1)

  z–1 
d z
dz
F( )

−1  = 
k =

∞

∑
0

 kf(k) z–k = Z{kf(k)}
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∴    Z{kf(k)} = z–1 
d z
dz
F( )

−1 ...(2)

Differentiating (1) w.r.t. z–1 again, we get

  
d z
d z

2

1 2
F( )

( )−  = 
k =

∞

∑
0

k(k – 1) f(k) (z–1)k – 2

  z–2 
d z
d z

2

1 2
F( )

( )−  = 
k =

∞

∑
0

k(k – 1) f(k) z–k = Z{k(k – 1) f(k)}

∴  Z[k(k – 1) f(k)] = z–2 
d z
d z

2

1 2
F( )

( )− ...(3)

2.24.9. Convolution Theorem (U.P.T.U. 2015)

The convolution of two sequences {f(n)} and {g(n)} is defined as

w(n) = 
k = − ∞

∞

∑  f(k) g(n – k) = f ∗ g

If it is one sided (right) sequence, take f(k) = 0, g(k) = 0 for k < 0, then

w(n) = 
k

f k

=

∞

∑
0

( ) g(n – k) = f * g.

Statement. If w(n) is the convolution of two sequences f(n) and g(n), then

  Z{w(n)} = W(z) = Z{f(n)} . Z{g(n)} = F(z) G(z) (U.P.T.U. 2015)

Proof.  W(z) = Z{w(n)} = Z f k g n k
k

( ) ( )−
L
N
MM

O
Q
PP=

∞

∑
0

 = 
n =

∞

∑
0

f k g n k
k

( ) ( )−
L
N
MM

O
Q
PP=

∞

∑
0

 z–n

= 
k =

∞

∑
0

 f(k) g n k z n

n

( )−
L
N
MM

O
Q
PP

−

=

∞

∑
0

(by changing the order of summation)

= 
k =

∞

∑
0

 f(k) g p z p k

p

( ) ( )− +

=

∞

∑
L
N
MM

O
Q
PP0
, (putting n – k = p)

= f k z k

k

( ) −

=

∞

∑
L
N
MM

O
Q
PP0
 g p z p

p

( ) −

=

∞

∑
L
N
MM

O
Q
PP0
 = F(z) G(z).

Note. This result will be true only for the values of z inside the region of convergence.

2.24.10. Another form of Convolution Theorem
If Z{f(t)} = F(z), Z{g(t)} = G(z), then the convolution product is

 w(t) = 
k =

∞

∑
0

 f(kT) g(nT – kT) = f * g

and Z{w(t)} = W(z) = Z{f(t)} Z{g(t)} = F(z) G(z).
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Proof. (Here we are dealing with one sided Z-transform only)

 F(z) = 
m =

∞

∑
0

 f(mT) z–m ; G(z) = 
n =

∞

∑
0

g(nT) z–n

 F(z) G(z) = f m z m

m

( )T −

=

∞

∑
R
S|
T|

U
V|
W|0

 g n z n

n

( )T −

=

∞

∑
R
S|
T|

U
V|
W|0

 =  
n =

∞

∑
0 m =

∞

∑
0

 f(mT) g(nT) z–m–n = 
n =

∞

∑
0

f p g n p
p

n

( ) {( )T T}−
F
H
GG

I
K
JJ

=
∑

0
 z–n

   = Z f p g n p
p

( ) {( )T T}−
R
S|
T|

U
V|
W|=

∞

∑
0

 z–n = Z{f ∗ g}.

2.24.11. Time Reversal Property
If F(z) is the Z-transform of f(k), then Z{f (– k)} = F(z–1)

2.24.12. Correlation Property

If Z{f1(k)} = F1(z) and Z{f2(k)} = F2(z), then Rf f1 2
(z) = F1(z). F2(z

–1)

and cross-correlation sequence rf f1 2
(l) = Z–1[ Rf f1 2

 (z)].

2.25 SOME IMPORTANT Z-TRANSFORM RESULTS

S. No. {f(k)}, k ≥ 0 F(z) = Z {f(k)}

1. δ(k) 1

2. U(k)  or 1
z

z − 1

3. k
z

z( )− 1 2  , | z | > 1

4. kn f(k) −FHG
I
KJz

d
dz

n

 F(z)

5. kn −FHG
I
KJ −

z
d
dz

z
z

n

1
 , | z | > 1

6. ak  or  ak U(k)
z

z a−
 ; | z | > | a |

7.
1
k

log 
z

z −
F
HG
I
KJ1  , | z | > 1

8.
1

1k + z log 
z

z −
F
HG
I
KJ1
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9.
1
k ! e1/z

10. δ(k – n) z–n

11. f(0) Lt
z → ∞

 F(z)

12. Lt
k → ∞

 f(k) Lt
z → 1

 (z – 1) F(z)

13. rf f1 2
(l) = 

k = − ∞

∞

∑  f1(k) f2(k – l) R f f1 2
(z) = F1(z) F2(z

–1)

14. h(k) = f(k) ∗ g(k) F(z) . G(z)

15. f(– k) F(z–1)

EXAMPLES

Example 1. Determine the Z-transform of
  f(k) = δ(k + 1) + 3 δ(k) + 6δ(k – 3) – δ(k – 4).

Sol. By linearity property, we have
F(z) = Z{f(k)} = Z{δ(k + 1)} + 3 Z{δ(k)} + 6 Z{δ(k – 3)} – Z{δ(k – 4)}

= z + 3 + 6z–3 – z–4.
Example 2. Find the Z-transform of

(i) {ak+3} (ii) {k2} (iii)
(k 1) (k 2)

2
+ +RST

UVW
(iv) {abk} ; a ≠ 0, b ≠ 0 (v) {k (k – 1)}.

Sol. (i)   Z{f(k)} = 
k

k ka z
= − ∞

∞
+ −∑ 3

 = a3 Z(ak) …(1)

We know that,  Z(1) = 
z

z − 1

∴ Z(ak) = 
z a

z a
z

z a
/

( / ) −
=

−1
(By change of scale property)

∴ From (1), Z{f(k)} = 
za
z a

3

− .

(ii)  Z(k2) = −FHG
I
KJz

d
dz

2

 Z(1)  = −FHG
I
KJ −FHG

I
KJ −
F
HG
I
KJ

L
NM

O
QP

z
d
dz

z
d
dz

z
z 1

= −
−
L
NM

O
QP

= +
−

z
d
dz

z
z

z z
z( )
( )

( )1
1

12 3
.

(iii) Z Z(
( )( )

)
k k

k k
+ +RST

UVW = + +1 2
2

1
2

3 22
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  = 
1
2

 [Z(k2) + 3 Z(k) + Z(2)] =
+

−
+ −RST

UVW +
−

L
NM

O
QP

1
2

1
1

3 1
2

13
z z
z

z
d
dz

z
z

( )
( )

( )Z

  =
+

−
−

−
F
HG
I
KJ +

−
L
NM

O
QP

1
2

1
1

3
1

2
13

z z
z

z
d
dz

z
z

z
z

( )
( )  =

+
−

+ +
−

L
NM

O
QP

1
2

1
1

3
1

2
13 2

z z
z

z
z

z
z

( )
( ) ( – ) .

(iv)  Z(abk) = a Z(bk) = a
z

z b−
F
HG
I
KJ  if | z | > | b |.

(v)  Z{k(k – 1)} = Z(k2 – k) = Z(k2) – Z(k) = +
−

−
−

=
−

z z
z

z
z

z
z

( )
( ) ( ) ( )

1
1 1

2
13 2 3 .

Example 3. Find the Z-transform of f(k) = u(– k).

Sol. We know that Z{u(k)} = 
z

z − 1
By time reversal property, we have

Z{u(– k)} = 
z

z

−

− −

1

1 1
 = 

1
1 − z  ; | z | < 1.

Example 4. Find the Z-transform of
(i) {k + nCn} or {k + nCk} ; k ≥ 0 (ii) {k + nCn ak} ; k ≥ 0.

Sol. (i)   Z{k+nCn} = Z{k+nCk}

 = 
k =

∞

∑
0

k+nCk z
–k = 1 + n+1C1 z

–1 +  n+2C2 z
–2 + ......

 = 1 + (n + 1) z–1 + 
( )( )

!
n n+ +2 1

2
 z–2 + ......

 = 1 + (– n – 1)(– z–1) + 
( )( )

!
− − − −n n1 2

2
 (– z–1)2 + ......

 = (1 – z–1)–n–1 = (1 – z–1)–(n+1) = 
z

z

n

−
F
HG
I
KJ

+

1

1

.

(ii)  Z{k+nCn ak} = 
z a

z a

n
/

/ −
F
HG

I
KJ

+

1

1

| Change of scale property using (i)

 = 
z

z a

n

−
F
HG
I
KJ

+1

.

Example 5. Find the Z-transform of
(i) sin αk, k ≥ 0 (U.P.T.U. 2009, 2015) (ii) sin (3k + 5), k ≥ 0.

Sol. (i)   Z(sin αk) = 
k =

∞

∑
0

sin αk z–k = 
1
2i

 
k =

∞

∑
0

 (eiαk – e–iαk) z–k

 = 
1
2i

 ( ) ( )–1 –1e z e zi k

k

i k

k

α α−
L
N
MM

O
Q
PP=

∞
−

=

∞

∑ ∑
0 0

 = 
1
2i

 [(1 – eiα z–1)– 1 – (1 – e–iα z–1)–1]
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 = 
1
2i

 
1

1
1

11 1−
−

−
L
NM

O
QP− − −e z e zi iα α  = 

1
2i

 
z

z e
z

z ei i−
−

−
L
NM

O
QP−α α

 = 
1
2i

 
z e e

z z e e

i i

i i
( )
( )

α α

α α
−

− + +

L
NM

O
QP

−

−2 1
 = 

z
z z

sin
cos

α
α2 2 1− +

.

(ii)  Z{sin (3k + 5)} = 
k =

∞

∑
0

sin (3k + 5) z–k = 
1
2i

 
k =

∞

∑
0

{ei(3k + 5) – e–i(3k + 5)} z–k

= 
1
2i

 e e z e e zi i k

k

i i k

k

5 3

0

5 3

0

( ) ( )–1 –1−
L
N
MM

O
Q
PP=

∞
− −

=

∞

∑ ∑

= 
1
2i

 [e5i (1 – e3i z–1)–1 – e–5i (1 – e–3i z–1)–1]

= 
e

i

i5

2
 

1
1 3 1−
F
HG

I
KJ−e zi

  – 
e

i

i−5

2
 

1
1 3 1−
F
HG

I
KJ− −e zi

= 
e

i

i5

2
 

z
z e i−
F
HG

I
KJ3

 – 
e

i

i−5

2
 

z
z e i−
F
HG

I
KJ−3

 = 
1
2i

 
e z z e e z z e

z e z e

i i i i

i i

5 3 5 3

3 3
( ) ( )

( ) ( )
− − −

− −

L
NM

O
QP

− −

−

= 
1
2i

 
( ) ( )

( )
e e z z e e

z e e z

i i i i

i i

5 5 2 2 2

3 3 21
− − −
− + +

L
NM

O
QP

− −

−  = 
z z
z z

2

2
5 2

2 3 1
sin sin

cos
−

− +
 ;  | z | > 1.

Example 6. Find the Z-transform of
(i) ck cosh (α k), k ≥ 0 (ii) ck cos (α k), k ≥ 0

(iii) cosh 
k
2
π α+F
HG

I
KJ  , k ≥ 0. (U.P.T.U. 2008)

Sol. (i) Z{cosh (αk)} = 
k

k ke e

=

∞ −

∑ +F
HG

I
KJ0

α α

2
 z–k = 

1
2

0

1

0

1

k

k

k

ke z e z
=

∞
−

=

∞
− −∑ ∑+

L
N
MM

O
Q
PP( ) ( )α α

= 
1
2

1 11 1 1 1( ) ( )− + −− − − − −e z e zα α  = 
1
2

z
z e

z
z e−

+
−

L
NM

O
QP−α α

= 
z z e e

z z e e2
2

1
.

( )
( )

− +
− + +

L
NM

O
QP

−

−

α α

α α2  = 
z z

z z
( cosh )

cosh
−

− +
α
α2 2 1

By change of scale property,

    Z{ck cosh (αk)} = 

z
c

z
c

z
c

z
c

−FHG
I
KJ

F
HG
I
KJ − FHG

I
KJ +

cosh

cosh

α

α
2

2 1
 = 

z z c
z cz c

( cosh )
cosh

−
− +

α
α2 22

.

(ii)  Z{cos (αk)} = 
e ei k i k

k

α α+F
HG

I
KJ

−

=

∞

∑ 2
0

 z–k = 
1
2

0

1

0

1

k

i k

k

i ke z e z
=

∞
−

=

∞
− −∑ ∑+

L
N
MM

O
Q
PP( ) ( )α α

= 
1
2

1 11 1 1 1( ) ( )− + −− − − − −e z e zi iα α  = 
1
2

z
z e

z
z ei i−

+
−

L
NM

O
QP−α α
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= 
z z

z z2
2 2

2 12
−

− +
F
HG

I
KJ

cos
cos

α
α

 = 
z z

z z
( cos )

cos
−

− +
α
α2 2 1

By  change of scale property,

 Z{ck cos (αk)} = 

z
c

z
c

z
c

z
c

F
HG
I
KJ −FHG

I
KJ

F
HG
I
KJ − FHG

I
KJ +

cos

cos

α

α
2

2 1

 = 
z z c

z cz c
( cos )

cos
−

− +
α

α2 22

(iii) Z cosh
kπ α
2

+F
HG

I
KJ

RST
UVW  = 

k =

∞

∑
0

 cosh 
kπ α
2

+F
HG

I
KJ  z–k = 

1
2

 

k =

∞

∑
0

e e
k kπ α π α
2 2

+F
HG

I
KJ − +F

HG
I
KJ+

R
S|
T|

U
V|
W|

 z–k

= 
1
2

 e e z e e zk kα π α π( ) ( )/ –1 / –12

0

2

0

+
L
N
MM

O
Q
PP

∞
− −

∞

∑ ∑

= 
1
2

 [eα (1 – eπ/2 z–1)–1 + e–α (1 – e–π/2 z–1)–1]

= 
1
2

 e
z

z e
e

z
z e

α
π

α
π. /

–
/−

F
HG

I
KJ +

−
F
HG

I
KJ

L
N
MM

O
Q
PP−2 2  = 

z
2

e z e e z e
z e z e

α π α π

π π
( ) ( )

( ) ( )

/ /

/ /
− + −

− −

L
NM

O
QP

− −

−

2 2

2 2

= 
z
2

 
2 2

2 2 12
z
z z
cosh cosh ( / )

( cosh / )
α α π

π
− −

− +
L
NM

O
QP  = 

z z

z z

cosh cosh

cosh /
.

α π α

π

− −FHG
I
KJ

L
NM

O
QP

− +
2

2 2 12

Example 7. Find the Z-transform of cos
k
8
π α+F
HG

I
KJ

RST
UVW; k ≥ 0.

Sol.  Z cos
kπ α
8

+F
HG

I
KJ

RST
UVW = 

k =

∞

∑
0

cos 
kπ α
8

+F
HG

I
KJ  z–k = 

k =

∞

∑
0

 cos cos sin sin
k kπ α π α
8 8

−F
HG

I
KJ  z–k

 = cos α Z cos
kπ
8

F
HG

I
KJ  – sin α Z sin

kπ
8

F
HG

I
KJ

 = cos α . 
z z

z z

( cos / )

cos

−

− +

R
S|

T|

U
V|

W|
π
π

8

2
8

12
 – sin α . 

z

z z

sin /

cos

π
π
8

2
8

12 − +

F

H
GGG

I

K
JJJ

| From Ex. 5 and 6

   = 
z z z

z z

2

2

8 8

2
8

1

−FHG
I
KJ −

− +

cos cos sin sin

cos

π α π α

π  = 
z z

z z

2

2

8

2
8

1

cos cos

cos

α π α

π

− −FHG
I
KJ

− +
 .

Example 8. If F(z) = 
z(z cos aT)

z 2z cos aT 12
−

− +
 , find f(0).

Sol. From initial value theorem, f(0) = Lt
z → ∞

F(z)
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∴  f(0) = Lt
z → ∞

z z a
z z a

( T)
T

−
− +

cos
cos2 2 1

 = 1 by L’ Hospital rule.

Example 9. If F(z) = 
z

z e T− − , find Lt
t → ∞

 f(t).

Sol. From final value theorem, we have

 Lt
t → ∞

 f(t) = Lt
z → 1

 (z – 1)F(z) = Lt
z → 1

 (z – 1) 
z

z e− −T  = 0.

Example 10. Find Z–1 1
z 1+
RST
UVW
 given Z–1 

z
z 1+
RST
UVW = (– 1)k.

Sol.     Z–1 
1

1z +
RST
UVW = Z–1 z

z
z

−

+
RST

UVW
1

1
.

 = Z–1 
z

z k k+
RST
UVW → −1 1

 = −FHG
I
KJ

R
S|
T|

U
V|
W| → −

1
1

k

k k

 = {(– 1)k–1}, k = 1, 2, 3, ......

Example 11. Find Z–1 
3

3z 1−
F
HG

I
KJ  .

Sol. Z–1 
3

3 1z −
RST

UVW= Z–1 
1

1
3

z −

R
S|

T|

U
V|

W|
 = Z–1 z

z

z

−

−

R
S|

T|

U
V|

W|

L

N

MMMM

O

Q

PPPP
1

1
3

= Z–1 z

z

k k

−

R
S|

T|

U
V|

W| → −

1
3

1

 = 
1
3

1F
HG
I
KJ

−k

 or 
1
3

1F
HG
I
KJ

−k

 u(k – 1).

Example 12. Using differentiation property, find the Z-transform of
(i) k ak u(k) (ii) k(k – 1) ak u (k).

Sol. (i) Z{kak u(k)} = z–1 
d

dz−1  
z

z a−
F
HG
I
KJ

 = z–1 
d

dz−1  (1 – az–1)–1 = z–1 . a
az

az
az( ) ( )1 11 2

1

1 2−
=

−−

−

−

(ii)  Z {k(k – 1) ak u(k)} = z–2 
d

d z

2

1 2( )−  (1 – az–1)–1 = 
2

1

2 2

1 3
a z
az

−

−−( )
.

Note. If a = 1, then Z{k u(k)} = 
z

z

−

−−

1

1 21( )
and Z{k(k – 1) u(k)} = 

2

1

2

1 3
z

z

−

−−( )
.

Example 13. Find the Z-transform of f ∗ g where
(i) f(n) = u(n), g(n) = 2n u(n)

(ii) f(n) = 3n u(n), g(n) = 4n u(n) using convolution theorem.

Sol. (i)  F(z) = Z{u(n)} = 
n =

∞

∑
0

 1 . z–n = 
z

z − 1
 if | z | > 1
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 G(z) = Z{2n u(n)} = 
n =

∞

∑
0

 2n z–n = 
z

z − 2  if | z | > | 2 |

By convolution theorem
 Z{f ∗ g} = Z{w(n)} = W(z) = F(z). G(z)

= 
z

z − 1
 . 

z
z − 2

 = 
z

z z

2

1 2( )( )− −
 if | z | > | 2 |.

(ii) F(z) = Z{3nu(n)} = 
z

z − 3
 if | z | > | 3 |

 G(z) = Z{4nu(n)} = 
z

z − 4
 if | z | > | 4 |

By convolution theorem
Z{f ∗ g} = Z{w(n)} = W(z) = F(z) . G(z)

= 
z

z − 3
 . 

z
z − 4

 = 
z

z z

2

3 4( )( )− −
 if | z | > | 4 |.

Example 14. Compute the convolution f(k) of the two sequences :

 f1(k) = {4, – 2, 1} and f2(k) = 
1, 0 k 5
0, otherwise

≤ ≤RST
UVW .

Sol.  F1(z) = Z{f1(k)} = 4 – 2z–1 + z–2

 F2(z) = Z{f2(k)} = 1 + z–1 + z–2 + z–3 + z–4 + z–5

∴  F(z) = F1(z) . F2(z) = 4 + 2z–1 + 3z–2
 + 3z–3 + 3z–4 + 3z–5 – z–6 + z–7

Taking inverse Z-transform, we get

f(k) = { , , , , , , , }4 2 3 3 3 3 1 1A − .

Example 15. Determine the cross-correlation sequence rf f1 2
 (l) of the sequences :

f1(k) = {1, 2, 3, 4 } and f2(k) = {4, 3, 2, 1}.
Sol. Cross-correlation sequence can be obtained using the correlation property of

Z-transform.
   F1(z) = 1 + 2z–1 + 3z–2 + 4z–3

   F2(z) = 4 + 3z–1 + 2z–2 + z–3

⇒   F2(z
–1) = 4 + 3z + 2z2 + z3

 R f f1 2
(z) = F1(z) . F2(z

–1) = (1 + 2z–1 + 3z–2 + 4z–3) (4 + 3z + 2z2 + z3)

  = (z3 + 4z2 + 10z + 20 + 25z–1 + 24z–2 + 16z–3)

∴ rf f1 2
(l) = Z–1{R f f1 2

(z)} = { , , , , , , }1 4 10 20 25 24 16A .

Example 16. If F(z) = 
2z 5z 14

(z 1)

2

4
+ +
−

, evaluate f(2) and f(3).

Sol.    F(z) = 
1 2 5 14

12

1 2

1 4z
z z

z
.

( )
+ +

−

L
NM

O
QP

− −

−

By initial value theorem, f(0) = Lt
z → ∞

. F(z) = 0
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Similarly,   f(1) = Lt
z → ∞

 z{F(z) – f(0)} = 0

  f(2) = Lt
z → ∞

 z2{F(z) – f(0) – z–1f(1)} = 2 – 0 – 0 = 2

  f(3) = Lt
z → ∞

z3{F(z) – f(0) – z–1f(1) – z–2 f(2)} = Lt
z → ∞

 z3{F(z) – 2z–2}

= Lt
z → ∞

 z3 . 
2 5 14

1
22

4 2
z z

z z
+ +

−
−

L
NM

O
QP( )

= Lt
z → ∞

 z3. 
13 2 8 2

1

3 2

2 4
z z z

z z
+ + −

−

RST
UVW( )

 = 13.

ASSIGNMENT

1. Find the Z-transform (one sided) of the following sequences {f(k)} where f(k) is

(i) 1
4
F
HG
I
KJ

k
 u(k) (ii) (cos θ + i sin θ)k (iii) (– 1)k u(k)

(iv) 3k sin 
kπ
2

(v) 2k cos 
kπ
2

(vi) 4k + 
1
2

3F
HG
I
KJ +

k

u k( – ).

2. Find the Z-transform of {f(k)} where f(k) = k 2k

3. Show that

(i) Z(cosh kθ) = 
z z

z z

( cosh )

cosh

−
− +

θ
θ2 2 1

(ii) Z(sinh k θ) = 
z

z z

sinh

cosh

θ
θ2 2 1− +

.

4. Show that

(i) Z(e–ak cos kθ) = 
ze ze

z e ze

a a

a a
( cos )

cos
−

− +
θ
θ2 2 2 1

(ii) Z(e–ak sin kθ) = 
ze

z e ze

a

a a
sin

cos
θ

θ2 2 2 1− +
.

5. Using Z(n2) = 
z z

z

( )

( )

+
−

1

1 3 , show that Z(n + 1)2 = 
z z

z

2

3
1

1

( )

( )

+
−

 .

6. Given Z(un) = 
2 3 4

3

2

3
z z

z

+ +
−( )

 , | z | > 3, show that u1 = 2, u2 = 21, u3 = 139.

7. Using Z(k) = 
z

z( )− 1 2  , show that Z(k cos kθ) = 
( ) cos

( cos )

z z z

z z

3 2

2 2
2

2 1

+ −
− +

θ
θ

.

8. Find the convolutions of

(i) k(k – 1) ∗ 3k (ii) 3k ∗ cos kθ (iii) cos kπ
2

 ∗ sin kπ
2

 .

9. Prove that Z{kn} = – z 
d
dz

 [Z{kn–1}].

10. Evaluate the Z-transform of the sequence {f(k)} = 
k =

∞

∑
0

2k 
k =

∞

∑
0

3k.

Answers

1. (i)
4

4 1
z

z − (ii)
z

z ei− θ (iii)
z

z + 1
(iv)

3

92
z

z +
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(v)
z

z

2

2 4+
(vi)

z
z

z
z z z−

+
−

+
−4

2
2 1

1

12( )

2.
2

2 2
z

z( )−
8. (i) 

2

1 3

2

3
z

z z( ) ( )− −
(ii)

z z

z z z

2

23 2 1

( cos )

( )( cos )

−
− − +

θ
θ

(iii)
z

z

3

2 21( )+
10.

z
z z

2

2 3( )( )− −
.

2.26 INVERSE Z-TRANSFORM

Inverse Z-transform is a process for determining the sequence which generates given
Z-transform. If F(z) is the Z-transform of the sequence {f(k)}, then {f(k)} is called the inverse
Z-transform of F(z). The operator for inverse Z-transform is Z–1.

If Z{f(k)} = F(z), then Z–1 [F(z)] = {f(k)}.

2.27 METHODS OF FINDING INVERSE Z-TRANSFORMS

We have the following methods of finding inverse Z-transforms:
(1) Convolution method (2) Long division method
(3) Partial fractional method (4) Residue method (or Inverse Integral method)
(5) Power series method.

2.27.1. Convolution Method
We know that  Z{f ∗ g} = F(z) G(z)

∴   Z–1 {F(z) G(z)} = f ∗ g =  
m

k

f m g k m
=
∑ −

0

( ) ( ).

EXAMPLES

Example 1. Find Z–1 z
(z a)(z b)

2

− −
RST

UVW
 using convolution theorem.

Sol. We know that Z–1 {F(z) G(z)} = f ∗ g

Let F(z) = 
z

z a( )−
∴ f(k) = Z–1{F(z)} = Z–1 

z

z a−
RST
UVW = ak

G(z) = 
z

z b−
∴ g(k) = Z–1{G(z)} = Z–1 

z

z b−
RST
UVW  = bk

  Z–1{F(z) G(z)} = f ∗ g = ak ∗ bk

  = 
m

k

=
∑

0

 ambk–m = bk 
m

k

=
∑

0

a
b

mF
HG
I
KJ (a G.P.)

 = bk 

a
b

a
b

kF
HG
I
KJ −

−

R
S
||

T
||

U
V
||

W
||

+1

1

1
 = 

a b
a b

k k+ +−
−

1 1

 .

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com


INTEGRAL TRANSFORMS 189

Example 2. Using Convolution theorem, evaluate Z–1 
z

(z 1)(z 3)

2

− −

RS|T|
UV|W|  .

Sol. We know that
 Z–1 {F(z) . G(z)} = f ∗ g

Let F(z) = 
z

z − 1
∴ f(k) = (1)k

G(z) = 
z

z − 3
∴ g(k) = (3)k

Now,  Z–1 {F(z) . G(z)} = (1)k ∗ (3)k

 = 
m

k

=
∑

0

1m 3k–m = 3k 
m

k

=
∑

0

1
3
F
HG
I
KJ

m

(a G.P.)

 = 3k 

1
3

1

1
3

1

1F
HG
I
KJ −

−

R
S
||

T
||

U
V
||

W
||

+k

 = 
( ) ( )1 3

1 3

1 1k k+ +−
−

 = 
1
2

3 11( )k+ −RST
UVW .

2.27.2. Long Division Method

Since Z-transform is defined by the series F(z) = 
k =

∞

∑
0

 f(k) z–k (one sided), to find the inverse

Z-transform i.e., Z–1 [F(z)], expand F(z) in the proper power series and collect the coefficient of
z–k to get f(k).

EXAMPLES

Example 1. Find inverse Z-transform of

(i)
10z

z 3z 22 − +
(ii)

2(z z)
(z 1)

3

2 2
−

+
.

Sol. (i) F(z) = 
10
3 22

z
z z− +

 = 
10

1 3 2

1

1 2
z

z z

−

− −− +
By actual division,

10z–1 + 30z–2 + 70z–3 + ......

 1 – 3z–1 + 2z–2 )  10z–1

   10z–1 – 30z–2 + 20z–3

 30z–2 – 20z–3

 30z–2 – 90z–3 + 60z–4

  70z–3 – 60z–4

  70z–3 – 210z–4 + 140z–5

 + 150z–4 – 140z–5

∴ F(z) = 10z–1 + 30z–2 + 70z–3 + ......
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Now comparing the quotient with

 
k =

∞

∑
0

 f(k) z–k = f(0) + f(1)z–1 + f(2) z–2 + ......

We get the sequence f(k) as  f(0) = 0,  f(1) = 10,  f(2) = 30,  f(3) = 70, ......
i.e., we can get  f(k) = 10(2k – 1), k = 0, 1, 2, ......

(ii) F(z) = 
2 1

1

2

2 2
z z
z
( )

( )
−

+
 = 

2 2
1 2

1 3

2 4
z z

z z

− −

− −
−

+ +
By actual division, we get  F(z) = 2z–1 – 6z–3 + 10z–5 – 14z–7 + ......

Comparing the quotient with  
k =

∞

∑
0

 f(k) z–k = f(0) + f(1)z–1 + f(2)z–2 + ......

We get    f(0) = 0, f(1) = 2, f(2) = 0, f(3) = – 6, f(4) = 0, f(5) = 10, f(6) = 0, ......

In general  f(k) = 2k sin 
kπ
2

, k = 0, 1, 2, ......

Example 2. Find the inverse Z-transform of

F(z) = 
4z

z a−
for   (i) | z | > | a | (ii) | z | < | a |.

Sol. (i) For | z | > | a |, we have

4z
z a−  = 

4z
z

 1
1

−FHG
I
KJ

−a
z

 = 4 
k =

∞

∑
0

a
z

kF
HG
I
KJ if

a
z

 < 1

= 
k =

∞

∑
0

4ak z–k, where | z | > | a |

 Z–1 
4z

z a−
F
HG
I
KJ  = {4ak}.

(ii) For | z | < | a |, we have

 
4z

z a−  = – 
4z
a

 1
1

−FHG
I
KJ

−z
a

= – 
4z
a

 1
2

2

3

3+ + + +
F
HG

I
KJ

z
a

z
a

z
a

......  , if | z | < | a |

= – 
4z
a

 – 4 4 42

2

3

3

4

4
z

a
z

a
z

a
− −  – .....

 Z–1 
4z

z a−
F
HG
I
KJ  = {f(k)}

where {f(k)} = ...... , , ,− − − −RST
UVW

4 4 4 4
4 3 2a a a a

.
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Example 3. Find the inverse Z-transform of (U.P.T.U. 2014)

  F(z) = 
1

(z 3)(z 2)− − for

  (i) | z | < 2 (ii) 2 < | z | < 3 (iii) | z | > 3.

Sol.  F(z) = 
1

3 2( )( )z z− −  = 
1

3
1

2z z−
−

−
(i) For | z | < 2.

F(z) = – 
1
3

 1
3

1

−FHG
I
KJ

−z
 + 

1
2

1
2

1

−FHG
I
KJ

−z

 = – 
1
3

 (1 + 3–1z + 3–2z2 + 3–3z3 + ...) + 
1

2
 (1 + 2–1z + 2–2z2 + 2–3z3 + ...)

 = – (3–1 + 3–2z + 3–3z2 + ...) + (2–1 + 2–2z + 2–3z2 + ...)
Here coeff. of z–k (if k > 0) = 0

Coeff. of z–k (if k < 0) = – 1
3

1
21 1− + − ++k k

 = – 3k–1 + 2k–1

Now, Z–1{F(z)} = {f(k)} = {– 3k–1} + {2k–1}.
(ii) For 2 < | z | < 3.

 F(z) = – 
1
3

 1
3

1

−FHG
I
KJ

−z
 – 

1
1

2 1

z z
−FHG
I
KJ

−

 = – 
1
3

 1
3 3 3

2

2

3

3+ + + +
F
HG

I
KJ

z z z
......  – 

1
1

2 2 22

2

3

3z z z z
+ + + +
F
HG

I
KJ......

 = – (3–1 + 3–2z + 3–3z2 + 3–4z3 + ......) – (z–1 + 2z–2 + 22z–3 + ......)

Here, coeff. of z–k (if k > 0) = – 2k–1

Coeff. of  z–k (if k ≤ 0) = – 3k–1

Now,  Z–1{F(z)} = {f(k)} = 
− >

− ≤

R
S|
T|

U
V|
W|

−

−

2 0

3 0

1

1

k

k

k

k

,

,
(iii) For | z | > 3.

F(z) = 
1

1
3 1

z z
−FHG
I
KJ

−

 – 
1

1
2 1

z z
−FHG
I
KJ

−

 = 
1
z

 (1 + 3z–1 + 32z–2 + ......) – 
1
z

 (1 + 2z–1 + 22z–2 + ......)

∴ Z–1{F(z)} = {f(k)} = 
3 2 1

0 0

1 1k k k
k

− −− ≥
≤

RST
,

,
.

2.27.3. Partial Fractional Method
Here we split the given F(z) into partial fractions whose inverse transforms can be

written directly.
Example. Find the inverse Z-transform of

(i)
z

z 7z 102 + +
(ii)

z 20z
(z 2) (z 4)

3

3
−

− −
(iii)

8z
(2z 1)(4z 1)

2

− −
 .
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Sol. (i)
F( )z

z
 = 

1
7 102z z+ +

 = 
1

2 5( )( )z z+ +  = 
A

z + 2
 + 

B
z + 5

= 
1
3

1
2

1
3

1
5z z+

−
+

. ∵ A B= = −F
HG

I
KJ

1
3

1
3

,

∴   F(z) = 
1
3 2

1
3 5

z
z

z
z+

−
+

∴  f(k) = Z–1{F(z)} = 
1
3

 Z–1 
z

z
z

z+
RST
UVW −

+
RST
UVW

−

2
1
3 5

1Z

 = 
RST

1
3

 (– 2)k – 
1
3

 (– 5)k UVW ∵ Z( )a
z

z a
k =

−
L
NM

O
QP

(ii)   F(z) = 
z z

z z

3

3
20

2 4
−

− −( ) ( )
or

F( )z
z

 = 
z

z z

2

3
20

2 4
−

− −( ) ( )

Now  
F( )z

z
 = 

z
z z

2

3
20

2 4
−

− −( ) ( )
 = 

A B C+ +
−
z z

z

2

32( )
 + 

D
z − 4

⇒ D = – 
1
2

, A = 6, B = 0, C = 
1
2

∴
F( )z

z
 = 

6
1
2
2

1
2
4

2

3

+

−
+

−FHG
I
KJ

−

z

z z( )

or F(z) = 
1
2

 
12

2 4
1
2

2 4 8
2 4

3

3

2 2

3
z z

z
z

z
z z z z

z
z

z
+

−
−

−
RST

UVW
= − + +

−
−

−
RST

UVW( )
( )

( )

= 
1
2

 
z

z
z z
z

z
z−

+ +
−

−
−

RST
UVW2

2
2 4

2 4

2

3.
( )

Now   f(k) = Z–1{F(z)} = 
1
2

 {2k + 2k22k – 4k}, ∵ Z− +
−

RST
UVW

=
L
N
MM

O
Q
PP

1
2 2

3
2az a z

z a
k ak

( )
= {2k–1 + 2k . k2 – 22k–1}

(iii) F(z) = 
8

2 1 4 1

2z
z z( )( )− −

 = 
z

z z

2

1
2

1
4

−FHG
I
KJ −FHG

I
KJ

 
F( )z

z
 = 

z

z z−FHG
I
KJ −FHG

I
KJ

1
2

1
4

 = 
A B

z z−
+

−1
2

1
4

 = 
2

1
2

1
1
4

z z−
−

−

∴ F(z) = 
2
1 2 1 4
z

z
z

z−
−

−( / ) ( / )

 f(k) = Z–1{F(z)} = 2
1
2

1
4

F
HG
I
KJ − FHG

I
KJ

R
S|
T|

U
V|
W|

k k

 , k = 0, 1, 2, ......
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2.27.4. Inverse Integral Method (or Residue Method)
By using the theory of complex variables, it can be shown that the inverse Z-transform is

given by f(k) = 
1

2πi
 

Cz F(z) zk–1 dz, where C is the circle (may be even closed contour) which

contains all the isolated singularities of F(z) and containing the origin of the z-plane in the
region of convergence. Hence by  Cauchy’s  Residue theorem,

f(k) = sum of the residues of the singularities of F(z).

EXAMPLES

Example 1. By Residue method, find the inverse Z-transform of

(i)
z

z 7z 102 + +
(ii)

z
z 2z 22 − +

(iii)
z z

(z 1)(z 1)

2

2
+

− +

(iv)
2z

z z z 13 2− + −
(v)

z(z 1)
(z 1)3

+
−

(vi)
z(z 1)
(z 1)

2

2 2
−

+
.

Sol. (i) F(z) = 
z

z z2 7 10+ +

 f(k) = 
1

2πi Cz zk–1 F(z) dz = sum of residues

  = 
1

2πi Cz zk–1 
z

z z2 7 10+ +
 dz = 

1
2πi Cz  z

z z

k

( )( )+ +2 5
 dz

Poles are z = – 2, – 5. These are simple poles.

Residue (at z = – 2) = Lt
z → − 2

 (z + 2) z
z z

k

( )( )+ +2 5
 = 

( )− 2
3

k

Residue (at z = – 5) = Lt
z → − 5

 (z + 5) z
z z

k

( )( )+ +2 5
 = ( )−

−
5
3

k

∴ f(k) = sum of residues = 
( )− 2

3

k

 + 
( )−

−
RST|

UVW|
5
3

k

 = 
1
3

 {(– 2)k – (– 5)k}.

(ii)  F(z) = 
z

z z2 2 2− +

 f(k) = 
1

2πi Cz zk–1 F(z) dz = sum of the residues

 = 
1

2πi Cz zk–1 . 
z

z z2 2 2− +
 dz = 

1
2πi Cz z

z z

k

2 2 2− +
 dz

The poles are given by z2 – 2z + 2 = 0 ∴ z = 1 ± i both are simple poles.
Residue at z = 1 + i is

Lt
z i→ +1

 [z – (1 + i)] z
z i z i

k

[ ( )][ ( )]− + − −1 1
 = 

( )1
2
+ i

i

k
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Similarly, residue at z = 1 – i is

Lt
z i→ −1

 [z – (1 – i)] 
z

z i z i

k

[ ( )][ ( )]− + − −1 1
 = 

( )1
2

−
−

i
i

k

∴ f(k) = sum of the residues = 
( )1

2
+ i

i

k

 + ( )1
2

−
−

i
i

k

= 1
2i
RST [(1 + i)k – (1 – i)k ]

UVW ...(1)

We know that   (1 + i)k = ( 2 )k cos sin
k

i
kπ π

4 4
+RST

UVW
   (1 – i)k = ( 2 )k cos sin

k
i

kπ π
4 4

−RST
UVW

∴   (1 + i)k – (1 – i)k = ( 2 )k 2
4

i
k

sin
πRST
UVW

Substituting in (1), we get f(k) = ( ) sin2
4

k kπRST
UVW

(iii) F(z) = 
z z

z z

2

21 1
+

− +( )( )

f(k) = 
1

2πi Cz zk–1 F(z) dz = sum of the residues

 = 
1

2πi Cz zk–1 
z z

z z

2

21 1
+

− +( )( )
 dz = 

1
2πi Cz zk ( )

( )( )
z

z z
+

− +
1

1 12  dz

Poles are given by z = 1, ± i

Residue (at z = 1) = Lt
z → 1

 (z – 1) zk 
( )

( )( )
z

z z
+

− +
1

1 12  = 1

Residue (at z = i) = Lt
z i→

 (z – i) 
z z

z z i z i

k ( )
( )( )( )

+
− − +

1
1

 = 
i i
i i

k ( )
( )( )

+
−

1
1 2

 = 
i i

i

k ( )
( )
1

2 1
+

− +
 = – 

1
2

 ik

Similarly, residue (at z = – i) is = – 
1
2

 (– i)k

∴   f(k) = sum of the residues

   = 1 – 
1
2

 ik – 
1
2

 (– i)k = 1 – 
1
2

 {ik + (– i)k} ...(1)

   ik = cos 
kπ
2

 + i sin 
kπ
2

 ; (– i)k = cos 
kπ
2

 – i sin 
kπ
2

  ik + (– i)k = 2 cos 
kπ
2

 . Substituting in (1), we get

 f(k) = 1 – 
1
2

 2
2

cos
kπRST
UVW = RST 1 – cos 

kπ
2
UVW .
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(iv) F(z) = 
2

13 2
z

z z z− + −
 = 

2
1 12

z
z z( )( )− +

Poles are z = 1, z = ± i

Residue (at z = 1) = Lt
z → 1

 (z – 1) 
2
1 12

z
z z

k

( )( )− +
 = 1

Residue (at z = i) = Lt
z i→

 (z – i) 
2

1
z

z z i z i

k

( )( )( )− − +
 = 

2
1 2
i

i i

k

( )( )−
 = – 

i
i

k

1 +

Residue (at z = – i) = – 
( )−

−
i

i

k

1

f(k) = sum of the residues = 1 – 
i

i
i

i

k k

1 1+
+ −

−
RST|

UVW|
( )

   = 1 – 2 R.P. of 
i

i

k

1 +
F
HG
I
KJ  = 1 – 2R.P. of e

e

ik

i

π

π

/

/

2

42

 = 1 – 2  R.P. of eik iπ π/ /2 4−

= 1 – 2  cos 
kπ π
2 4

−F
HG

I
KJ  = 1

2 2
– cos sin

k kπ π+F
HG

I
KJ

RST
UVW  .

(v) F(z) = 
z z
z
( )

( )
+

−
1

1 3

z = 1 is a pole of order 3

∴ Residue (at z = 1) = 
1
2 !

 Lt
z → 1

 
d
dz

2

2  
( ) . ( )

( )
z z z

z

k− +
−

RST|
UVW|

1 1
1

3

3

= 
1
2 !

 Lt
z → 1

 {k(k + 1)zk–1 + k(k – 1)zk–2}

= 
1
2

 {k2 + k + k2 – k} = k2

∴ f(k) = sum of the residues = {k2}, k = 0, 1, 2, ......

(vi) F(z) = 
z z
z
( )

( )

2

2 2
1

1
−

+
z = ± i are poles and each is a pole of order 2.

 Residue (at z = i) = Lt
z i

d
dz→

 ( )
( )

( ) ( )
z

z z
z i z i

k

− −
− +

RST|
UVW|

1
12

2

2 2  = Lt
z i

d
dz→

 
z z

z i

k ( )
( )

2

2
1−

+

RST|
UVW|

 = Lt
z i→

 
( ) [ . ( )] ( ) . ( )

( )
z i z z kz z z z z i

z i
kk k k+ + − − − +

+
=

−2 1 2 2

4
2 1 1 2

2
 ik–1

Similarly,   R2 = Residue of f(z) (at z = – i) = 
k
2

(– i)k–1

∴      f(k) = sum of the residues = 
k

i ik k

2
1 1[ ( ) ]− −+ −RST

UVW , k = 0, 1, 2, .....
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Example 2. Using residue’s method, evaluate Z–1 
8z z
(4 z)

3

3
−
−

RST
UVW

.

Sol. Here, F(z) = 
( )8

4

3

3
z z

z
−

−( )
Poles are given by,  z = 4 (pole of order 3)

Residue of F(z) (at z = 4) is

 R =
−

− −
−

RST
UVW

L
N
MM

O
Q
PP

−

=

1
3 1

4
8
4

2

2
3 1

3

3
4

( ) !
( ) .

( )
d
dz

z z
z z

z
k

z

 = −
L
NM

O
QP

−

=

1
2

8
2

2
3 1

4

d
dz

z z zk

z

{( ) }  = −
L
NM

O
QP

+

=

1
2

8
2

2
2

4

d
dz

z zk k

z

( )

 = 
1
2

 [(k + 2)(k + 1)zk – 8k(k – 1)zk – 2]z = 4

 = 
1
2

 [(k + 2)(k + 1) (4)k – 
1
2

 k(k – 1) (4)k]

= + + − −L
NM

O
QP

4
2

3 2
1
2

2 2
k

k k k k( )  = (k2 + 7k + 4) (4)k – 1

∴ Z–1 
8
4

3

3
z z

z
−
−

RST
UVW( )

 = R = {(k2 + 7k + 4) (4)k – 1}.

Example 3. Using residue’s method, show that

Z–1 
3z 2

(5z 1)(5z 2)
53
75

(.2)
31
75

( .4)
2

k k+
− +

RST
UVW

= + − .

Sol. Here,  F(z) = 
3 2

5 1 5 2

2z
z z

+
− +( )( )

Poles are given by (5z – 1)(5z + 2) = 0

⇒ z = 
1
5

2
5

,
−

 which are simple poles. Consider a contour | z | = 1

Residue (at z = 
1
5

) is  R1 = Lt
z

kz z
z

z z→

−−FHG
I
KJ

+
− +

L
NM

O
QP1

5

1
21

5
3 2

5 1 5 2
.

( )( )

= Lt
z

k

z
z z

→

−

+
+

L
NM

O
QP1

5

1 21
5

1
5 2

3 2.
( )

( )

= 
1

15
1
5

3
25

2
1F

HG
I
KJ +FHG

I
KJ

−k

 = 
53
75

 (.2)k

Residue (at z = – 2/5) is

 R2 = Lt
z → − 2 5/

 z +FHG
I
KJ

2
5

 . zk–1 . 3 2
5 1 5 2

2z
z z

+
− +( )( )
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= Lt
z → − 2 5/

 1
5

1
5 1

3 21 2.
( )

( )
z

z zk

−
+

L
NM

O
QP

−

= 
1
5

1
3

2
5

12
25

2
1

. .−FHG
I
KJ

−F
HG
I
KJ +FHG

I
KJ

−k

 = 
( ) .

( )
− −

+
1 2
5

1

2

k k

k  . 
62
3

= 
62
75

 (– 1)k . 2k–1 (.2)k = 
31
75

 (– .4)k

Hence, Z–1 {F(z)} = {f(k)} = sum of residues = R1 + R2 = 
53
75

2
31
75

4(. ) ( . )k k+ − .

2.27.5. Power Series Method
In this method we find the inverse Z-transform by expanding F(z) in power series as illustrated
in the following example.

Example. Find Z–1 log
z

z 1+
F
HG
I
KJ

RST
UVW

 by power series method.

Sol. F(z) = log 
z

z +
RST
UVW1  ,

Let z = 
1
y

then F(z) = log 
1

1 1
/

/
y

y +
RST

UVW = – log (1 + y)

= – y + 
1
2

 y2 – 
1
3

 y3 + ...... = – 
1
z

 + 
1

2 2z
 – 

1
3 3z

 + ······ + ( )− 1 k

k
 z–k

∴ f(k) = z–1 {F(z)} = 
0 0
1
,

( )
,

for

otherwise

k

k

k
=

−
R
S|
T|

 .

2.28 SOME IMPORTANT INVERSE Z-TRANSFORM RESULTS

S.No. F(z) {f(k)} {f(k)}
where | z | > | a |, k > 0 where | z | < | a |, k < 0

1.
1

z a−
ak–1 U (k – 1) – ak–1 U(– k)

2.
z

z a−
ak U (k) or ak – ak

3.
z

z a

2

2( )−
(k + 1) ak – (k + 1) ak

4.
1

2( )z a−
(k – 1) ak–2 U (k – 2) – (k – 1) ak–2 U (– k + 1)

5.
z

z a

n

n( )−
1

1( ) !n −
 (k + 1) ...... (k + n – 1) ak U(k) – 

1
1( ) !n −

 (k + 1) ...... (k + n – 1) ak
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2.29 DIFFERENCE EQUATIONS

The inherent discrete nature of some physical phenomena gives rise to work with discrete
functions. The mathematical models in which a variable can have only discrete set of values,
give a chance to study difference equations. Difference calculus also forms the basis of difference
equations which arise in the theory of probability, in the study of electrical networks, in
statistical problems and in all situations where sequential relation exists at various discrete
values of the independent variable.

2.30 DEFINITION

A difference equation is a relation between the differences of an unknown function at one or
more general values of the argument.

Or
An equation which connects various differences of an unknown function is called a

difference equation.
A difference equation is a relationship of the form

F x y
y
x

y
x

y
x

n

n, , , , ......,
Δ
Δ

Δ
Δ

Δ
Δ

2

2

L
NM

O
QP
 = 0 ...(1)

Let y = f(x), then   
Δ
Δ

y
x

 = 
f x h f x

h
( ) ( )+ −

Δ
Δ

2

2
y

x
 = 

f x h f x h f x
h

( ) ( ) ( )+ − + +2 2
2

  #
Δ
Δ

n

n
y

x
 = 

f x nh
hn

( ) ...... ......
... ,

+ − +

where h is the interval of differencing. Hence eqn. (1) can be rewritten as
φ [x, f(x), f(x + h), f(x + 2h), ......, f(x + nh)] = 0 ...(2)

where f(x) = y is an unknown function.
e.g. Δyk + 2yk = 0 ...(3)

  Δ2yk + 3Δyk + yk  = 0 ...(4)
If we put Δ ≡ E – 1, where E is an operator called shift operator such that E{f(x)} = f(x + 1),

then eqns. (3) and (4) can be rewritten as
  (E – 1)yk + 2yk = 0

⇒  (E + 1)yk  = 0 ...(5)
and (E – 1)2yk  + 3(E – 1)yk  + yk = 0

⇒ E2yk  + Eyk – yk  = 0 ...(6)
Eqns. (3) and (4) may also be put as

 yk+1 + yk  = 0; yk+2 + yk+1 – yk  = 0.

2.31 ORDER OF A DIFFERENCE EQUATION

The order of a difference equation is defined as the difference between the largest and the
smallest arguments for the function involved divided by h, the interval of differencing.
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Consider the difference equation
  yk+2 + yk+1 – yk  = 0

  Order = 
( )k k+ − =2

1
2.

Note. While finding the order of a difference equation, it must always be expressed in a form free of Δ’s.

2.32 DEGREE OF A DIFFERENCE EQUATION

The degree of a difference equation is defined to be the highest power of f(x).

2.33 SOLUTION OF A DIFFERENCE EQUATION

A solution of a difference equation is any function which satisfies the given equation. The
general solution of a difference equation is defined as the solution which involves as many
arbitrary constants as the order of the difference equation.

The particular solution is  a solution obtained from the general solution by assigning
particular values to periodic constants.

Consider a difference equation
yh + 1 – 2yh = 0 ; h = 0, 1, 2, ...... …(1)

Let   yh = 2h, h = 0, 1, 2, ..... …(2)
The function yh defined by (2) satisfies the difference equation (1) so it is called a solution

of eqn. (1). Generally eqn. (1) is satisfied by
     yh = c . 2h for any constant c ...(3)

The function  yh given by eqn. (2) is a particular solution of eqn. (1) while function yh in
eqn. (3) is the general solution of eqn. (1).
Remark. A difference equation may have no solution just as in case of algebraic equation
e.g.  (yh+1 – yh)2 + yh

2 = – 1 is satisfied for no real-valued function y.
We will now proceed to solve difference equations with the help of Z-transforms.

2.34 APPLICATIONS OF Z-TRANSFORMS TO DIFFERENCE EQUATIONS

Z-transform is useful in solving difference equations.
The given difference equation can be converted to the form y  = φ(z) by taking Z-trans-

form on it, provided the initial values of y are known. Using inversion, we can get the value of
yk which is the solution of the given difference equations.

2.35 PROVE THAT

 Z(yk+n) = zn y y
y
z

...
y
z0

1 n 1
n 1− − − −F

HG
I
KJ

−
− , where Z(yk) = y.

Proof.  LHS = Z (yk+n) = 
k =

∞

∑
0

 yk+n z–k = zn 
k =

∞

∑
0

 yk+n z–(n+k)

Setting m = n + k, we get

 z(yk+n) = zn 
m n=

∞

∑  ym z–m = zn 
m

m
m

m
m

m

n

y z y z
=

∞
− −

=

−

∑ ∑
L
N
MM

O
Q
PP0 0

1

–
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 = zn y y
y
z

y
z

y

z
n
n− − − − −L

NM
O
QP

−
−0

1 2
2

1
1...... .

Note. For n = 1, 2, 3, ......, we have

  Z(yk+1) = z( y  – y0)

  Z(yk+2) = z2 y y
y
z

− −F
HG

I
KJ0

1

  Z(yk+3) = z3 y y
y
z

y

z
− − −F
HG

I
KJ0

1 2
2  and so on ...

Note. If Z(yk) = y , then Z(yk–n) = z–n y .

EXAMPLES

Example 1. Solve by Z-transform: yk+1 + yk = 1 if y0 = 0.
Sol. Take Z-transform on both sides, we get

Z(yk+1) + Z(yk) = Z(1)

∴  z( y  – y0) + y  = 
z

z − 1

⇒  y (z + 1) = 
z

z − 1 (∵ y0 = 0)

∴   y  = 
z

z z( – )( )1 1+
 = 

1
2

 
z

z
z

z−
−

+
L
NM

O
QP1 1

Take inverse Z-transform,

∴ yk = 
1
2

 Z Z− −

−
F
HG
I
KJ −

+
F
HG
I
KJ

L
NM

O
QP

1 1

1 1
z

z
z

z
 = 

1
2

 {1 – (– 1)k}.

Example 2. Solve by Z-transform: yk+2 – 3yk+1 + 2yk = 0; y0 = 0, y1 = 1.
Sol. Take Z-transform on both sides,

 Z(yk+2) – 3Z(yk+1) + 2Z(yk) = Z(0)

⇒ z2 y y
y
z

− −F
HG

I
KJ0

1  – 3z ( y  – y0) + 2 y  = 0

(z2 – 3z + 2) y  = z

∴ y  = 
z

z z2 3 2− +
 = 

z
z z( )( )− −1 2

 = 
z

z − 2
 – 

z
z − 1

Take inverse Z-transform, we get

yk = Z–1 z
z

z
z−

−
−

F
HG

I
KJ2 1

 = {2k – 1} where k = 0, 1, 2, ....

Example 3. Solve the following difference equations using Z-transform
yk+1 – 2yk = 1; k ≥ 0, y0 = 1.

Sol. Taking Z-transform on both sides, we get
Z(yk+1) – 2 Z(yk) = Z(1)
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⇒      z( y  – y0) – 2 y  = 
z

z − 1

⇒ (z – 2) y  = z
z − 1

 + z = 
z

z

2

1−
| ∵ y0 = 1

⇒ y
z

z z
=

− −

2

1 2( ) ( )

⇒  
y
z

 = 
z

z z z z( )( )− −
=

−
−

−1 2
2

2
1

1

or y  = 
2

2 1
z

z
z

z−
−

−
Taking inverse Z-transform, we get

yk = 2 Z–1 
z

z −
F
HG
I
KJ2  – Z–1 

z
z −
F
HG
I
KJ1  = 2 (2k) – 1 = {2k+1 – 1}.

Example 4. Solve using Z-transform : yx+2 – 2 cos α yx+1 + yx = 0, y0 = 0, y1 = 1.

Sol. Take Z-transform on both sides,

z2 y y
y
z

− −F
HG

I
KJ0

1  – 2 cos α . z ( y  – y0) + y  = 0

⇒ z2 y
z

−FHG
I
KJ

1
 – 2z cos α . y  + y  = 0

y  = 
z

z z
z

z e z ei i2 2 1− +
=

− − −cos ( )( )α α α

y  = 
− i

2 sin α
 z

z e
i z

z ei i−
F
HG

I
KJ +

−
F
HG

I
KJ−α αα2 sin

.

∴ Taking inverse Z-transform, we get

yx = 
− i

2 sin α
 [(eiα)x – (e–iα)x]

= 
− i

2 sin α
 [(cos α x + i sin α x) – (cos α x – i sin α x)]

= 
sin
sin

α
α
xRST
UVW  .

Example 5. Solve using Z-transform : yk + 
1
4

 yk–1 = δ(k) + 
1
3

 δ(k – 1)

where δ(k) is unit impulse sequence.

Sol. Taking Z-transform on both sides, we get

  Z(yk) + 
1
4

 Z(yk–1) = Z{δ(k)} + 
1
3

 Z{δ(k – 1)}

⇒     y  + 
1
4

 z–1 y  = 1 + 
1
3

 z–1
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⇒   y  = 
1

1
3

1
1
4

1
3
1
4

1

1

+

+
=

+

+

−

−

z

z

z

z

There is only one simple pole at z = – 
1
4

 .

Residue at z = −F
HG

I
KJ

1
4

 is   = z z
z

z

k

z

+FHG
I
KJ

+

+FHG
I
KJ

L

N

MMMM

O

Q

PPPP
−

= −

1
4

1
3
1
4

1

1
4

. .

 = z zk

z

−

= −

+FHG
I
KJ

L
NM

O
QP

1

1
4

1
3

.  = 
1
3

1
4

1
4

1
12

1
4

1 1

−FHG
I
KJ −FHG
I
KJ = −FHG

I
KJ

− −k k

.

∴ yk = Residue = 
1

12
1
4

1

−FHG
I
KJ

R
S|
T|

U
V|
W|

−k

 .

Example 6. Solve by Z-transform yk+1 + 
1
4

y
1
4k

k

= FHG
I
KJ  ; k ≥ 0,  y0= 0. (U.P.T.U. 2009)

Sol. Take Z-transform on both sides,

Z(yk+1) + 
1

4
 Z(yk) = Z 

1
4
F
HG
I
KJ

L
N
MM
O
Q
PP

k

⇒  z( y  – y0) + 
1

4
 y  = 

z

z − 1
4

∴  y  = 
z

z z−FHG
I
KJ +FHG

I
KJ

1
4

1
4

   
y
z z z

=
+

L

N

MMM

O

Q

PPP
2

1
1
4

1
1
4

–
–

∴    y
z

z

z

z
=

+

F

H
GGG

I

K
JJJ

2 1
4

1
4

–
–

Take inverse Z-transform on both sides,

    yk = 2 
1
4

1
4

F
HG
I
KJ − −FHG

I
KJ

R
S|
T|

U
V|
W|

k k

.

Example 7. Solve:  yk + 
1
25

 yk–2
 = 

1
5

kF
HG
I
KJ  cos 

k
2
π

 (k ≥ 0) by residue method.

Sol. Take Z-transform on both sides, we get

Z y yk k+FHG
I
KJ−

1
25 2  = Z 

1
5

2F
HG
I
KJ
L
N
MM

O
Q
PP

k

kcos /π
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⇒   y z y
z

z
+ =

+

1
25 1

25

2

2

–2 ∵ Z

Here

( cos )
( cos )

cos
/ , /

c k
z z c

z cz c
c

k α α
α

α π

= −
− +

= =
2 22

2 1 5

∴   y  = 
z

z z

2

2 21
25

1
1

25
+FHG
I
KJ +FHG

I
KJ

−
 = 

z

z

4

2
21

25
+FHG
I
KJ

There are two poles of II order at z = 
i
5

 and z = 
− i
5

.

Residue   at z
i=F

HG
I
KJ5 = F

HG
I
KJ

+FHG
I
KJ

R
S
||

T
||

U
V
||

W
||

L

N

MMMMM

O

Q

PPPPP =

d
dz

z
i

z
z

z

k

z
i

– . .–

5 1
25

2
1

4

2
2

5

   =
+FHG
I
KJ

R
S
||

T
||

U
V
||

W
||

L

N

MMMMM

O

Q

PPPPP

+

=

d
dz

z

z
i

k

z
i

.
3

2

5
5

 =
+FHG
I
KJ + +FHG

I
KJ

+FHG
I
KJ

L

N

MMMMM

O

Q

PPPPP

+ +

=

z
i

k z z z
i

z
i

k k

z
i

5
3 2

5

5

2
2 3

4

5

( ) –

   = +F
HG
I
KJ
F
HG
I
KJ = +F

HG
I
KJ
F
HG
I
KJ +F
HG

I
KJ

k
i

k
i

k
k

k k2
4

1
5

2
4

1
5 2 2

. . . cos sin
π π

   = + +F
HG

I
KJ

( )
. ( )

. cos sin
k

k i kk
2

4 5 2 2
π π

Residue at z
i= −F

HG
I
KJ5

 = 
( )

. ( )
k

k
+ 2

4 5
 cos sin

k
i

kπ π
2 2

−F
HG

I
KJ

 yk = sum of residues = 
( )

. ( )
k

k
+ 2

2 5
 cos  

kπ
2

 .

Example 8. Solve by Z-transform the difference equation
 yk+2 + 6yk+1 + 9yk = 2k ; (y0 = y1 = 0). (U.P.T.U. 2010, 2014)

Sol. Taking Z-transform on both sides, we get
Z(yk+2) + Z(6yk+1) + Z(9yk) = Z(2k)

⇒ z2 y y
y
z

− −F
HG

I
KJ0

1
 + 6z ( y  – y0) + 9 y  = 

z
z − 2

⇒  (z2 + 6z + 9) y  = 
z

z − 2

⇒  y  = 
z

z z( )( )− +2 3 2

Poles are given by (z – 2)(z + 3)2 = 0 ⇒ z = 2, – 3
There are two poles out of which one is simple and other is double.

Residue (at z = 2) = ( ) .
( )( )

z z
z

z z
k

z

−
− +

L
NM

O
QP

−

=

2
2 3

1
2

2
 = 

z
z

k

z( )+

L
NM

O
QP =3 2

2

 = 
2
25

k
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Residue (at z = – 3) = 
1

2 1( ) !−
 

d
dz

z z
z

z z
k

z

2 1

2 1
2 1

2
3

3
2 3

−

−
−

= −

+
− +

RST
UVW

L
N
MM

O
Q
PP( ) .

( )( )

= 
d
dz

z
z

k

z
( )−
RST|

UVW|
L
N
MM

O
Q
PP = −

2
3

 = 
( ) .

( )
z kz z

z

k k

z

− −
−

L
NM

O
QP

−

= −

2
2

1

2
3

= 
− − − −−5 3 3

25

1k k k( ) ( )
 = – 

1
5

 k(– 3)k–1 – ( )− 3
25

k

Hence  f(k) = Sum of the residues = 
RST

2
25 5

k k−  (– 3)k–1 – ( )− 3
25

k UVW  .
Example 9. Using Z-transform, solve the following difference equation:

yk+2 + 4yk+1 + 3yk = 3k, given y0 = 0 and y1 = 1.
Sol. Taking Z-transform on both sides, we get

 Z(yk+2) + 4Z(yk+1) + 3Z(yk) = Z(3k)

⇒ z2 y y
y
z

− −F
HG

I
KJ0

1  + 4z( y  – y0) + 3 y  = 
z

z − 3

⇒  (z2 + 4z + 3) y  – z = 
z

z − 3

⇒  y  = 
z

z z z
z

z z( )( )( ) ( )( )− + +
+

+ +3 1 3 1 3
Taking inverse Z-transform,

yk = Z–1 
z

z z z
z

z z( )( )( ) ( )( )− + +
RST

UVW +
+ +

RST
UVW

−

3 1 3 1 3
Z 1

= Z–1 {P(z)} + Z–1 {Q(z)}

Residue of P(z) at (z = 3) = Lt
z → 3

 (z – 3). zk–1 . 
z

z z z( )( )( )− + +3 1 3  = 
3
24

k

Residue of P(z) at (z = – 1) = Lt
z → –1

 (z + 1) . zk–1 . 
z

z z z( )( )( )− + +3 1 3  = 
( )
( )
−
−
1
8

k

Residue of P(z) at (z = – 3) = Lt
z → –3

 (z + 3) . zk–1 . 
z

z z z( )( )( )− + +3 1 3  = 
( )− 3

12

k

Residue of Q(z) at (z = – 1) = Lt
z → − 1

 (z + 1) . zk–1 . 
z

z z( )( )+ +1 3  = 
( )− 1

2

k

Residue of Q(z) at (z = – 3) = Lt
z → − 3

 (z + 3) . zk–1 . 
z

z z( )( )+ +1 3  = 
( )−

−
3
2

k

∴ yk = sum of residues = 
3
24

1
8

3
12

1
2

3
2

k k k k k

− − + −RST|
UVW|

+ − − −RST|
UVW|

( ) ( ) ( ) ( )

= 
3
24

3
8

1
5
12

3
k

k k+ − − −
RST|

UVW|
( ) ( ) .
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Example 10. Use Z-transform to solve the difference equation:
yk+2 – 2yk+1 + yk = 3k + 5.

Sol. We have,
yk+2 – 2yk+1 + yk = 3k + 5. ...(1)

Taking Z-transform on both sides of the given equation, we get

z2 y y
y
z

− −F
HG

I
KJ0

1  – 2z ( y  – y0) + y  = Z(3k + 5) = 3 . 
z

z
z

z( )
.

−
+

−1
5

12 ...(2)

Let y0 = a and y1 = b then, (2) becomes

z2 y a
b
z

− −F
HG

I
KJ  – 2z( y  – a) + y  = 

3
1

5
12

z
z

z
z( )−

+
−

(z2 – 2z + 1) y  – az2 + 2az – bz = 
3

1
5

12
z

z
z

z( )−
+

−

⇒ (z – 1)2 y  = 
3

1
5

12
z

z
z

z( )−
+

−
 + az2 + (b – 2a) z

y  = 
3

1
5

1 1
2

14 3

2

2 2
z

z
z

z
az

z
b a

z
z( ) ( ) ( )

( )
( )−

+
−

+
−

+ −
−

...(3)

Taking inverse Z-transform, we get

yk = Z–1 
3

1
5

1
2

14
1

3

2

2
z

z
z

z
az b a z

z( ) ( )
( )

( )−
L
NM

O
QP

+
−
L
NM

O
QP

+ + −
−

L
NM

O
QP

− −Z Z 1
...(4)

Now, let  F(z) = 
3

1 4
z

z( )−
Pole is z = 1 of order 4.

Residue (at z = 1) = 
1
3 !

 
d
dz

z z
z

z
k

z

3

3
4 1

4
1

1
3

1
( ) . .

( )
−

−
RST

UVW
L
N
MM

O
Q
PP

−

=

 = 
1 L
NM

O
QP =

6
3

3

3
1

d
dz

zk

z

( )

= 
1
2

1 2
1 2
2

3

1
k k k z

k k kk

z
( )( )

( )( )− − = − −−
=

∴   Z–1 [F(z)] = 
k k k( )( )− −1 2

2

Let  G(z) = 
5

1 3
z

z( )−
Pole is z = 1 of order 3.

Residue (at z = 1) = 
1
2 !

 
d
dz

z
z

z
zk

z

2

2
3

3
1

1

1
5

1
( ) .

( )
.−

−
RST

UVW
L
N
MM

O
Q
PP

−

=

 = 
1 L
NM

O
QP =

2
5

2

2
1

d
dz

zk

z

( )

= 
5
2

 [k(k – 1)zk–2]z = 1 = 
5 1

2
k k( )−

∴ Z–1[G(z)] = 
5
2

 k(k – 1)

Let H(z) = 
az b a z

z

2

2
2

1
+ −

−
( )

( )
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Pole is z = 1 of order 2.

Residue (at z = 1) = 
1

2 1
1

2
1

1 2
2

2
1

( ) !
( ) .

{ ( ) }
( )−

− + −
−

RST
UVW

L
N
MM

O
Q
PP

−

=

d
dz

z z
az b a z

z
k

z

= 
d
dz

z az b a zk

z

−

=
+ −F

HG
I
KJ

1 2

1
2{ ( ) }  = 

d
dz

az b a zk k

z
( ( ) )+

=
+ −L

NM
O
QP

1

1
2

= [a(k + 1)zk + (b – 2a) kzk–1]z=1 = a(k + 1) + (b – 2a)k
= a + bk – ak = a(1 – k) + bk

∴    Z–1[H(z)] = a(1 – k) + bk
Now, from (4),

 yk = 
k k k( )( )− − +2 1

2
5
2

 k(k – 1) + bk – a(k – 1)

= 
k k( )− 1

2
 (k + 3) + bk – a(k – 1)

= 
k k k( )( )− +1 3

2
 + (b – a)k + a

= 
k k k

k
( )( )− + + +RST

UVW
1 3
2

C C0 1 .

where, C0 = a and C1 = b – a.

Example 11. Using the Z-transform, solve the following difference equation:

6yk+2 – yk+1 – yk = 0, y(0) = 0, y(1) = 1.

Sol. Taking Z-transform on both sides of given equation, we get

  Z(6yk+2) – Z(yk+1) – Z(yk) = Z(0)

⇒  6z2 y y
y
z

− −F
HG

I
KJ0

1  – z( y  – y0) – y  = 0

   6z2 y
z

−FHG
I
KJ

1
 – z y  – y  = 0

 (6z2 – z – 1) y  = 6z

or   y  = 
6

6 12
z

z z− −
 = 

6
3 1 2 1

z
z z( )( )+ −

 = 
z

z z+FHG
I
KJ −FHG

I
KJ

1
3

1
2

or   
y
z

 = 
6
5

1
1
2

1
1
3

z z−

F

H
GGG

I

K
JJJ

−
+

F

H
GGG

I

K
JJJ

L

N

MMMM

O

Q

PPPP
 or y  = 

6
5 1

2
1
3

z

z

z

z−
−

+

F

H
GGG

I

K
JJJ

Taking inverse Z-transform on both sides, we get

yk = 
6
5

 Z Z1 1− −

−

F

H
GGG

I

K
JJJ

−
+

F

H
GGG

I

K
JJJ

L

N

MMMM

O

Q

PPPP

z

z

z

z
1
2

1
3

 = 
6
5

 1
2

1
3

F
HG
I
KJ − −FHG

I
KJ

R
S|
T|

U
V|
W|

k k
.
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Example 12. Using the Z-transform, solve the following difference equation:
yk+3 – 3yk+ 2 + 3yk+1 – yk = u (k); y(0) = y(1) = y(2) = 0.

Sol. We have,
yk+3 – 3yk+ 2 + 3yk+1 – yk = u(k) ...(1)

Taking Z-transform on both sides of equation (1), we get

z3 y y
y
z

y

z
− − −F
HG

I
KJ0

1 2
2  – 3z2 y y

y
z

− −F
HG

I
KJ0

1  + 3z ( y  – y0) – y  = 
z

z − 1

⇒ (z3 – 3z2 + 3z – 1) y  = 
z

z − 1

⇒    y  = 
z

z( )− 1 4

Taking inverse Z-transform, we get

 yk = Z–1 
z

z( )−
L
NM

O
QP1 4

Now,  F(z) = 
z

z( )− 1 4

Pole is z = 1 (Pole of order 4)

Residue at this pole = 
1
3 !

 
d
dz

z z
z

z
k

z

3

3
4 1

4
1

1
1

( ) . .
( )

−
−

RST
UVW

L
N
MM

O
Q
PP

−

=

 = 
1
6

 
d
dz

zk

z

3

3
1

( )
L
NM

O
QP =

= 
1
6

[k(k – 1)(k – 2) zk–3]z=1 = 
k k k( )( )− −1 2

6

Hence, yk = 
k k k( )( )− −RST

UVW
1 2
6

, k ≥ 3.

Example 13. Using the Z-transform, solve the following difference equation:

 yk – 
1
3
F
HG
I
KJ  yk–1 = 

1
3

kF
HG
I
KJ

R
S|
T|
U
V|
W|

 , k ≥ 0, y(0) = 0.

Sol. Taking Z-transform on both sides, we get

 Z(yk) – 
1
3

 Z(yk–1) = Z 
1
3
F
HG
I
KJ

R
S|
T|
U
V|
W|

k

⇒   y  – 
1
3

 z–1 y  = 
z

z − 1
3

⇒   1
1
3

1−FHG
I
KJ

−z  y  = 
z

z − 1
3

⇒  y  = 
z

z

2

21
3

−FHG
I
KJ

...(1)

Taking inverse Z-transform on both sides, we get

 yk = Z–1 z

z

2

21
3

−FHG
I
KJ

L

N

MMMMM

O

Q

PPPPP
...(2)
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Here,  F(z) = 
z

z

2

21
3

−FHG
I
KJ

Poles are z = 
1
3

 which are of order 2.

Residue at this pole = 
1

2 1
1
3 1

3

2
1

2

2

1
3

( ) !
. .

−
−FHG
I
KJ

−FHG
I
KJ

R
S
||

T
||

U
V
||

W
||

L

N

MMMMM

O

Q

PPPPP

−

=

d
dz

z z
z

z

k

z

= 
d
dz

zk

z
( )+

=

L
NM

O
QP

1
1
3

 = ( )k zk

z

+
L
NM

O
QP =

1
1
3

 = 
k

k
+ 1

3

∴ From (2),    yk = 
k

k
+RST
UVW

1
3

.

Example 14. Using the Z-transform, solve the following difference equation:

yk + 
1

16
F
HG
I
KJ  yk–2 = 

1
4

cos
k
2

kF
HG
I
KJ
F
HG
I
KJ

R
S|
T|

U
V|
W|

π
 , k ≥ 0.

Sol.  yk + 
1

16
 yk–2 = 

1
4
F
HG
I
KJ

k

 cos 
kπ
2

 , k ≥ 0 ...(1)

Taking Z-transform on both sides of equation (1), we get

y  + 
1

16
 z–2 y  = z

z

2

2 1
16

+

  1
1

16
2+FHG
I
KJ

−z  y  = 
z

z

2

2 1
16

+

   y  = 
z

z z

4

2 21
16

1
16

+FHG
I
KJ +FHG

I
KJ

 = 
z

z

4

2
21

16
+FHG
I
KJ

There are two poles of II order at z = 
i
4

 and z = 
− i
4

 . Consider a contour | z | = 
1
2

Residue at z
i=F

HG
I
KJ4  = 

d
dz

z
i

z
z

z

k

z
i

−FHG
I
KJ

+FHG
I
KJ

R
S
||

T
||

U
V
||

W
||

L

N

MMMMM

O

Q

PPPPP

−

=

4 1
16

2
1

4

2
2

4

. .  = 
d
dz

z

z
i

k

z
i

+

=

+FHG
I
KJ

R
S
||

T
||

U
V
||

W
||

L

N

MMMMM

O

Q

PPPPP

3

2

4
4

  = 
z

i
k z z z

i

z
i

k k

z
i

+FHG
I
KJ + − +FHG

I
KJ

+FHG
I
KJ

L

N

MMMMM

O

Q

PPPPP

+ +

=

4
3 2

4

4

2
2 3

4

4

. ( ) .
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  = 
z

i
k z z

z
i

k k

z
i

+FHG
I
KJ + −

+FHG
I
KJ

L

N

MMMMM

O

Q

PPPPP

+ +

=

4
3 2

4

2 3

3

4

. ( )

  = 

i
k

i i

i

k k

2
3

4
2

4

2

2 3

3

. ( )+ FHG
I
KJ − FHG

I
KJ

F
HG
I
KJ

+ +

 = 
i

k i
i

i

i

k

k

k

k
3 3

3

3
32 4

2
64 4

1
8

+F
HG
I
KJ −

= 
k +F
HG
I
KJ

2
4

 
i k

4
F
HG
I
KJ  = 

k
k
+

+
2

4 1( )  cos sin
k

i
kπ π

2 2
+F

HG
I
KJ

Residue at z
i= −F

HG
I
KJ4  is = 

k
k

+
+
2

4 1( )
 cos sin

k
i

kπ π
2 2

−F
HG

I
KJ

∴ yk = Sum of residues = 
( )
( )

. cos
k k

k
+RST

UVW+
2

4
2

21
π

.

Example 15. Solve using Z-transform: yk+1 – 5yk = 
sin k; k 0

0; k 0
≥
<

RST
UVW ; given that y0 = 0.

Sol. Take Z-transform, we get

z( y  – y0) – 5 y  = 
z

z z
sin

cos
1

2 1 12 − +
...(1)

⇒  (z – 5) y  = 
z

z z
sin

cos
1

2 1 12 − +
| ∵  y0 = 0

∴   y  = 
z

z z z
sin

( )( cos )
1

5 2 1 12− − +
Taking inverse Z-transform, we get

 yk = Z–1 
z

z z e z ei i
sin

( ) ( ) ( )
1

5− − −
L
NM

O
QP−

Here   F(z) = 
z

z z e z ei i
sin

( ) ( ) ( )
1

5− − − −

Consider a contour | z | = 6
Residue of F(z) at (z = 5)

= Lt
5z →
 (z – 5) . zk–1 . 

z
z z e z ei i

sin
( ) ( ) ( )

1
5− − − −  = 

5 1
26 10 1

k sin
cos−

Residue of F(z) at (z = ei)

= Lt
z ei→

 (z – ei) zk–1 . 
z

z z e z ei i
sin

( ) ( ) ( )
1

5− − − −

= 
( ) sin

( )( )
e

e e e

i k

i i i
1

5− − −  = 
e

i e

ik

i2 5( )−
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Residue of F(z) at (z = e–i)

= Lt
z e i→ −

 (z + e–i) . zk–1 . 
z

z z e z ei i
sin

( )( )( – )–
1

5− −

= 
( ) sin

( )( ) ( )
e

e e e
e

i e

i k

i i i

ik

i

−

− −

−

−− −
=

−
1

5 2 5

  f(k) = sum of residues

= 
5 1

26 10 1

k sin
cos−

 + 
e

i e
e

i e

ik

i

ik

i2 5 2 5( ) ( )−
+

−

−

−

= 
5 1

26 10 1

k sin
cos−

 + 1
2 1 1 5 5 1 1i

k i k
i

k i k
i

cos sin
cos sin

cos sin
cos sin

+
+ −

+ −
− +

L
NM

O
QP

= 
5 1

26 10 1
1

26 10 1

k ksin
cos

cos sin
cos−

−
−

 – 
( cos ) sin

cos
5 1
26 10 1

−
−

k

  f(k) = A A A( ) cos
cos

sin
sin5

5 1
1

k k k− − −F
HG

I
KJ

RST
UVW

where, A = 
sin

cos
1

26 10 1−  .

Example 16. Solve by Z-transform: yk+1
 =  7yk + 10 xk

 xk+1 = yk + 4xk ;  y0 = 3, x0 = 2.
Sol.  yk+1 = 7yk + 10xk

Taking Z-transforms, we get

z( y  – y0) = 7 y  + 10 x

⇒   (7 – z) y  + 10 x  = – 3z ...(1)

Applying Z-transform to xk+1 = yk + 4xk, we get

z( x  – x0) = 4 x  + y

⇒       y  – (z – 4) x  = – 2z ...(2)

Eliminating y from (1) and (2), we get

 (z2 – 11z + 18) x  = 2z2 – 11z

 x  = 
2 11

2 9 9 2

2z z
z z

z
z

z
z

−
− −

=
−

+
−( )( )

∴  xk = {9k + 2k} (Take inverse Z-transform)

The equation is   xk+1 = yk + 4xk

∴  yk = xk+1 – 4xk = (9)k+1 + (2)k+1 – 4(9k + 2k) = 5 . 9k – 2 . 2k

Hence the solution is

 xk = {9k + 2k} and yk = {5 . 9k – 2 . 2k}.
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ASSIGNMENT

1. Find the inverse Z-transform of:

(i)
z z

z

2

21

+
−( )

(ii) z z
z z z

2 2
1 2 3

+
− − −( )( )( )

(iii)
z

z z z( )( )( )− − −1 2 3

(iv) z

z z2 11 30+ +
(v)

5
2 1 3

z
z z( )( )− −

(vi)
z

z z

2

22 4)( )(+ +

(vii)
4

1

1

1 2
z

z

−

−−( )
(viii) F z

z

z z
( )

( )( )
=

− −
9

2 3 1

3

3
(ix)

4 2

5 8 4

2

3 2
z z

z z z

−
− + −

.

(M.T.U. 2014)
2. Using convolution theorem find the Z–1 of

(i) z
z z

2

4)( 3( )− −
(ii) 8

2 1 4 1

2z
z z( )( )− −

(iii)
z

z a

2

2( )−
 .

3. Solve the following difference equations:
(i) u(k + 2) – 5u(k + 1) + 6u(k) = 6k if u(0) = u(1) = 0

(ii) yk+2 – 3yk + 1 – 4yk = 0 ; y0 = 3, y1 = – 2
(iii) yk + 2 + yk + 1

 – 2yk = 0 ; y0 = 4, y1 = 0
(iv) yk + 2 – 2yk + 1

 + yk = 3k + 5, y(0) = 0, y(1) = 1 (M.T.U. 2014)
by using Z-transform.

4. Solve by Z-transform:
(i) yk+2 – 4yk+1 + 3yk = 5k (ii) yk+2 – 5yk+1 – 6yk = 2k (iii) yk+2 – 6yk+1 + 9yk = 3k.

(G.B.T.U. 2011)
(iv) yk+2 – 4yk  = k – 1 (v) yk+2 – 6yk+1 + 8yk = 2k + 6k

(vi) yk+1 – 2yk –1 = 0, k ≥ 1, y(0) = 1 (U.P.T.U. 2015)

5. Solve the following difference equations using Z-transform:

(i) yk+2 – 2yk+1 + yk = k ; y0 = y1 = 0 (ii) yk+2 – 4yk = 0 ; y0 = 0, y1 = 2 (U.P.T.U. 2008)

(iii) yk+2 – 2yk+1 + yk = 2k; y0 = 2, y1 = 1. (iv) yk + 3yk–1 + 2yk–2 = δ(k) + 2δ(k – 1)

6. Find Z– 1 9
3 1 2

3

2
z

z z( – ) ( – )

L
N
MM

O
Q
PP

(U.P.T.U. 2015)

Answers

1. (i) 2k + 1 (ii)
3
2

 – 4(2)k + 
5
2

 (3)k (iii)
1
2

 – (2)k + 
1
2

 (3)k (iv) (– 5)k – (– 6)k

(v) 3k – 
1
2
F
HG
I
KJ

k

(vi) ( )− +2
8

1k
 + 

( )
( )

2
8 1

1i
i i

k+

+
 – 

( )
( )

2
2 1

1i
i i

k+

−
(vii) 2k(k – 1) U(k)

(viii) f(k) = 
36

125
2

25 85 72
250

1
3

2
( )k

kk k− + +F
HG

I
KJ
F
HG
I
KJ

2. (i)  4k+1 – 3k+1 (ii)
1
2

1F
HG
I
KJ

−k

 – 
1
2

2F
HG
I
KJ

k

(iii) (k + 1) ak U(k)
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3. (i) u(k) = 
1

12
 (6)k – 

1
3

 (3)k + 
1
4

 (2)k (ii) yk = 
1
5

4)
14
5

1( ( )k k+ −

(iii) yk = 
8
3

4
3

2+ −( )k (iv) y
k k k

kk = − + +( )( )1 3
2

4. (i) yk = c1 + c2(3)k + 
5
8

k
(ii) yk = c1(– 1)k + c2(6)k – 2

12

k

(iii) yk = (c1 + c2k) (3)k + 
1
2

 k(k – 1) (3)k–2 (iv) yk = c1(2)k + c2(– 2)k – 
k
3

1
9

+

(v) yk = c1(4)k + c
k

2 −FHG
I
KJ4  (2)k + 2k – 

8
3

(vi) yk = 
1
2

2 2( ) ( )k k+ −{ }

5. (i) yk = 
k k− − −1

4
1 1{ ( ) } (ii) yk = 2k–1 + (– 2)k–1 (iii) yk = 1 – 2k + 2k

(iv) {(– 1)k u(k)}

6.
36
25

2
5 11

25
1
3

( ) –k
kk +F

HG
I
KJ
F
HG
I
KJ .

TEST YOUR KNOWLEDGE

1. Find Fourier cosine and sine transform of f x
k x a

x a
( )

,
,

=
< <
>

RST
UVW

0
0

 where k is a constant.

2. Find Fourier cosine transform of e–ax cos ax.

3. Find f(x) if its Fourier cosine transform is 1
2 2π

a
p−FHG
I
KJ  if p < 2a and 0 if p ≥ 2a.

4. Solve the integral equation f x x dx( ) sin
,

,0

1 0 1
0 1

∞z =
− ≤ ≤

>
RST

UVWα
α α

α

5. Solve: f x x dx( ) cos ,
,0

1 0 1
0 1

∞z = − ≤ <
>

RSTα α α
α

6. Define Fourier transform of a function f(x). (U.P.T.U. 2014)

7. Define Fourier sine and cosine transform.

8. Write any two properties of Fourier transform with proof.

9. Find the complex Fourier transform of dirac-delta function δ(x – a).

10. State and prove convolution theorem of Fourier transform. (M.T.U. 2014)

11. Define Z-transform of a sequence {f(k)}.

12. Define inverse Z-transform of a function F(z).

13. Define unit step sequence and find its Z-transform.

14. Define unit impulse sequence and find its Z-transform.

15. Find the Z-transform of {nCk}, 0 ≤ k ≤ n. (M.T.U. 2014)

16. State and prove change of scale property of Z-transform.

17. Find the Z-transform of {k3}, k ≥ 0.

18. State and prove convolution theorem for Z-transform.
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19. Find the Z-transform of k k2 3 2
2

+ +R
S|
T|

U
V|
W|

, k ≥ 0.

20. Explain the inverse integral method of finding inverse Z-transform of a function F(Z).

21. Define a difference equation. Define its order and degree. How is Z-transform useful in finding
the solution of a difference equation?

22. Find the inverse Z-transform of 
4

1

1

1 2
z

z

−

−−( )
.

23. Solve by Z-transform: yk+2 + yk+1 – 2yk = 0, y0 = 4, y1 = 0.

24. Solve: yk+2 – 5yk+1 – 6yk = 2k by Z-transform.

25. Find the Z-transform of {ak}, k ≥ 0. (U.P.T.U. 2014)

Answers

1. k ap
p

k ap
p

sin
,

( cos )1 − 2.
a p a

p a

( )2 2

4 4
2

4
+

+
3.

2
2

2

2π
.

sin ax

x

4. 2
2π

x x

x

−F
HG

I
KJ

sin 5.
2 1

2
( cos )− x

xπ
9. eiap

13.
z

z − 1
14. 1 15. 1

1+FHG
I
KJz

n

17. z z z

z

3 2

4
4

1

+ +

−( )
19.

1
2

1

1

3

1

2
13 2

z z

z

z

z

z
z

( )

( ) ( )

+

−
+

−
+

−

L
N
MM

O
Q
PP 22. 2k(k – 1) u(k)

23. yk = 
8
3

4
3

+ (– 2)k 24. yk = c1 (– 1)k + c2 (6)k – 
( )2
12

k
25.

z
z a−

.
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UNIT 3
Statistical Techniques

3.1 MOMENTS

Moments are statistical tools, used in statistical investigations. The moments of a distribu-
tion are the arithmetic means of the various powers of the deviations of items from some given
number.

3.2 MOMENTS ABOUT MEAN (Central Moments)

3.2.1. For an Individual Series

If x1, x2, ..., xn are the values of the variable under consideration, the rth moment μr about
mean x  is defined as

 μr = 

( )x x

n

i
r

i

n

−
=
∑

1  ; r = 0, 1, 2, ...

3.2.2. For a Frequency Distribution
If x1, x2, ..., xn are the values of a variable x with the corresponding frequencies f1, f2, ..., fn
respectively then rth moment μr about the mean x  is defined as

μr = 

f x xi i
r

i

n

( )−
=
∑

1

N
 ; r = 0, 1, 2, ... where N = fi

i

n

=
∑

1

In particular,  μ0 = 
1 1

1

0

1
N N

N
N

f x x fi
i

n

i i
i

n

= =
∑ ∑− = =( )  = 1

∴ For any distribution,   μ0 = 1

For r = 1,

μ1 = 
1

1
N

f x xi
i

n

i
=
∑ −( )  = 

1 1

1 1
N N

f x x fi
i

n

i i
i

n

= =
∑ ∑−

F
H
GG

I
K
JJ  = x x−  = 0

∴ For any distribution,  μ1 = 0

214
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For r = 2,

μ2 = 
1 2

1
N

f x xi i
i

n

( )−
=
∑  = (S.D.)2 = Variance

∴ For any distribution, μ2 coincides with the variance of the distribution.

Similarly,   μ3 = 
1 3

1
N

f x xi i
i

n

( )−
=
∑ , μ4 = 

1 4

1
N

f x xi i
i

n

( )−
=
∑

and so on.
Note. In case of a frequency distribution with class intervals, the values of x are the mid-points of the
intervals.

EXAMPLES

Example 1. Find the first four moments for the following individual series:

x 3 6 8 10 18

Sol. Calculation of Moments

S. No. x x – x (x – x )2 (x – x )3 (x – x )4

1 3 – 6 36 – 216 1296
2 6 – 3 9 – 27 81
3 8 – 1 1 – 1 1
4 10 1 1 1 1
5 18 9 81 729 6561

n = 5 Σx = 45 Σ(x – x ) = 0 Σ(x – x )2 = 128 Σ(x – x )3 = 486 Σ(x – x )4 = 7940

Now, x
x

n
= =Σ 45

5
 = 9

∴ μ1 = 
Σ( )x x

n
− = 0

5
 = 0, μ2 = 

Σ( )x x
n
− =

2 128
5

 = 25.6

μ3 = 
Σ( )x x

n
− =

3 486
5

 = 97.2,  μ4 = 
Σ( )x x

n
− =

4 7940
5

 = 1588.

Example 2. Calculate μ1, μ2, μ3, μ4 for the following frequency distribution:

Marks 5–15 15–25 25–35 35–45 45–55 55–65

No. of students 10 20 25 20 15 10
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Sol. Calculation of Moments

Marks No. of Mid- fx x – x f(x – x ) f(x – x )2 f(x – x )3 f(x – x )4

students point
(f) (x)

5–15 10 10 100 – 24 – 240 5760 – 138240 3317760
15–25 20 20 400 – 14 – 280 3920 – 54880 768320
25–35 25 30 750 – 4 – 100 400 – 1600 6400
35–45 20 40 800 6 120 720 4320 25920
45–55 15 50 750 16 240 3840 61440 983040
55–65 10 60 600 26 260 6760 175760 4569760

N = 100 Σfx Σf(x – x ) Σf(x – x )2 Σf(x – x )3 Σf(x – x )4

= 3400 = 0 = 21400 = 46800 = 9671200

Now,   x
fx= =Σ

N
3400
100

 = 34

∴  μ1 = 
Σf x x( )− =

N
0

100
 = 0, μ2 = 

Σf x x( )− =
2 21400

100N
 = 214

 μ3 = 
Σf x x( )− =

3 46800
100N

 = 468, μ4 = 
Σf x x( )− =

4 9671200
100N

 = 96712.

3.3 SHEPPARD’S CORRECTIONS FOR MOMENTS

While computing moments for frequency distribution with class intervals, we take variable x
as the mid-point of class-intervals which means that we have assumed the frequencies
concentrated at the mid-points of class-intervals.

The above assumption is true when the distribution is symmetrical and the no. of class-

intervals is not greater than 
1

20
th of the range, otherwise the computation of moments will

have certain error called grouping error.
This error is corrected by the following formulae given by W.F. Sheppard.

μ2 (corrected) = μ2 – 
h2

12

μ4 (corrected) = μ4 – 
1
2

7
240

2
2h μ + h4

where h is the width of the class-interval while μ1 and μ3 require no correction.
These formulae are known as Sheppard’s corrections.
Example 3. Find the corrected values of the following moments using Sheppard’s cor-

rection. The width of classes in the distribution is 10:
μ2 = 214, μ3 = 468, μ4 = 96712.

Sol. We have μ2 = 214, μ3 = 468, μ4 = 96712, h = 10.

Now, μ2 (corrected) = μ2 – 
h2 2

12
214

10
12

= − ( )
 = 214 – 8.333 = 205.667.

μ3 (corrected) = μ3 = 468
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 μ4 (corrected) = μ4 – 
1
2

7
240

2
2h μ + h4 = 96712 – 

( )
( )

10
2

214
7

240

2

+  (10)4

= 96712 – 10700 – 291.667 = 86303.667.

3.4 MOMENTS ABOUT AN ARBITRARY NUMBER (Raw Moments)

If x1, x2, x3, ..., xn are the values of a variable x with the corresponding frequencies f1, f2, f3, ..., fn
respectively then rth moment μr′ about the number x = A is defined as

μr′ = 
1

1
N

Af xi i
r

i

n

( )−
=
∑  ; r = 0, 1, 2,... where, N = fi

i

n

=
∑

1

For r = 0, μ0′ = 
1 0

1
N

Af xi i
i

n

( )−
=
∑  = 1

For r = 1,  μ1′ = 
1

1
N

Af xi i
i

n

( )−
=
∑  = 

1

11
N

A
N

f x fi i i
i

n

i

n

−
==
∑∑  = x  – A

For r = 2, μ2′ = 
1 2

1
N

Af xi i
i

n

( )−
=
∑

For r = 3,       μ3′ = 
1 3

1
N

Af xi i
i

n

( )−
=
∑  and so on.

In  calculation  work,  if  we  find  that  there is some common factor h (> 1) in values of

x – A, we can ease our calculation work by defining u = 
x

h
− A

. In that case, we have

μr′ = 
1
N

f u hi i
r

i

n
r

=
∑
F
H
GG

I
K
JJ

1

 ; r = 0, 1, 2, ...

Note. For an individual series,

1. μr′ = 1
A

n
xi

r

i

n

( )−
=
∑

1

 ; r = 0, 1, 2, ...

2. μr′ = 1
N

u hi
r

i

n
r

=
∑
F
H
GG

I
K
JJ

1

 ; r = 0, 1, 2, ... for
A

u
x

h
= −

3.5 MOMENTS ABOUT THE ORIGIN

If x1, x2, ..., xn be the values of a variable x with corresponding frequencies f1, f2, ..., fn respectively
then rth moment about the origin νr is defined as

 νr = 
1

1
N

f xi i
r

i

n

=
∑ ; r = 0, 1, 2,... where, N = fi

i

n

=
∑

1
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For r = 0, ν0 = 
1

1

0

N
N
N

f xi
i

n

i
=
∑ =  = 1

For r = 1, ν1 = 
1

1
N

f x xi
i

n

i
=
∑ =

For r = 2, ν2 = 
1

1

2

N
f xi

i

n

i
=
∑ and so on.

3.6 RELATION BETWEEN μr AND μr′

We know that,

      μr = 

f x xi
i

n

i
r

=
∑ −

1

( )

N
 = 

1

1
N

A) ( Af x xi i
r

i

n

[( )]− − −
=
∑

= 
1

1
1

N
A)f xi i

r

i

n

[( ]− − ′
=
∑ μ | ∵ μ1′ = x  – A

= 
1

1
N

fi
i

n

=
∑ [(xi – A)r – rc1(xi – A)r–1 μ1′ +

 rc2(xi – A)r–2 μ1′
2 – ...... + (– 1)r μ1′

r]

| Using binomial theorem
⇒  μr = μr′ – rc1 μ′r–1μ1′ + rc2 μ′r–2μ1′

2 – ...... + (–1)r μ1′
r

Putting r = 2, 3, 4, we get

μ2 = μ2′ – 2μ1′
2 + μ1′

2 = μ2′ – μ1′
2 | ∵ μ0′ = 1

μ3 = μ3′ – 3μ2′μ1′ + 3μ1′
3 – μ1′

3 = μ3′ – 3μ2′μ1′ + 2μ1′
3

 μ4 = μ4′ – 4μ3′μ1′ + 6μ2′μ1′
2 – 3μ1′

4

Hence, we have the following relations:

μ1 = 0

μ2 = μ2′ – μ1′
2

μ3 = μ3′ – 3μ2′μ1′ + 2μ1′
3

and μ4 = μ4′ – 4μ′3μ1′ + 6μ2′μ1′
2 – 3μ1′

4

3.7 RELATION BETWEEN νr AND μr

We know that,

 νr = 
1

1
N

f xi i
r

i

n

=
∑ ; r = 0, 1, 2, ...
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= 
1

1
N

A Af xi i
r

i

n

( )− +
=
∑

= 
1

1
1

1
N

A A A Af x c xi i
r r

i
r r

i

n

[( ) ( ) . ... ]− + − + +−

=
∑

= μr′ + rc1μr–1 A + ... + Ar

If we take, A = x  (for μr) then
  νr = μr + rc1μr–1 x  + rc2μr–2 x

2 + ... + x r ...(1)
Putting, r = 1, 2, 3, 4 in (1), we get

  ν1 = μ1 + μ0 x  = x | ∵ μ1 = 0, μ0 = 1
ν2 = μ2 + 2c1μ1 x  + 2c2 μ0 x 2 = μ2 + x 2

ν3 = μ3 + 3c1μ2 x  + 3c2μ1 x 2 + 3c3μ0 x 3 = μ3 + 3μ2 x  + x 3

ν4 = μ4 + 4c1μ3 x  + 4c2μ2 x 2 + 4c3μ1 x 3 + 4c4μ0 x 4

= μ4 + 4μ3 x  + 6μ2 x 2 + x 4

Hence we have the following relations:

ν1 = x  ν2 = μ2 + x 2

ν3 = μ3 + 3μ2 x  + x 3 and ν4 = μ4 + 4μ3 x  + 6μ2 x 2 + x 4.

3.8 KARL PEARSON’S β AND γ COEFFICIENTS

Karl Pearson defined the following four coefficients based upon the first four moments of a
frequency distribution about its mean:

 β1 = 
μ
μ

3
2

2
3

 β2 = 
μ
μ

4

2
2

(β-coefficients)

 γ1 = + β1

 γ2 = β2 – 3
(γ-coefficients)

The practical use of these coefficients is to measure the skewness and kurtosis of a
frequency distribution. These coefficients are pure numbers independent of units of measure-
ment.

EXAMPLES

Example 1. The first three moments of a distribution, about the value ‘2’ of the variable
are 1, 16 and – 40. Show that the mean is 3, variance is 15 and μ3 = – 86.

Sol. We have   A = 2, μ1′ = 1, μ2′ = 16, and μ3′ = – 40
We know that  μ1′ = x  – A ⇒ x  = μ1′ + A = 1 + 2 = 3

Variance = μ2 = μ2′ – μ1′
2 = 16 – (1)2 = 15

 μ3 = μ3′ – 3μ2′μ1′ + 2μ1′
3 = – 40 – 3(16)(1) + 2(1)3 = – 40 – 48 + 2 = – 86.

U
V|

W|

UVW
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Example 2. The first four moments of a distribution, about the value ‘35’ are – 1.8, 240,
– 1020 and 144000. Find the values of μ1 , μ2 , μ3 , μ4 .

Sol.    μ1 = 0.
  μ2 = μ2′ – μ1′

2 = 240 – (– 1.8)2 = 236.76
  μ3 = μ3′ – 3μ2′μ1′ + 2μ1′

3 = – 1020 – 3(240)(– 1.8) + 2(– 1.8)3 = 264.36
   μ4 = μ4′ – 4μ3′μ1′ + 6μ2′μ1′

2 – 3μ1′
4

= 144000 – 4(– 1020)(– 1.8) + 6(240)(– 1.8)2 – 3(– 1.8)4 = 141290.11.
Example 3. Calculate the variance and third central moment from the following data:

xi 0 1 2 3 4 5 6 7 8

fi 1 9 26 59 72 52 29 7 1

(U.P.T.U. 2006)
Sol. Calculation of Moments

x f u = 
x A

h
−

fu fu2 fu3

A = 4, h = 1

0 1 – 4 – 4 16 – 64
1 9 – 3 – 27 81 – 243
2 26 – 2 – 52 104 – 208
3 59 – 1 – 59 59 – 59
4 72 0 0 0 0
5 52 1 52 52 52
6 29 2 58 116 232
7 7 3 21 63 189
8 1 4 4 16 64

N = Σf = 256 Σfu = – 7 Σfu2 = 507 Σfu3 = – 37

Now, moments about the point x = A = 4 are

  μ1′ = 
Σfu

h
N
F
HG
I
KJ  = 

− 7
256

 = – 0.02734

    μ2′ = 
Σfu

h
2

2 507
256N

F
HG
I
KJ =  = 1.9805

  μ3′ = 
Σfu

h
3

3 37
256N

F
HG
I
KJ = −

 = – 0.1445

Moments about mean
μ1 = 0
μ2 = μ2′ – μ′1

2 = 1.9805 – (– .02734)2 = 1.97975

∴  Variance = 1.97975

Also, μ3 = μ3′ – 3μ2′ μ1′ + 2μ1′
3
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= (– 0.1445) – 3 (1.9805) (– .02734) + 2 (– .02734)3

= 0.0178997
∴ Third central moment = 0.0178997.
Example 4. The first three moments of a distribution about the value 2 of the variable

are 1, 16 and – 40 respectively. Find the values of the first three moments about the origin.
Sol. We have  A = 2, μ1′ = 1, μ2′ = 16, μ3′ = – 40
∴  ν1 = x  = A + μ1′ = 2 + 1 = 3

   ν2 = μ2 + x 2 = 15 + (3)2 = 24
ν3 = μ3 + 3μ2 x  + x 3 = – 86 + 3(15)(3) + (3)3 = 76.

Example 5. The first four moments of a distribution about x = 2 are 1, 2.5, 5.5 and 16.
Calculate the first four moments about the mean and about origin.

Sol. We have A = 2, μ1′ = 1,  μ2′ = 2.5, μ3′ = 5.5, μ4′ = 16.
Moments about mean

μ1 = 0
μ2 = μ2′ – (μ1′)

2 = 2.5 – (1)2 = 1.5
μ3 = μ3′ – 3μ2′μ1′ + 2(μ1′)

3 = 5.5 – 3(2.5)(1) + 2(1)3 = 0
μ4 = μ4′ – 4μ3′μ1′ + 6μ2′μ1′

2 – 3μ1′
4 = 16 – 4(5.5)(1) + 6(2.5)(1)2 – 3(1)4 = 6.

Moments about origin
ν1 = x  = A + μ1′, ν2 = μ2 + x 2

ν3 = μ3 + 3μ2 x  + x 3, ν4 = μ4 + 4μ3 x  + 6μ2 x 2 + x 4

∴ ν1 = x  = 2 + 1 = 3, ν2 = 1.5 + (3)2 = 10.5
ν3 = 0 + 3(1.5)(3) + (3)3 = 40.5, ν4 = 6 + 4(0)(3) + 6(1.5)(3)2 + (3)4 = 168.

Example 6. For a distribution, the mean is 10, variance is 16, γ1 is 1, and β2 is 4. Find
the first four moments about the origin.

Sol.  x  = 10, μ2 = 16, γ1 = 1, β2 = 4 | given
Now,  γ1 = 1

⇒ β1 = 1 | ∵ γ β1 1=

⇒
μ
μ

3
2

2
3  = 1 ⇒ μ3

2 = μ2
3 = (16)3 = (64)2

⇒ μ3 = 64
and       β2 = 4

⇒
μ
μ

4

2
2  = 4 ⇒ μ4 = 4(16)2 = 1024 | ∵ μ2 = 16

Moments about the origin
ν1 = x  = 10
ν2 = μ2 + x 2 = 16 + 100 = 116
ν3 = μ3 + 3μ2 x  + x 3 = 64 + 480 + 1000 = 1544
ν4 = μ4 + 4μ3 x  + 6μ2 x 2 + x 4 = 1024 + 4(64)(10) + 6(16)(100) + (10)4

= 22184
Example 7. In a certain distribution, the first four moments about the point x = 4 are

– 1.5, 17, – 30 and 308. Find the moments about mean and about origin. Also, Calculate β1 and β2.
(U.P.T.U. 2014)
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Sol. We have, A = 4, μ′1 = – 1.5, μ′2 = 17, μ′3 = – 30, μ′4 = 308
Moments about mean

  μ1 = 0
μ2 = μ′2 – μ1′

2 = 17 – (– 1.5)2 = 14.75
μ3 = μ′3 – 3μ′2 μ′1 + 2μ1′

3 = – 30 – 3 (17) (– 1.5) + 2 (– 1.5)3 = 39.75
 μ4 = μ′4 – 4μ′3 μ′1 + 6μ′2μ1′

2 – 3μ1′
4

= 308 – 4 (– 30) (– 1.5) + 6(17) (– 1.5)2 – 3 (– 1.5)4 = 342.3125
Moments about origin

ν1 = x = ′μ1 + A = – 1.5 + 4 = 2.5

ν2 = μ2 + x2  = 14.75 + (2.5)2 = 21

ν3 = μ3 + 3μ2 x x+ 3  = 166

ν4 = μ4 + 4μ3 x  + 6μ2 x x2 4+  = 1332

Calculation of βββββ1 and βββββ2

β1 = 
μ
μ

3
2

2
3  = 0.492377 β2 = 

μ
μ

4

2
2  = 1.573398

Example 8. The first four moments of a distribution about the value ‘4’ of the variable
are – 1.5, 17, – 30 and 108. Find the moments about mean, about origin ; β1 and β2. Also find
the moments about the point x = 2. (U.P.T.U. 2007)

Sol. We have  A = 4, μ′1 = – 1.5, μ′2 = 17, μ′3 = – 30, μ′4 = 108
Moments about mean

 μ1 = 0
 μ2 = μ′2 – μ1′

2 = 14.75
 μ3 = μ′3 – 3μ′2 μ′1 + 2μ1′

3 = 39.75
 μ4 = μ′4 – 4μ′3 μ′1 + 6μ′2μ1′

2 – 3μ1′
4 = 142.3125

Also,  x  = μ′1 + A = – 1.5 + 4 = 2.5
Moments about origin

 ν1 = x  = 2.5

 ν2 = μ2 + x 2  = 14.75 + (2.5)2 = 21

 ν3 = μ3 + 3μ2 x  + x 3 = 166

 ν4 = μ4 + 4μ3 x  + 6μ2 x 2  + x 4  = 1132
Calculation of βββββ1 and βββββ2

 β1 = 
μ
μ

3
2

2
3  = 0.492377 β2 = 

μ
μ

4

2
2  = 0.654122

Moments about the point x = 2
μ′1 = x  – A = 2.5 – 2 = 0.5
μ′2 = μ2 + μ1′2 = 14.75 + (.5)2 = 15
μ′3 = μ3 + 3μ′2 μ′1 – 2μ1′3 = 39.75 + 3 (15) (.5) – 2 (.5)3 = 62
μ′4 = μ4 + 4μ′3μ′1 – 6μ′2μ1′

2 + 3μ1′
4 = 244
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ASSIGNMENT

1. (i) Calculate first four moments about mean, for the following individual series:
5, 5, 5, 5, 5, 5.

(ii) Find the first four moments about the mean of the following series:
1, 3, 7, 9, 10.

(iii) Calculate μ1, μ2, μ3, μ4 for the series : 4, 7, 10, 13, 16, 19, 22.
2. (i) Find the first four moments for the following frequency distribution:

x 1 2 3 4 5 6 7 8 9

f 1 2 3 4 5 4 3 2 1

(ii) Calculate the first four moments of the following distribution about the mean and hence find
β1 and β2.

x 0 1 2 3 4 5 6 7

f 1 8 28 56 70 56 28 8

(iii) The number of flowers on Sunflower plants are given below:

No. of flowers 3 6 12 16 25

No. of plants 1 2 3 4 5

Calculate the first four moments about mean. [M.T.U. (B. Pharma) 2011]
3. (i) Find the first four moments about mean for the following frequency distribution :

Marks 0–10 10–20 20–30 30–40 40–50

No. of students 5 10 40 20 25

(ii) Calculate the first four moments about the mean for the following:

Classes 5–15 15–25 25–35 35–45 45–55

f 14 22 36 18 10

(iii) Calculate the first four moments about the mean for the following data:

Class-interval 0–10 10–20 20–30 30–40 40–50

f 10 20 40 20 10

(M.T.U. 2014)
4. Calculate the first four moments about x = 15 and hence find the moments about the mean of the

following distribution :

x 10 11 12 13 14 15 16 17 18 19 20 21

f 9 36 75 105 116 107 88 66 45 30 18 5

5. (i) The first three moments of a distribution about the value 4 of the variable are 1.5, 17 and
– 30. Find the moments about mean.

(ii) The first four moments of a distribution about x = 4 are 1, 4, 10 and 45. Show that the mean
is 5, the variance is 3, μ3 is 0 and μ4 is 26.
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(iii) The first four moments of a distribution about the value 5 of the variable are 2, 20, 40 and 50.
Calculate mean, variance, μ3 and μ4. (G.B.T.U. 2011)

6. If the first four moments of a distribution about the value 5 are equal to – 4, 22, – 117 and 560.
Determine the corresponding moments :
(i) about the mean, and (ii) about zero.

7. Compute first four moments of the data 3, 5, 7, 9 about the mean. Also, compute the first four
moments about the point 4.

8. In a frequency distribution, the mean is 1.5, variance is 0.64, β2 is 2.5 and γ1 is 0.3. Find μ3 and μ4
and also the first four moments about the origin.

9. The first four moments of a distribution about the value ‘0’ are – 0.20, 1.76, – 2.36 and 10.88.
Find the moments about the mean. (U.P.T.U. 2009)

Answers

1. (i) μ1 = 0, μ2 = 0, μ3 = 0, μ4 = 0 (ii) μ1 = 0, μ2 = 12, μ3 = – 12, μ4 = 208.8
(iii) μ1 = 0, μ2 = 36, μ3 = 0, μ4 = 2268

2. (i) μ1 = 0, μ2 = 4, μ3 = 0, μ4 = 37.6 (ii) μ1 = 0, μ2 = 2, μ3 = 0, μ4 = 11, β1 = 0, β2 = 2.75
(iii) μ1 = 0, μ2 = 54.8, μ3 = –49.6, μ4 = 5475.6

3. (i) μ1 = 0, μ2 = 125, μ3 = – 300, μ4 = 37625 (ii) μ1 = 0, μ2 = 134.56, μ3 = 126.14, μ4 = 41840.82
(iii) μ1 = 0, μ2 = 120, μ3 = 0, μ4 = 36000

4. μ1 = 0, μ2 = 5.5, μ3 = 4.4, μ4 = 77.8
5. (i) μ1 = 0, μ2 = 14.75, μ3 = – 99.75 (iii) 7, 16, – 64, 162
6. (i) 0, 6, 19, 32 (ii) 1, 7, 38, 145
7. μ1 = 0, μ2 = 5, μ3 = 0, μ4 = 41; μ1′ = 2, μ2′ = 9, μ3′ = 38.25, μ4′ = 177
8. μ3 = 0.1536, μ4 = 1.024, ν1 = 1.5, ν2 = 2.89, ν3 = 6.4086, ν4 = 15.6481
9. μ1 = 0, μ2 = 1.72, μ3 = – 1.32, μ4 = 9.4096.

3.9 MOMENT GENERATING FUNCTION
[U.P.T.U. 2014 ; G.B.T.U. 2012, M.T.U. 2013]

For certain theoretical developments, an indirect method for computing moments is used. The
method depends on the finding of the moment generating function.

3.9.1. In Case of a Continuous Variable x, it is defined as

M(t) = 
a

b
txe f x dxz ( ) ...(1)

where integral is a function of parameter t only. The limits a, b can be – ∞ and ∞ respectively.
It is possible to associate a moment generating function with the distribution only when all
the moments of the distribution are finite.

Let us see how M(t) generates moments. For this, let us assume that f(x) is a distribu-
tion function for which the integral given by (1) exists.

Then etx may be expanded in a power series and the integration may be performed term
by term. It follows that

 M(t) = 
a

b
tx

t
xz + + +

F
HG

I
KJ1

2

2
2

!
...  f(x) dx

= 
a

b

a

b
f x dx t xf x dxz z+( ) ( )  + ...
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= ν0 + ν1 t + ν2 . 
t2

2!
 + ... ...(2)

Obviously, the coefficient of 
t
r

r

!
 in (2) is the rth moment about the origin.

Also,  
d
dt

t
r

r t
r

r
t

r
r

t

M( )
!

! ...
=

+
=

= + +
0

1
0

ν
ν  = νr ...(3)

Thus, νr about origin = rth derivative of M(t) with t = 0.
Although the moment generating function (m.g.f.) has been defined for the variable x

only, the definition can be generalized so that  it holds for a variable z where z is a function
of x. e.g., if z = x – m (m is mean), the rth moment about z will give rth moment of x about the
mean m.

Moment generating function for z will clearly be given as

 Mz(t) = 
a

b
tze f x dxz ( )

  Mx–m(t) = 
a

b
t x m mt

a

b
txe f x dx e e f xz z− −=( ) ( ) ( )dx  = e–mt Mx(t).

3.9.2. In Case of Discrete Distribution of the Variable x
We know that, for a variable x,

νr = Σ xr . P
where P is the probability that the variable takes on the value x.

If z is any function of x, we get rth moment for z by the relation
νr = ΣzrP

and the moment generating function is given by
 Mz(t) = Σetz P ...(1)

To verify that this function generates moments, we will expand etz and then sum term
by term,

∴   Mz(t) = 1
2

2
2+ + +

F
HG

I
KJ∑ tz

t
z

!
...  P = ΣP + tΣ zP + 

t2

2 !
 Σ z2 . P + ...

= ν0 + tν1 + t2

2 !
 ν2 + ...

In this case, we can also show that νr = 
d
dt

t
r

r z
t

M ( )
=0

M(t) is clearly the expected value of etx and hence can be written as E(etx) which gives
the moment generating function incase of discrete as well as continuous variables.

Expectation of any function φ(x) is given by

   E{φ(x)} = φ( ) ( )x f xi i
i
∑ | for discrete distribution

or,  E{φ(x)} = 
−∞

∞z φ( ) ( )x f x dx | for continuous distribution

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com


226 A TEXTBOOK OF ENGINEERING MATHEMATICS

Eqn. (1) can also be rewritten as

   Mx–a(t) = E [et(x–a)] = et x a
i

i

i( )−∑ P  = e–at etx
i

i

i P∑  = e–at M0(t)

Therefore the moment generating function about the point ‘a’ is equal to e–at times the
moment generating function about the origin.
Note. m.g.f. is not always defined since E{| etx |} does not always exist for all values of t.

e.g., if f(x) = 
6
2 2π x

, x = 1, 2, 3, ... then m.g.f. does not exist.

m.g.f. always exists for t = 0 since Mx=0(0) = 1.

3.9.3. Properties of Moment Generating Function (M.T.U. 2013)

(1) The moment generating function of the sum of two independent chance variables is the
product of their respective moment generating functions.

Symbolically, Mx+y(t) = Mx(t) × My(t) provided that x and y are independent random
variables.

Proof. Let x and y be two independent random variables so that x + y is also a random variable.

The m.g.f. of the sum x + y w.r.t. origin is

   Mx+y(t) = E{et(x + y)} = E(etx . ety) = E(etx) . E(ety)

Since x and y are independent variables and so are etx and ety.

∴  Mx+y(t) = Mx(t) . My(t)

Hence the theorem.

(2) Effect of change of origin and scale on m.g.f.

   Mu(t) = e–at/h Mx (t/h) where u = 
x a

h
-

Proof. Let u be a new random variable given by u = 
x a

h
-

 so that x = a + hu

then by definition, the effect of linear transformation on m.g.f. is governed by
Mx(t) = E(etx) = E[et(a + hu)] = E(eat . ethu)

= eat E(ethu) = eat Mu(th)
Also, Mu(t) = E(etu)

= E e
t

x a
h
-F
HG
I
KJL

N
MM

O

Q
PP  = e

t
h

at
h

x

- F
HG
I
KJM

(3)  Mcx(t) = Mx(ct), c being a constant.
Proof. By definition,

    LHS = Mcx (t) = E(etcx) = Mx (ct) = RHS
Hence the result.
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EXAMPLES

Example 1. Find the moment generating function of the exponential distribution

 f(x) = 
1
c

 e–x/c ; 0 ≤ x ≤ ∞, c > 0 (M.T.U. 2014)

Hence find its mean and standard deviation.
Sol. Moment generating function about the origin is given by

  Mx(t) = 
0

1∞ −z ⋅e
c

e dxtx x c/

= 
1

0

1

c
e dx

t
c

x∞ −FHG
I
KJz  = 

1
1

1

0

c
e

t
c

t
c

x−FHG
I
KJ

∞

−FHG
I
KJ

L

N

MMMM

O

Q

PPPP
= (1 – ct)–1 = 1 + ct + c2t2 + c3t3 + ...

∴  ν1 = 
d
dt

tx
t

M ( )L
NM

O
QP =0

 = (c + 2c2t + 3c3t2 + ...)t= 0 = c

and   ν2 = 
d
dt

tx
t

2

2
0

M ( )
L
NM

O
QP =

 = 2c2

Now, mean   x  = ν1 = c
Variance   μ2 = ν2 – x 2 = ν2 – ν1

2 = 2c2 – c2 = c2

∴ Standard deviation   = μ2  = c.
Example 2. Obtain the moment generating function of the random variable x having

probability distribution

 f(x) = 
x for 0 x 1

2 x for 1 x 2
0 elsewhere

,
,

,

< <
− ≤ <
R
S|
T|

[M.T.U. 2012; G.B.T.U. (C.O.) 2011; G.B.T.U. 2013]
Also determine mean ν1, ν2 and variance μ2 .
Sol. Mx(t) = E(etx)

= 
0

1

1

2

2
2 0z z z+ − +

∞
x e dx x e dx e dxtx tx tx. ( ) .

= 
xe

t
e
t

e
t

xe
t

e
t

tx tx tx tx tx

−
F
HG

I
KJ + − +
F
HG

I
KJ2

0

1

2
1

2
2

= 
e
t

e
t t

e
t

e
t

e
t

e
t

e
t

e
t

t t t t t t t t

− + + − +
F
HG

I
KJ − − +
F
HG

I
KJ

L
N
MM

O
Q
PP2 2

2 2 2

2 2
1 2 2 2

 = 
e e

t

t t2

2
2 1− +

= 
e

t

t
t t

t

t −F
HG
I
KJ =

+ + +
F
HG

I
KJ1 2 32

2 3 2

2

! !
...

 = 1 + t + t2 + ...
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  Mean = ν1 = 
d
dt

tx
t

M ( )L
NM

O
QP =0

 = 1

Similarly, ν2 = 2, μ2 = ν2 – x2  =  ν2 – ν1
2 = 2 – (1)2 = 1 = Variance.

Example 3. Find the moment generating function of the random variable whose moments
are νr = (r + 1) ! 2r.

Sol.   Mx(t) = E(etx) = e xtx

x

P X( )=
=

∞

∑
0

= 
t
r

r

r
r

!
ν

=

∞

∑
0

 = 
t
r

r
r

r

r
!
( ) ! .+

=

∞

∑ 1 2
0

 = ( ) ( )r t r

r

+
=

∞

∑ 1 2
0

= 1 + 2.2t + 3 . (2t)2 + .... = (1 – 2t)–2.
Example 4. Find the moment generating function of the probability distribution function

f(z) = e–z (1 + e–z)–2,  – ∞ < z < ∞ .
Sol.  Mz(t) = E(etz)

= 
− ∞

∞ − − −z +e e e dztz z z. ( )1 2

= 
1

2 1
∞z −u u dut( )– where 1 + e–z = u ⇒ – e–z dz = du

= 
0

1
1z − −v v dvt t( ) where v = 1 – 

1
u

⇒ dv = 
1
2u

 du

= β(1 – t, 1 + t) ; 1 – t > 0
= πt cosec πt, t < 1.

Example 5. Find the moment generating function of the negative exponential function
  f(x) = λe–λx ; x, λ > 0.

Sol.  Mx (t) = λ
0

∞ −z e e dxtx x. λ  = λ λλ λ

0 0

∞ − − −∞z z=e dx e dxt x t x( ) ( )

= 
λ

λ − t
 = 1

1

−FHG
I
KJ

−t
λ

 = 
r

rt

=

∞

∑ FHG
I
KJ

0
λ  ; λ > t

Example 6. Find the moment generating function of  the discrete binomial distribution
given by

 P(x) = ncx p
x qn – x (where q = 1 – p)

Also find the first and second moments about the mean. (U.P.T.U. 2008)
Sol. Moment generating function about the origin is given by

  Mx(t) = Σ etx . ncx  . p
xqn – x

= Σ ncx (pet)x qn – x = (q + pet)n

 ν1 = 
d
dt

tx
t

M ( )L
NM

O
QP = 0

 = [n(q + pet)n – 1 . pet ]t = 0 = np |Since q + p = 1

      ν2 = 
d
dt

tx
t

2

2
0

M ( )
L
NM

O
QP =

= [np{et . (n – 1) (q + pet)n – 2 pet + (q + pet)n – 1 . et}]t = 0
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= [np (q + pet)n – 2
 . e

t {(n – 1)pet + (q + pet)}]t = 0

= [np(q + pet)n – 2 . et(q + npet)]t = 0
= np(q + np) |∵ q + p = 1
= npq + n2 p2

Hence first and second moments about the mean are given by
  μ1 = 0

Since x  = ν1 = np

∴   μ2 = ν2 – x 2  = ν2 – ν1
2 = npq + n2p2 – n2p2  = npq

Hence, mean = np, S.D. = μ2  = npq .

Example 7. Find the moment generating function of the discrete Poisson distribution

given by P(x)  = e–λ ⋅ λx

x !
 . Also find the first and second moments about the mean.

(M.T.U. 2013)
Sol. Moment generating function about the origin is given by

  Mx(t) = Σetx . e–λ . λx

x !
   = e–λ Σ 

( )
!

λe
x

t x

 = e–λ . e etλ  = e etλ( )− 1

ν1 = 
d
dt

t e ex
t

e t
t

t

M ( ) [ ]( – )L
NM

O
QP = =

=
=

0

1
0

λ λ λ

  ν2 = d
dt

t ex
t

t
2

2
0

M ( ) [ { .
L
NM

O
QP

=
=

λ  e etλ( )− 1  . λet + e etλ( )− 1 et}]t=0

= [ ( )]( )λ λλe e eet t t
t

− + =
1 1 0 = λ(λ + 1)

Hence first and second moments about the mean are given by
 μ1 = 0

Since   ν1 = x  = λ

∴   μ2 = ν2 – x 2  = ν2 – ν1
2 = λ (λ + 1) – λ2 = λ

Example 8. Find the moment generating function of the continuous normal distribution

given by f(x) = 
1

2
e

1
2

x2
2

σ π
σ

μ− −( )
 ; – ∞ < x < ∞ .

Sol. Moment generating function about the origin is defined as

  Mx(t) = E (etx) = 
−∞

∞ − −F
HG
I
KJz ⋅e e dxtx

x
1

2

1
2

2

σ π

μ
σ

= e
e e dz

t z t z
μ

σ

π2

1
2

2

−∞

∞ − −z . where z = 
x − μ

σ

= 
1

2

1
2

1
2

2 2 2

π

μ σ σ
e e dz

t t z t+FHG
I
KJ

−∞

∞ − −z ( )
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= e
t tμ σ+ 1

2
2 2

 . 1 = e
t tμ σ+ 1

2
2 2

. ∵
0

2

2

∞ −z =e dzz π

Example 9. The random variable X assuming only non-negative values has a Gamma
probability distribution if its probability distribution is given by

 f(x) = 
α α β

β
β α

Γβ
x e ; x 0, 0, 1

0, elsewhere

1 x− − > > >
R
S|
T|

U
V|
W|

Find the moment generating function of Gamma probability distribution.
Sol.   Mx(t) = E(etx)

= 
0

1
∞ − −z ⋅ ⋅e x e dxtx xαβ

β α

Γβ
 = 

αβ
β α

Γβ 0

1
∞ − − −z x e dxx t( )

= 
α

α

β

β
β β

( )−

∞ − −zt
y e dy

Γβ 0

1 | where y = x(α – t) so that dy = (α – t) dx

= 
1

1

1

−FHG
I
KJ

⋅
t
α

β Γβ
Γβ  = 1 −FHG

I
KJ

−t
α

β

; | t | < α.

Example 10. Let the random variable X assume the value ‘n’ with the probability law
p(X = n) = pqn – 1, n = 1, 2, 3, ... . Find the moment generating function and hence mean and
variance. (G.B.T.U. 2010)

Sol. The given distribution is a discrete distribution.

Mn(t) = Σ etn pqn – 1 = 
p
q

e q
p
q

e qt n tΣ ( ) ( )= − −1 1 = 
p

q qet( )1 −
which is the moment generating function.

  ν1 = 
d
dt

tn
t

M ( )L
NM

O
QP = 0

 = 
p
q

qe
qe

p
q

p
p p

t

t
t( ) ( )1 1

1
2

0
2 2−

L
NM

O
QP

=
−

= =
=

  ν2 = 
d
dt

tn
t

2

2
0

M ( )
L
NM

O
QP =

 = p
d
dt

e
qe

t

t
t

( )1 2
0

−

RST
UVW

L
N
MM

O
Q
PP =

= p
qe e e qe qe

qe

t t t t t

t
t

( ) . . ( ) ( )
( )

1 2 1
1

2

4
0

− − − −
−

L
NM

O
QP =

= p
q q q

q
( ) ( )

( )
1 2 1

1

2

4
− + −

−

L
NM

O
QP
 = 

1 2
2p
q

p
+

Mean = x  = ν1 = 
1
p

Variance = μ2 = ν2 – x2  = 
1 2 1

2 2 2p
q

p p
q
p

+ − =
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ASSIGNMENT

1. Define moment generating function. Find the moment generating function of a random variable
X whose probability function is given by:

P(X = x) = p(1 – p)x, x = 0, 1, 2, ..., ∞ (G.B.T.U. 2012)
2. Define moment generating function and two properties of moment generating function with proof.

(M.T.U. 2013)

3. The probability density function of the random variable X is f(x) = 
1
2θ

 exp − −F
HG

I
KJ

| |
,

x θ
θ

 – ∞ < x < ∞.

Find moment generating function of X. Hence find the mean E(X) and variance V(X).
(M.T.U. 2013)

Hint: M t
x

e dx
x

e dxx
tx tx( ) exp exp= − −F

HG
I
KJ + − −F

HG
I
KJ

L
NM

O
QP−∞

∞z z1
2

1
2θ

θ
θ θ

θ
θ

θ

θ

4. Show that the moment generating function of random variable X having the p.d.f.

f(x) = 

1
3

1 2

0

,

,

− < <R
S|
T|

U
V|
W|

x

elsewhere
    is  MX(t) = 

e e
t

t

t

t t2

3
0

1

− ≠
R
S|
T|

−
,

, = 0

5. Find the moment generating function for triangular distribution defined by

f(x) = 
x x
x x
,
,

0 1
2 1 2

≤ ≤
− ≤ ≤
RST

UVW (M.T.U. 2013)

6. If P(X = x) = 
1
2x , x = 1, 2, 3, ..., find the moment generating function of x. Hence obtain the

variance. (U.P.T.U. 2014)

Answers

1.
p

e pt1 1− −( )
3.

e

t
t

t
x

tθ

θ
θ θ θ θ

1
1

3
2

22 2

2 2
2

−
+ + + = =or  E(X) V

!
... ; , ( )

5. Mx t t t( ) ...= + + +1
1
18

2 6.
e

e

t

t2 −
; 1

2
.

3.10 SKEWNESS

For a symmetrical distribution, the frequencies are symmetrically
distributed about the mean i.e., variates equidistant from the
mean have equal frequencies. Also, the mean, mode and median
coincide and median  lies half-way between the two quartiles.

Thus, M = M0 = Md and Q3 – M = M – Q1. M
M
M

0

d

Symmetrical distribution
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3.11 MEANING OF SKEWNESS (U.P.T.U. 2015)

If the curve of the distribution is not symmetrical, it may admit of tail on either side of the
distribution. Skewness means lack of symmetry or lopsidedness in a frequency
distribution.

The object of measuring skewness is to estimate the extent to which a distribution is
distorted from a perfectly symmetrical distribution. Skewness indicates whether the curve is
turned more to one side than to other i.e., whether the curve has a longer tail on one side.
Skewness can be positive as well as negative.

Skewness is positive if the longer tail of the distribution lies towards the right and
negative if it lies towards the left.

3.12 TESTS OF SKEWNESS

1. If A.M. = Mode = Median, then there is no skewness in the distribution. In other
words, the curve of the frequency distribution would be symmetrical, bell-shaped.

2. If A.M. is less than (greater than), the value of mode, the tail would be on left (right)
side, i.e., the distribution is negatively (positively) skewed.

3. If sum of frequencies of values less than mode is equal to the sum of frequencies of
values greater than mode, then there would be no skewness.

4. If quartiles are equidistant from median, then there would be no skewness.

3.13 METHODS OF MEASURING SKEWNESS (U.P.T.U. 2007)

Relative measures of skewness are called the coefficient of skewness. They are independ-
ent of the units of measurement and as such, they are pure numbers.

Following are the methods of measuring skewness:
1. Karl Pearson’s Method
2. Bowley’s Method
3. Kelly’s Method
4. Method of Moments.
Here, we will discuss Karl Pearson’s method and the method of moments only.

3.13.1. Karl Pearson’s Method
This method is based on the fact that in a symmetrical distribution, the value of A.M. is equal
to that of mode. As we have already noted that the distribution is positively skewed if A.M. >
Mode and negatively skewed if A.M. < Mode. The Karl Pearson’s coefficient of skewness is
given by:

Karl Pearson’s coefficient of skewness = 
A.M. – Mode

S.D.
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We have already studied the methods of calculating A.M., Mode and S.D. of frequency
distributions. If mode is ill-defined in some frequency distribution, then the value of empirical
mode is used in the formula.

Empirical mode = 3 Median – 2 A.M.

∴ Coeff. of skewness = 
A.M. Mode

S.D.
−

= 
A.M. (3 Median 2 A.M.)

S.D.
3 A.M. 3 Median

S.D.
− − = −

∴ Karl Pearson’s coefficient of skewness = 
3(A.M. – Median)

S.D.
The coefficient of skewness as calculated by using this method gives magnitude as well

as direction of skewness, present in the distribution. Practically, its value lies between – 1 and 1.
For a symmetrical distribution, its value comes out to be zero.

The Karl Pearson’s coefficient of skewness is generally denoted by ‘SKP’.

(i) If SKP = 0 ⇔
Mean Mode

S.D.
−

 = 0

⇔ Mean = Mode
⇔ Distribution is symmetrical.

Thus a distribution is a symmetrical distribution iff SKP = 0.

(ii) If SKP > 0 ⇔
Mean Mode

S.D.
−

 > 0

⇔ Mean – Mode > 0
⇔ Mean > Mode
⇔ Distribution is positively skewed.

Thus a distribution is a positively skewed distribution iff SKP > 0.

(iii) If SKP < 0 ⇔
Mean Mode

S.D.
0

− <

⇔ Mean – Mode < 0
⇔ Mean < Mode
⇔ Distribution is negatively skewed.

Thus a distribution is a negatively skewed distribution iff SKP < 0.

EXAMPLES

Example 1. Karl Pearson’s coefficient of skewness of a distribution is 0.32, its standard
deviation is 6.5 and mean is 29.6. Find the mode of the distribution.

Sol. We have SKP = 0.32, S.D. = 6.5, x  = 29.6.

Now SKP = 
x − Mode

S.D.

∴ 0.32 = 
29 6

6 5
.

.
− Mode

⇒  29.6 – Mode = 0.32 × 6.5 = 2.08
⇒    Mode = 29.6 – 2.08 = 27.52.
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Example 2. For a moderately skewed data, the arithmetic mean is 100, the variance is
35 and Karl Pearson’s coefficient of skewness is 0.2. Find its mode and median.

Sol. We have x  = 100, Variance = 35, SKP = 0.2.

Now SKP = 
x − Mode

σ

∴  0.2 = 
100

35

− Mode
(∵ S.D. = variance )

⇒ 100 – Mode = 0.2 × 5.92 = 1.184
⇒ Mode = 100 – 1.184 = 98.816.
Also,   Mode = 3 Median – 2 x ⇒ 98.816 = 3 Median – 2(100).
∴  3 Median = 98.816 + 200 = 298.816

∴ Median = 
298 816

3
.

 = 99.61.

Example 3. In a certain distribution, the following results were obtained :
A.M. = 45, Median = 48, Coefficient of skewness = – 0.4. The person who gave you this

data, failed to give the value of S.D. You are required to estimate it with the help of available
data.

Sol. We have
           coeff. of skewness = – 0.4, A.M. = 45, median = 48.

Now, coeff. of skewness = 
3( )x − Median

S.D.

⇒  – 
4
10

3 45 48 9= − = −( )
S.D. S.D.

⇒  4 S.D. = 90

S.D. = 
90
4

 = 22.5.

Example 4. The sum of 20 observations is 300 and sum of their squares is 5000. The
median is 15. Find the Karl Pearson’s coefficient of skewness.

Sol. Let ‘x’ be the variable under consideration.
We have n = 20, Σx = 300, Σx2 = 5000, median = 15.

Now,  x
x

n
= =Σ 300

20
 = 15

S.D. = 
Σx
n

x
2

2 25000
20

15 250 225 25− = − = − =( )  = 5

Now, Karl Pearson’s coeff. of skewness

 = 
3 3 15 15

5
0
5

( ) ( )x − = − = =Median
S.D.

0 .

Example 5. Find the coefficient of skewness by Karl Pearson’s method for the following
data:

Value 6 12 18 24 30 36 42

Frequency 4 7 9 18 15 10 3
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Sol. Calculation of x , S.D.

Value f d = x – A u = d/h fu fu2

x A = 24 h = 6

6 4 – 18 – 3 – 12 36
12 7 – 12 – 2 – 14 28
18 9 – 6 – 1 – 9 9
24 18 0 0 0 0
30 15 6 1 15 15
36 10 12 2 20 40
42 3 18 3 9 27

N = 66 Σfu = 9 Σfu2 = 155

  A.M. x  = A + 
Σfu
N
F
HG
I
KJ h = 24 + 

9
66
F
HG
I
KJ  6 = 24.82

S.D. = 
Σ Σfu fu

h
2 2 2

6
155
66

9
66N N

– –F
HG
I
KJ × = × F

HG
I
KJ  = 8.94

Mode. Grouping Table

x I II III IV V VI
f

6 4
12 7 11
18 9 16 20
24 18 27 34
30 15 33 43 42
36 10 25 28
42 3 13

Analysis Table

Column 24 18 30 36 12

I 1

II 1 1

III 1 1

IV 1 1 1

V 1 1

VI 1 1 1 1

Total 6 3 3 1 1

∴ Mode = 24

∴  SKP = 
x − = − =Mode

S.D.
24 82 24

8 94
0 82
8 94

.
.

.

.
 = 0.092.
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Example 6. Calculate Karl Pearson’s coefficient of skewness for the following data:

Income (in `) 500—600 600—700 700—800 800—900 900—1000 1000—1100

No. of employees 8 12 4 2 1 1

Sol. Calculation of x , Mode, S.D.

Income No. of Mid-points d = x – A u = d/h fu fu2

(in `) employees of classes A = 750 h = 100
f x

500—600 8 550 – 200 – 2 – 16 32

600—700 12 650 – 100 – 1 – 12 12

700—800 4 750 0 0 0 0

800—900 2 850 100 1 2 2

900—1000 1 950 200 2 2 4

1000—1100 1 1050 300 3 3 9

N = 28 Σfu = – 21 Σfu2 = 59

A.M. x
fu

h= + FHG
I
KJ = + −FHG

I
KJA

N
Σ

750
21
28

 (100) = 750 – 75 = ` 675

Mode. By inspection, modal class is 600–700

∴   Mode = l + 
Δ

Δ Δ
1

1 2+
F
HG

I
KJ h

Here l = 600, Δ1 = 12 – 8 = 4, Δ2 = 12 – 4 = 8, h = 100

∴   Mode = 600 + 
4

4 8+
F
HG
I
KJ  (100) = 600 + 33.33 = ` 633.33

 S.D. = 
Σ Σfu fu

h
2 2 259

28
21
28

100
N N

− FHG
I
KJ

L

N
MM

O

Q
PP × = − −FHG

I
KJ

L

N
MM

O

Q
PP ×

= 2 1071 0 5625. .−  × 100 = 1.5446  × 100 = 1.2428 × 100 = ` 124.28

Now, Karl Pearson’s coeff. of skewness = 
x − = −Mode

S.D.
675 633 33

124 28
.

.
 = 0.34.

ASSIGNMENT

1. A frequency distribution gives the following results:

Coeff. of variation = 5

Karl Pearson’s Coeff. of Skewness = 0.5

S.D. = 2

Find A.M. and Mode of the distribution.
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2. Find Pearson’s coeff. of skewness from the following frequency distribution:

Height (in inches) 60–62 63–65 66–68 69–71 72–74

Frequency 5 18 42 27 8

3. From the following data, calculate the coefficient of skewness based on mean, median and S.D.

Variable 100–110 110–120 120–130 130–140 140–150 150–160 160–170 170–180

Frequency 4 16 36 52 64 40 32 11

4. From the following data, find out the Karl Pearson’s coefficient of skewness:

Measurement 10 11 12 13 14 15

Frequency 2 4 10 8 5 1

5. Calculate Karl Pearson’s coefficient of skewness for the following frequency distribution:

Marks more than 0 10 20 30 40 50 60 70

No. of students 100 90 75 50 25 15 5 0

6. For the following frequency distribution, calculate the value of Karl Pearson’s coeff. of skewness:

Temp. (°C) – 40 to – 30 – 30 to  – 20 – 20 to  – 10 – 10 to 0 0 to 10 10 to 20 20 to 30

No. of days 10 28 30 42 65 180 10

7. From the following data, calculate Karl Pearson’s coefficient of skewness:

Marks (above) 0 10 20 30 40 50 60 70 80

No. of students 150 140 100 80 80 70 30 14 0

8. Find out the mean wage and coefficient of skewness from the following data:
35 men gets at the rate of ` 4.5 per man
40 men gets at the rate of ` 5.5 per man
48 men gets at the rate of ` 6.5 per man
100 men gets at the rate of ` 7.5 per man
125 men gets at the rate of ` 8.5 per man
87 men gets at the rate of ` 9.5 per man
43 men gets at the rate of ` 10.5 per man
22 men gets at the rate of ` 11.5 per man.

9. Calculate Karl Pearson’s coefficient of skewness:

Wages (in `) 70–80 80–90 90–100 100–110 110–120 120–130 130–140 140–150

No. of workers 12 18 35 42 50 45 20 8

10. Find the mean, mode, S.D. and Karl Pearson’s coeff. of skewness for the following:

Yrs. under 10 20 30 40 50 60

No. of persons 15 32 51 78 97 109
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11. Compute the coeff. of skewness from the following figures : 25, 15, 23, 40, 27, 25, 23, 25, 20.
12. In a discrete series of 20 terms, the sum of the terms is 200, the sum of the squares of the terms

is 5000 and the median is 15. Find Karl Pearson’s coefficient of skewness.
13. Calculate the coefficient of skewness based on mean, median and standard deviation from the

following data:

C.I. 0–10 10–20 20–30 30–40 40–50 50–60 60–70 70–80

f 3 6 11 24 28 16 9 3

[M.T.U. (MBA) 2012]
14. Which of the following two series is symmetrical?

Series α: Mean = 22, Median = 24, S.D. = 10
Series β: Mean = 22, Median = 25, S.D. = 12

15. Following table gives the data relating to marks obtained by students who appeared for B. Tech.
III Semester examination in Mathematics III at a centre. Calculate Karl Pearson’s coefficient of
skewness from the said data:

Marks 0 10 20 30 40 50 60 70
to to to to to to to to
10 20 30 40 50 60 70 80

No. of students 10 40 20 0 10 40 16 14

[Hint. Since max. frequency corresponds to two classes very far from each other so mode is ill-

defined and SKP = 
3( )Mean Median

S.D.
− O

QP .

Answers

1. Mean = 40, Mode = 39 2. 0.0356 3. – 0.0087 4. 0.3604

5. – 0.0627 6. – 0.6617 7. – 0.7539

8. Mean wage = ` 8.07,  Coeff. of skewness = – 0.2422 9. – 0.3314

10. Mean = 29.95, Mode = 35, S.D. = 15.49, Coeff. of skewness = – 0.32 11. – 0.03

12. – 1.22 13. – 0.08608 14. Series α 15. 0.754.

3.13.2. Method of Moments

In this method, second and third central moments of the distribution are used. This measure
of skewness is called the Moment coefficient of skewness and is given by:

 Moment coefficient of skewness = 
μ

μ
3

2
3

. [G.B.T.U. (C.O.) 2009, 2011]

For a symmetrical distribution, its value would come out to be zero. The coefficient of
skewness as calculated by this method gives the magnitude as well as direction of the skewness
present in the distribution.

In Statistics, we define β1 = 
μ
μ

3
2

2
3

.
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∴ Moment coefficient of skewness can also be written as = 
μ

μ
β3

2
3 1= ± .

The sign with β1  is to be taken as that of μ3. The moment coefficient of skewness is

also denoted by γ1. The moment coefficient of skewness is generally denoted by ‘SKM’.

EXAMPLES

Example 1. The first three central moments of a distribution are 0, 15, – 31. Find the
moment coefficient of skewness.

Sol. We have μ1 = 0, μ2 = 15 and μ3 = – 31

Moment coefficient of skewness = 
μ

μ
3

2
3 3

31

15

31
58 09

= − = −
( ) .

 = – 0.53.

Example 2. The first four moments of a distribution about the value 5 of the variable
are 2, 20, 40 and 50. Calculate the moment coefficient of skewness.

Sol. We have A = 5, μ1′ = 2, μ2′ = 20, μ3′ = 40 and μ4′ = 50

Now μ2 = μ2′ – (μ1′)
2 = 20 – (2)2 = 16

μ3 = μ3′ – 3μ1′μ2′ + 2μ1′
3 = 40 – 3(2)(20) + 2(2)3

= 40 – 120 + 16 = – 64

Moment coefficient of skewness = 
μ

μ
3

2
3 3

64

16

64
64

= − = − =
( )

– 1.

Example 3. Calculate the moment coefficient of skewness for the following distribution :

Classes 2.5–7.5 7.5–12.5 12.5–17.5 17.5–22.5 22.5–27.5 27.5–32.5 32.5–37.5

Frequency 8 15 20 32 23 17 5

Sol. Calculation of Moment Coefficient of Skewness

Classes f Mid-pts. d = x – A u = d/h fu fu2 fu3

x A = 20 h = 5

2.5–7.5 8 5 – 15 – 3 – 24 72 – 216

7.5–12.5 15 10 – 10 – 2 – 30 60 – 120

12.5–17.5 20 15 – 5 – 1 – 20 20 – 20

17.5–22.5 32 20 0 0 0 0 0

22.5–27.5 23 25 5 1 23 23 23

27.5–32.5 17 30 10 2 34 68 136

32.5–37.5 5 35 15 3 15 45 135

N = 120 Σfu = – 2 Σfu2  = 288 Σfu3 = – 62
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Now,    μ1′ = 
Σfu

h
N
F
HG
I
KJ = −F
HG
I
KJ

2
120

 5 = – 0.083

   μ2′ = 
Σfu

h
2

2 288
120N

F
HG
I
KJ = FHG

I
KJ  52 = 60

 μ3′ = 
Σfu

h
3

3 62
162N

F
HG
I
KJ = −F
HG
I
KJ  53 = – 64.583

Now, μ2 = μ2′ – μ1′
2 = 60 – (– 0.083)2 = 59.993

μ3 = μ3′ – 3μ1′ μ2′ + 2μ1′
3 = – 64.583 – 3(– 0.083)(60) + 2(– 0.083)3

= – 49.644.

∴ Moment coefficient of skewness = 
μ

μ
3

2
3 3

49 644

59 993
=

− .

( . )
 = – 0.1068.

ASSIGNMENT

1. The first-three central moments of a distribution are 0, 2.5, 0.7. Find the value of the moment
coefficient of skewness. (U.P.T.U. 2015)

2. In a certain distribution, the first four moments about the point 4 are – 1.5, 17, – 30 and 308.
Calculate the moment coefficient of skewness. (U.P.T.U. 2014)

3. The first three moments of a frequency distribution about origin ‘5’ are – 0.55, 4.46 and – 0.43.
Find the moment coefficient of skewness.

4. Calculate the moment coefficient of skewness for the following data:

Marks 0–10 10–20 20–30 30–40 40–50 50–60 60–70

No. of students 8 12 20 30 15 10 5

5. Calculate the moment coefficient of skewness from the following data:

x 0 1 2 3 4 5 6 7 8

f 1 8 28 56 70 56 28 8 1

6. For the following frequency distribution, find the first four moments about the mean. Also find
the value of β1. Is it a symmetrical distribution?

x 2 3 4 5 6

f 1 3 7 3 1

7. Compute the coefficient of skewness from the following data: [G.B.T.U. (C.O.) 2009]

x 6 7 8 9 10 11 12

f 3 6 9 13 8 5 4
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8. In two frequency distributions, the second moments about mean are 36 and 49 respectively while
third moments about mean are 43.2 and 85.75. Compare the skewness in the two frequency
distributions. (G.B.T.U. 2012)

9. The first three moments about the origin are given by ν1
1

2
= +n

,  ν2
1 2 1

6
= + +( )( )

,
n n

 and

ν3

21
4

= +n n( ) . Examine the skewness of the data.

10.  (i) Define skewness of a distribution. (U.P.T.U. 2015)
(ii) Define the coefficients of skewness. (M.T.U. 2012, 2013)

Answers

1. 0.17708 2. 0.7017 3. 0.7781 4. 0.0726

5. 0 6. 0, 0.933, 0, 2.533, Yes 7. 0.0903.

8. γ1 (for I distribution) = 0.2, γ2 (for II distribution) = 0.25

Second distribution is more positively skewed than the first.

9. data is symmetrical.

3.14 KURTOSIS [U.P.T.U. (C.O.) 2008; U.P.T.U. 2006, 2015]

Given two frequency distributions which have the same variability as measured by the standard
deviation, they may be relatively more or less flat topped than the normal curve. A frequency
curve may be symmetrical but it may not be equally flat topped with the normal curve. The
relative flatness of the top is called kurtosis and is measured by β2. Kurtosis refers to the
bulginess of the curve of a frequency distribution.

Curves which are neither flat nor sharply peaked are called normal curves or mesokurtic
curves.

Curves which are flatter than the normal curve are called platykurtic curves.

Curves which are more sharply peaked than the normal curve are called leptokurtic
curves.

3.15 MEASURE OF KURTOSIS [G.B.T.U. (C.O.) 2009, 2011; U.P.T.U. 2007]

The measure of kurtosis is denoted by β2 and is defined as

β2 = 
μ
μ

4

2
2

where μ2 and μ4 are respectively the second and fourth moments about mean of the distribution.

If βββββ2 > 3, the distribution is leptokurtic. If βββββ2 = 3, the distribution is mesokurtic. If
βββββ2 < 3, the distribution is platykurtic. The kurtosis of a distribution is also measured by
using Greek letter ‘γ2’ which is defined as γ2 = β2 – 3.

∴ γ2 > 0 ⇒ β2 – 3 > 0 ⇒ β2 > 3 ⇒ the distribution is leptokurtic.

Similarly, if γ2 = 0, then β2 = 3 ⇒ The distribution is mesokurtic.

γ2 < 0 ⇒ β2 < 3 ⇒ the distribution is platykurtic.
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Leptokurtic
> 3
> 0

b

g

2

2

Mesokurtic
= 3
= 0

b

g

2

2

Platykurtic
< 3
< 0

b

g

2

2

3.15.1. Steps for Computing β2

I. If the value of μ2 and μ4  are given, then find β2 by using the formula: β2 = 
μ

μ
4

2
2 .

II. If raw moments μ1′, μ2′, μ3′
 and μ4′ are given, then calculate:

μ2 = μ2′ – μ1′
2 and μ4 = μ4′ – 4μ3′ μ1′ + 6μ2′  μ1′

2 – 3μ1′
4

Now, find β2 = 
μ
μ

4

2
2 .

III. If moments are not given, then first find μ2 and μ4 by using the given data and then

use the formula: β2 = 
μ
μ

4

2
2 .

IV. The given distribution is leptokurtic, mesokurtic and platykurtic according as β2 > 3,
β2 = 3 and β2 < 3 respectively.

EXAMPLES

Example 1.  The  first four moments about mean of a frequency distribution are 0, 100,
– 7 and 35000. Discuss the kurtosis of the distribution.

Sol. We have, μ1 = 0, μ2 = 100, μ3 = – 7 and μ4 = 35000

Now, β2 = 
μ
μ

4

2
2 2

35000
100

=
( )

 = 3.5 > 3

∴ The distribution is leptokurtic.
Example 2. The first four moments of a distribution about the value ‘4’ of the variable

are – 1.5, 17,– 30 and 108. State whether the distribution is leptokurtic or platykurtic.
(U.P.T.U. 2007, 2014)

Sol. We have,    μ1′ = – 1.5, μ2′ = 17, μ3′ = – 30, μ4′ = 108
Moments about mean:

  μ2 = μ2′ – μ1′
2 = 17 – (– 1.5)2 = 14.75

 μ4 = μ4′ – 4μ3′μ1′ + 6μ2′μ1′
2 – 3μ1′

4

= 108 – 4 (– 30) (– 1.5) + 6 (17) (– 1.5)2 – 3 (– 1.5)4 = 142.3125

Kurtosis: β2 = 
μ
μ

4

2
2 2

142 3125
14 75

= .
( . )

 = 0.6541

Since β2 < 3, the distribution is platykurtic.

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com


STATISTICAL TECHNIQUES 243

Example 3. The first four moments of a distribution about x = 4 are 1, 4, 10 and 45.
Obtain the various characteristics of the distribution on the basis of the given information.
Comment upon the nature of the distribution.

Sol. We have  A = 4, μ1′ = 1, μ2′ = 4, μ3′ = 10 and μ4′ = 45
Moments about mean:

 μ1 = 0 (always)
 μ2 = μ2′ – μ1′

2 = 4 – (1)2 = 3
 μ3 = μ3′ – 3μ2′ μ1′  + 2μ1′

3 = 10 – 3(4)(1) + 2(1)3 = 0
μ4 = μ4′ – 4μ3′ μ1′ + 6μ2′ μ1′

2 – 3μ1′
4

= 45 – 4(10)(1) + 6(4)(1)2 – 3(1)4 = 26

Skewness: Moment coefficient of skewness, γ1 = 
μ

μ
3

2
3 3

0

3
0= =

( )
.

∴ The distribution is symmetrical.

Kurtosis: β2 = 
μ
μ

4

2
2 2

26
3

=
( )

 = 2.89 < 3 ∴ The distribution is platykurtic.

Example 4. The standard deviation of a symmetric distribution is 5. What must be the
value of the fourth moment about the mean in order that the distribution be

(i) leptokurtic (ii) mesokurtic (iii) platykurtic?
Sol. We have, σ = 5 ⇒ σ2 = 25 ⇒ μ2 = 25 | ∵ μ2 = σ2

Now, β2 = 
μ
μ

μ4

2
2

4

625
=

Thus, the distribution will be

(i) Leptokurtic if β2 > 3 ⇒
μ4

625
 > 3 ⇒ μ4 > 1875

(ii) Mesokurtic if β2 = 3 ⇒
μ4

625
 = 3 ⇒ μ4 = 1875

(iii) Platykurtic if β2 < 3 ⇒
μ4

625
 < 3 ⇒ μ4 < 1875.

Example 5. The first four moments about the working mean 28.5 of a distribution are
0.294, 7.144, 42.409 and 454.98. Calculate the moments about the mean. Also evaluate β1, β2
and comment upon the skewness and kurtosis of the distribution. (U.P.T.U. 2006)

Sol. We have, μ1′ = 0.294, μ2′ = 7.144, μ3′ = 42.409, μ4′ = 454.98
Moments about mean

 μ1 = 0
 μ2 = μ2′ – μ1′

2 = 7.144 – (.294)2 = 7.0576
 μ3 = μ3′ – 3μ2′ μ1′ + 2μ1′

3

= 42.409 – 3(7.144) (.294) + 2 (.294)3 = 36.1588
 μ4 = μ4′ – 4μ3′ μ1′ + 6μ2′ μ1′

2 – 3μ1′
4

= 454.98 – 4(42.409) (.294) + 6(7.144) (.294)2 – 3(.294)4

= 408.7896
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Calculation of βββββ1 and βββββ2

  β1 = 
μ
μ

3
2

2
3  = 3.7193 β2 = 

μ
μ

4

2
2  = 8.2070

Skewness
Since β1 is positive,  γ1 = 1.9285 | μ3 is positive
∴ The distribution is positively skewed.
Kurtosis

 Since β2 = 8.2070 > 3
∴ The distribution is leptokurtic.
Example 6. The first four moments of a distribution about the value ‘0’ are – 0.20, 1.76,

– 2.36 and 10.88. Find the moments about the mean and measure the kurtosis.
(U.P.T.U. 2009)

Sol. We have, μ′1 = – 0.20, μ′2 = 1.76, μ′3 = – 2.36, μ′4 = 10.88
Moments about the mean:

μ1 = 0
μ2 = μ′2 – μ1′2 = 1.76 – (–0.20)2 = 1.72

  μ3 = μ′3 – 3μ′2μ′1 + 2μ1′3

= – 2.36 – 3 (1.76) (– 0.20) + 2 (– 0.20)3 = – 1.32
μ4 = μ′4 – 4μ′3μ′1 + 6μ′2μ1′2 – 3μ1′4

= 10.88 – 4 (– 2.36) (– 0.20) + 6 (1.76) (– 0.20)2 – 3 (– 0.20)4

= 9.4096
Kurtosis:::::

β2 = 
μ
μ

4

2
2  = 3.180638

Since, β2 > 3 hence the distribution is leptokurtic.
Example 7. The following table represents the height of a batch of 100 students. Calcu-

late kurtosis.

Height (in cm) 59 61 63 65 67 69 71 73 75

No. of students 0 2 6 20 40 20 8 2 2

[U.P.T.U. (C.O.) 2008]
Sol. To calculate β2, we will have to first find the values of μ2 and μ4.
Moments about 67

 μ1′ = 
Σfu

h
N
F
HG
I
KJ = FHG

I
KJ

12
100

2( )  = 0.24

 μ2′ = 
Σfu

h
2

2 164
100N

F
HG
I
KJ = FHG

I
KJ (4)  = 6.56
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Height No. of u = x 67
2

− fu fu2 fu3 fu4

(cm) x students f

59 0 – 4 0 0 0 0
61 2 – 3 – 6 18 – 54 162
63 6 – 2 – 12 24 – 48 96
65 20 – 1 – 20 20 – 20 20
67 40 0 0 0 0 0
69 20 1 20 20 20 20
71 8 2 16 32 64 128
73 2 3 6 18 54 162
75 2 4 8 32 128 512

N = Σf = 100 Σfu = 12 Σfu2 = 164 Σfu3 = 144 Σfu4 = 1100

 μ3′ = 
Σfu

h
3

3 144
100

8
N

F
HG
I
KJ = ×  = 11.52

μ4′ = 
Σfu

h
4

4 1100
100

16
N

F
HG
I
KJ = ×  = 176

Moments about mean
 μ2 = μ2′ – μ1′

2 = 6.56 – (.24)2 = 6.5024
 μ4 = μ4′ – 4μ3′ μ1′ + 6μ2′μ1′

2 – 3μ1′
4

= 176 – 4 (11.52) (0.24) + 6 (6.56) (0.24)2 – 3 (0.24)4 = 167.19798
Kurtosis

Measure of kurtosis β2 = 
μ
μ

4

2
2

 = 3.9544 > 3

Hence, the distribution is leptokurtic.

ASSIGNMENT

1. The first four moments about mean of a frequency distribution are 0, 60, – 50 and 8020 respec-
tively. Discuss the kurtosis of the distribution.

2. The μ2 and μ4 for a distribution are found to be 2 and 12 respectively. Discuss the kurtosis of the
distribution.

3. (i) The first four central moments of a distribution are 0, 2.5, 0.7 and 18.75. Test the kurtosis of
the distribution. (M.T.U. 2013)

(ii) Define skewness and kurtosis of a distribution. The first four moments of a distribution are
0, 2.5, 0.7 and 18.71. Find the coefficient of skewness and kurtosis. (U.P.T.U. 2015)

4. The standard deviation of symmetric distribution is 4. What must be the value of μ4 so that the
distribution may be mesokurtic?

5. (i) If the first four moments about the value ‘5’ of the variable are – 4, 22, – 117 and 560, find the
value of β2 and discuss the kurtosis.
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(ii) The first four moments of a distribution about the value 5 of the variable are 2, 20, 40 and 50.
Calculate the moments about the mean and comment upon the skewness and kurtosis of the
distribution. (G.B.T.U. 2011)

6. (i) Calculate the value of β2 for the following distribution:

Class 2.5–7.5 7.5–12.5 12.5–17.5 17.5–22.5 22.5–27.5 27.5–32.5 32.5–37.5

Frequency 8 15 20 32 23 17 5

(ii) Compute the value of β2 for the following distribution. Is the distribution platykurtic?

Class 10–20 20–30 30–40 40–50 50–60 60–70 70–80

Frequency 1 20 69 108 78 22 2

7. (i) Calculate μ1, μ2, μ3 , μ4 for the frequency distribution of heights of 100 students given in the
following table and hence find coefficient of skewness and kurtosis.

Height (cm.) 144.5 – 149.5 – 154.5 – 159.5 – 164.5 – 169.5 – 174.5 –
Class interval 149.5 154.5 159.5 164.5 169.5 174.5 179.5

Frequency 2 4 13 31 32 15 3

(G.B.T.U. 2011)

(ii) Find all four central moments and discuss skewness and kurtosis for the frequency distribution
given in the following table:

Range of Expenditure 2–4 4–6 6–8 8–10 10–12
(in ` 100 per month)

No. of families 38 292 389 212 69

[G.B.T.U. 2013; M.T.U. 2012]
8. (i) Find the measures of skewness and kurtosis on the basis of moments for the following

distribution:

x 1 3 5 7 9

f 1 4 6 4 1 [G.B.T.U. (C.O.) 2011]

(ii) Find the measure of skewness and kurtosis on the basis of moments for the following
distribution:

Marks 5–15 15–25 25–35 35–45 45–55

No. of Students 1 3 5 7 4

(M.T.U. (MBA) 2011)
9. Calculate β1 and β2 from the following data:

Profit (in lakhs of ` ) 10–20 20–30 30–40 40–50 50–60

No. of companies 18 20 30 22 10

Indicate the nature of frequency curve.
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10. Prove that the frequency distribution curve of the following frequency distribution is leptokurtic.

Class 10–15 15–20 20–25 25–30 30–35 35–40 40–45 45–50 50–55

Frequency 1 4 8 19 35 20 7 5 1

11. Calculate the first four moments about the mean of the following distribution:

x 2 2.5 3 3.5 4 4.5 5

f 5 38 65 92 70 40 10

Also find the measures of skewness and kurtosis. (M.T.U. 2012)
12. Calculate the first four moments about the mean for the following frequency distribution and

hence find the coefficient of skewness and kurtosis and comment upon the nature of the
distribution.

Class-interval 5–10 10–15 15–20 20–25 25–30 30–35 35–40

Frequency 6 8 17 21 15 11 2

(G.B.T.U. 2013)
13. Define the coefficients of kurtosis. [M.T.U. 2014; G.B.T.U. (C.O.) 2009, 2011; U.P.T.U. 2007]

14. (i) What do you mean by kurtosis? Explain in brief. [U.P.T.U. (C.O.) 2008]

(ii) Define kurtosis of a distribution. (U.P.T.U. 2006)

Answers

1. β2 = 2.2278, Platykurtic 2. β2 = 3, Mesokurtic

3. (i) β2 = 3, Mesokurtic (ii) 0.17708, 2.9936 4. μ4 = 768

5. (i) β2 = 0.8889, Platykurtic

(ii) μ1 = 0, μ2 = 16, μ3 = – 64, μ4 = 162

γ1 = –1, β2 = 0.6328 ; Negatively skewed and platykurtic

6. (i) β2 = 2.3216, Platykurtic (ii) β2 = 2.7240, Yes

7. (i) μ1 = 0, μ2 = 36.66, μ3 = – 85.104, μ4 = 4373.3832, γ1 = – 0.3834, β2 = 3.2541

(ii) μ1 = 0, μ2 = 37267.04, μ3 = 1746530.688, μ4 = 3567851989

y1 = 0.24275, β2 = 2.5689, positively skewed and platykurtic.

8. (i) γ1 = 0, β2 = 2.5

(ii) μ1 = 0, μ2 = 125, μ3 = – 600, μ4 = 37625, γ1 = – 0.4293, β2 = 2.408, negatively skewed and
platykurtic.

9. β1 = 0.0001, β2 = 2.047, Platykurtic.

11. μ1 = 0, μ2 = 0.45328125, μ3 = 0.009890625, μ4 = 0.502111743, γ1 = 0.0324, β2 = 2.44379,

positively skewed and platykurtic.

12. μ1 = 0, μ2 = 56, μ3 = – 176.5625, μ4 = 7502.9375, γ1 = – 0.4213, β2 = 2.3925 ; negatively skewed and
platykurtic.

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com


248 A TEXTBOOK OF ENGINEERING MATHEMATICS

3.16 CURVE FITTING

Let  there  be  two variables x and  y which give us a set of n  pairs of numerical values (x1, y1),
(x2, y2).......(xn, yn). In order to have an approximate idea about the relationship of these two
variables, we plot these n paired points on a graph thus, we get a diagram showing the
simultaneous variation in values of both the variables called scatter or dot diagram. From
scatter diagram, we get only an approximate non-mathematical relation between two variables.
Curve fitting means an exact relationship between two variables by algebraic equations, infact
this relationship is the equation of the curve. Therefore, curve fitting means to form an equation
of the curve from the given data. Curve fitting is considered of immense importance both from
the point of view of theoretical and practical statistics.

Theoretically, it is useful in the study of correlation and regression. Practically, it ena-
bles us to represent the relationship between two variables by simple algebraic expressions
e.g., polynomials, exponential or logarithmic functions.

It is also used to estimate the values of one variable corresponding to the specified
values of the other variable.

The constants occurring in the equation of approximate curve can be found by following
methods:

(i) Graphical method (ii) Method of group averages
(iii) Method of least squares (iv) Method of moments.
Out of the above four methods, we will only discuss and study here method of least

squares.

3.17 METHOD OF LEAST SQUARES
[U.P.T.U. MCA (C.O.) 2008; U.P.T.U. (C.O.) 2008 ; U.P.T.U. 2008]

Method of least squares provides a unique set of values to the constants and hence suggests a
curve of best fit to the given data.

Suppose we have m-paired observations (x1, y1), (x2, y2), ......, (xm, ym) of two variables x
and y. It is required to fit a polynomial of degree n of the type

y = a + bx + cx2 + ...... + kxn …(1)
of these values. We have to determine the constants a, b, c, ..., k such that it represents the
curve of best fit of that degree.

In case m = n, we get in general a unique set of values satisfying the given system of
equations.

But if m > n then, we get m equations by putting different values of x and y in equa-
tion (1) and we want to find only the values of n constants. Thus, there may be no such solution
to satisfy all m equations.

Therefore, we try to find out those values of a, b, c, ......, k which satisfy all the equations
as nearly as possible. We apply the method of least squares in such cases.

Putting x1, x2, ..., xm for x in (1), we get
 y1′ = a + bx1 + cx1

2 + ...... + kx1
n

 y2′ = a + bx2 + cx2
2 + ...... + kx2

n

    # #
ym′ = a + bxm + cxm

2 + ...... + kxm
n

where  y1′,  y2′, ......, ym′  are the expected values of y for x = x1, x2, ......., xm respectively. The values
y1, y2, ......,  ym are called observed values of y corresponding to x = x1, x2, ......, xm respectively.
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The expected values are different from observed values, the difference yr – yr′ for differ-
ent values of r are called residuals.

Introduce a new quantity U such that
U = Σ(yr – yr′)

2 = Σ(yr – a – bxr – cxr
2 – ..... – kxr

n)2

The constants a, b, c, ......, k are chosen in such a way that the sum of the squares of
residuals is minimum.

Now the condition for U to be maximum or minimum is 
∂
∂
U
a

 = 0 = 
∂
∂

∂
∂

U U
b c

=  = ...... = 
∂
∂
U
k

.
On simplifying these relations, we get

Σy = ma + bΣx + ..... + kΣxn

 Σxy = aΣx + bΣx2 + ....... + k Σxn+1

Σx2y = aΣx2 + bΣx3 + ....... + k Σxn+2

# #
Σxny = aΣxn + bΣxn+1 + ....... + k Σx2n

These are known as Normal equations and can be solved as simultaneous equations to
give the values of the constants a, b, c, ......., k. These equations are (n + 1) in number.

If we calculate the second order partial derivatives and these values are put, they give
a positive value of the function, so U is minimum.

This method does not help us to choose the degree of the curve to be fitted but helps us
in finding the values of the constants when the form of the curve has already been chosen.

3.18 FITTING A STRAIGHT LINE

Let (xi, yi), i = 1, 2, ......, n be n sets of observations of related data and
y = a + bx …(1)

be the straight line to be fitted. The residual at x = xi is
Ei = yi – f(xi) = yi – a – bxi

Introduce a new quantity U such that

 U = 
i

n

i
i

n

i iy a bx
= =
∑ ∑= − −

1

2

1

2E ( )

By the principle of Least squares, U is minimum

∴   
∂
∂
U
a

 = 0 and
∂
∂
U
b

 = 0

∴ 2 1 0
1i

n

i iy a bx
=
∑ − − − =( )( ) or Σy = na + bΣx ...(2)

and 2 0
1i

n

i i iy a bx x
=
∑ − − − =( )( ) or Σxy = aΣx + bΣx2 ...(3)

Since xi, yi are known, equations (2) and (3) result two equations in a and b. Solving
these, the best values for a and b can be known and hence equation (1).
Note. In case of change of origin,

if n is odd then,   u = 
x

h
− (middle term)

interval ( )

but if n is even then,   u = 
x − (mean of two middle terms)

1
2

(interval)
.
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EXAMPLES

Example 1. By the method of least squares, find the straight line that best fits the
following data:

x: 1 2 3 4 5
y: 14 27 40 55 68. (U.P.T.U. 2008)
Sol. Let the straight line of best fit be  y = a + bx …(1)
Normal equations are   Σy = ma + bΣx …(2)

and Σxy = aΣx + bΣx2 …(3)
Here m = 5
Table is as below:

x y xy x2

1 14 14 1
2 27 54 4
3 40 120 9
4 55 220 16
5 68 340 25

Σx = 15 Σy = 204 Σxy = 748 Σx2 = 55

Substituting in (2) and (3), we get
204 = 5a + 15b
748 = 15a + 55b

Solving, we get a = 0, b = 13.6

Hence required straight line is y = 13.6x

Example 2. Fit a straight line to the following data by least square method:
x: 0 1 2 3 4
y: 1 1.8 3.3 4.5 6.3. (U.K.T.U. 2011)
Sol. Let the straight line obtained from the given data be y = a + bx then the normal

equations are
  Σy = ma + b Σx …(1)
Σxy = aΣx + bΣx2 …(2)

Here,  m = 5

x y xy x2

0 1 0 0
1 1.8 1.8 1
2 3.3 6.6 4
3 4.5 13.5 9
4 6.3 25.2 16

Σx = 10 Σy = 16.9 Σxy = 47.1 Σx2 = 30
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From (1) and (2), 16.9 = 5a + 10b
and 47.1 = 10a + 30b

Solving, we get  a = 0.72, b = 1.33

∴ Required line is y = 0.72 + 1.33 x.

Example 3. Show that the best fitting linear function for the points (x1, y1), (x2, y2), .....,
(xn, yn) may be expressed in the form

x y 1
x y n
x x y x

i i

i
2

i i i

Σ Σ
Σ Σ Σ

 = 0 (i = 1, 2, ......, n)

Show that the line passes through the mean point ( , )x y .

Sol. Let the best fitting linear function be y = a + bx …(1)

Then the normal equations are

 Σyi = na + bΣxi …(2)

and Σxiyi = aΣxi + bΣxi
2 …(3)

Equations (1), (2), (3) may be rewritten as

bx – y + a = 0

  bΣxi – Σyi + na = 0

and  bΣxi
2 – Σxiyi + aΣxi = 0

Eliminating a and b between these equations

x y
x y n
x x y x

i i

i i i i

1

2
Σ Σ
Σ Σ Σ

 = 0 …(4)

which is the required best fitting linear function for the mean point ( , )x y ,

x  = 
1
n

 Σxi, y  = 
1
n

Σyi .

Clearly, the line (4) passes through point ( , )x y as two rows of determinant being equal make
it zero.

ASSIGNMENT

1. Fit a straight line to the following data regarding x as the independent variable:

(i) x 1 2 3 4 5 6

y 1200 900 600 200 110 50

(ii) x 71 68 73 69 67 65 66 67

y 69 72 70 70 68 67 68 64
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(iii) x 0 5 10 15 20 25

y 12 15 17 22 24 30

2. (i) Find the best values of a and b so that y = a + bx fits the given data:

x 0 1 2 3 4

y 1.0 2.9 4.8 6.7 8.6

(ii) Fit a straight line of the form y = a0 + a1x to the data: [U.P.T.U. (C.O.) 2008]

x 1 2 3 4 6 8

y 2.4 3.1 3.5 4.2 5.0 6.0

3. Fit a straight line approximate to the data:

x 1 2 3 4

y 3 7 13 21

4. A simply supported beam carries a concentrated load P(lb) at its mid-point. Corresponding to
various values of P, the maximum deflection Y (in) is measured. The data are given below. Find
a law of the type Y = a + bP

P 100 120 140 160 180 200

Y 0.45 0.55 0.60 0.70 0.80 0.85

5. What straight line best fits the following data in the least square sense?

x 1 2 3 4

y 0 1 1 2

[G.B.T.U. (MCA) 2010]
6. The weight of a calf taken at weekly intervals are given below. Fit a straight line using method

of least squares and calculate the average rate of growth per week.

Age 1 2 3 4 5 6 7 8 9 10

Weight 52.5 58.7 65 70.2 75.4 81.1 87.2 95.5 102.2 108.4

7. Find the least square line for the data points

(– 1, 10), (0, 9), (1, 7), (2, 5), (3, 4), (4, 3), (5, 0) and (6, –1).

8. Find the least square line y = a + bx for the data:

xi – 2 – 1 0 1 2

yi 1 2 3 3 4

9. If P is the pull required to lift a load W by means of a pulley block, find a linear law of the form
P = mW + c connecting P and W, using the data:

P 12 15 21 25

W 50 70 100 120

where P and W are taken in kg-wt. (U.P.T.U. 2007)
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10. (i) Using the method of least squares, fit a straight line to the following data:

x 1 2 3 4 5

y 2 4 6 8 10

(ii) Using the method of least squares, fit a straight line from the following data:

x 0 2 4 5 6

y 5.012 10 15 21 30 (U.P.T.U. 2009)

(iii) Find the least square line that fits the following data, assuming that x-values are free from
error: [U.P.T.U. MCA (SUM) 2008]

x 1 2 3 4 5 6

y 5.04 8.12 10.64 13.18 16.20 20.04

Answers
1. (i) y = 1361.97 – 243.42 x (ii) y = 39.5454 + 0.4242 x (iii) y = 11.285 + 0.7 x
2. (i) y = 1 + 1.9x (ii) y = 2.0253 + 0.502 x 3. y = – 4 + 6x

4. Y = 0.004P + 0.048 5. y = – 0.5 + 0.6x 6. y = 45.74 + 6.16x, 6.16

7. y = – 1.6071429x + 8.6428571 8. y = 2.6 + (0.7) x 9. P = 2.2759 + 0.1879 W

10. (i) y = 2x (ii) y = 3.07734 + 3.86031 x (iii) y = 2.0253 + 2.908 x.

3.19 FITTING OF AN EXPONENTIAL CURVE y = aebx

Taking logarithm on both sides, we get

  log10 y = log10 a + bx log10 e

i.e.,   Y = A + BX …(1)

where Y = log10 y, A = log10 a, B = b log10 e and X = x

The normal equations for (1) are

ΣY = nA + BΣX and ΣXY = AΣX + BΣX2

Solving these, we get A and B.

Then a = antilog A and b = 
B

log10 e
.

3.20 FITTING OF THE CURVE y = axb

Taking logarithm on both sides, we get
log10 y = log10 a + b log10 x

i.e.,   Y = A + BX …(1)

where Y = log10 y, A = log10 a, B = b and X = log10 x.
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The normal equations to (1) are

ΣY = nA + BΣX

and  ΣXY = AΣX + BΣX2

which results A and B on solving and a = antilog A, b = B.

3.21 FITTING OF THE CURVE y = abx

Taking logarithm on both sides, we get

log y = log a + x log b

⇒   Y = A + BX …(1)

where Y = log y, A = log a, B = log b, X = x.

This is a linear equation in Y and X.

For estimating A and B, normal equations are

ΣY = nA + B ΣX

and  ΣXY = A ΣX + B ΣX2

where n is the number of pairs of values of x and y.

Ultimately,  a = antilog (A) and b = antilog (B).

3.22 FITTING OF THE CURVE pvγ = k

 pvγ = k ⇒ v = k1/γ p–1/γ

Taking logarithm on both sides, we get

 log v = 
1 1
γ γ

log k −  log p

⇒  Y = A + BX

where Y = log v, A = 
1
γ

 log k, B = – 
1
γ

and X = log p

γ and k are determined by above equations. Normal equations are obtained as that of the
straight line.

3.23 FITTING OF THE CURVE OF TYPE xy = b + ax

xy = b + ax ⇒ y = 
b
x

 + a

⇒  Y = bX + a,  where X = 
1
x

.

Normal equations are ΣY = na + bΣX and ΣXY = aΣX + bΣX2.
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3.24 FITTING OF THE CURVE y = ax2 + 
b
x

Let the n points be (x1, y1), (x2, y2), ..... , (xn, yn)
Error of estimate for ith point (xi, yi) is

 Ei = y ax
b
xi i

i
− −

F
HG

I
KJ

2

By principle of Least squares, the values of a and b are such that

  U = 
i

n

i
=
∑

1

2E  = 
i

n

i i
i

y ax
b
x=

∑ − −
F
HG

I
KJ1

2
2

 is minimum.

Normal equations are given by

 
∂
∂
U
a

 = 0 ⇒
i

n

i i
i

n

i
i

n

ix y a x b x
= = =
∑ ∑ ∑= +

1

2

1

4

1

and  
∂
∂
U
b

 = 0 ⇒
i

n
i

i i

n

i
i

n

i

y
x

a x b
x= = =

∑ ∑ ∑= +
1 1 1

2
1

or Dropping the suffix i, normal equations are

 Σx2y = a Σx4 + bΣx and ∑ y
x

 = a Σx + b ∑ 1
2x

.

3.253.253.253.253.25 FITTING OF FITTING OF FITTING OF FITTING OF FITTING OF THE CURTHE CURTHE CURTHE CURTHE CURVE VE VE VE VE y = ax + bxy = ax + bxy = ax + bxy = ax + bxy = ax + bx22222 (U.P.T.U. 2014)

Error of estimate for ith point (xi, yi) is Ei = (yi
 – axi– bxi

2)
By principle of Least squares, the values of a and b are such that

   U = 
i

n

i
i

n

i i iy ax bx
= =
∑ ∑= − −

1

2

1

2 2E ( )  is minimum.

Normal equations are given by

 
∂
∂
U
a

 = 0 ⇒
i

n

i i
i

n

i
i

n

ix y a x b x
= = =
∑ ∑ ∑= +

1 1

2

1

3

and   
∂
∂
U
b

 = 0 ⇒
i

n

i i
i

n

i
i

n

ix y a x b x
= = =
∑ ∑ ∑= +

1

2

1

3

1

4

or Dropping the suffix i, normal equations are

 Σxy = a Σx2 + bΣx3 and Σx2y = a Σx3 + bΣx4.

3.263.263.263.263.26 FITTING OF FITTING OF FITTING OF FITTING OF FITTING OF THE CURTHE CURTHE CURTHE CURTHE CURVE VE VE VE VE yyyyy =  =  =  =  = ax + ax + ax + ax + ax + 
b
x

Error of estimate for ith point (xi, yi) is

Ei = yi – axi – b
xi
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By principle of Least squares, the values of a and b are such that

  U = 
i

n

i
i

n

i i
i

y ax
b
x= =

∑ ∑= − −
F
HG

I
KJ1

2

1

2

E  is minimum.

Normal equations are given by

  
∂
∂
U
a

= 0

⇒ 2 0
1i

n

i i
i

iy ax
b
x

x
=
∑ − −
F
HG

I
KJ − =( )

⇒  
i

n

i i
i

n

ix y a x nb
= =
∑ ∑= +

1 1

2 ...(1)

and  ∂
∂
U
b

= 0

⇒ 2
1

0
1i

n

i i
i i

y ax
b
x x=

∑ − −
F
HG

I
KJ −
F
HG
I
KJ =

⇒
i

n
i

i i

n

i

y
x

na b
x= =

∑ ∑= +
1 1

2
1

...(2)

Dropping the suffix i, normal equations are

  Σxy = aΣx2 + nb and ∑ ∑= +y
x

na b
x
1
2

where n is the no. of pairs of values of x and y.

3.27 FITTING OF THE CURVE y = a + b
x

 + 
c
x2

Normal equations are

 Σy = ma + b ∑ ∑+1 1
2x

c
x

∑ ∑ ∑ ∑= + +y
x

a
x

b
x

c
x

1 1 1
2 3

∑ ∑ ∑ ∑= + +y
x

a
x

b
x

c
x2 2 3 4

1 1 1

where m is number of pairs of values of x and y.

3.28 FITTING OF THE CURVE y = c
x
0  + c x1

Error of estimate for ith point (xi, yi) is

 Ei = yi – 
c
x

c x
i

i
0

1−
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By principle of Least squares, the values of a and b are such that

 U = 
i

n

i
i

n

i
i

i iy
c
x

c x
= =
∑ ∑= − −

1

2

1

0 2E ( )  is minimum.

Normal equations are given by

∂
∂
U
c0

0= and
∂
∂
U
c1

 = 0

Now,   
∂
∂
U
c0

0=

⇒ 2
1

0
1

0
1

i

n

i
i

i
i

y
c
x

c x
x=

∑ − −
F
HG

I
KJ −
F
HG
I
KJ =

⇒   
i

n
i

i i

n

i i

n

i

y
x

c
x

c
x= = =

∑ ∑ ∑= +
1

0
1

2 1
1

1 1
...(1)

Also,
∂
∂
U
c1

0=

⇒ 2 0
1

0
1

i

n

i
i

i iy
c
x

c x x
=
∑ − −
F
HG

I
KJ − =( )

⇒
i

n

i i
i

n

i i

n

iy x c
x

c x
= = =
∑ ∑ ∑= +

1
0

1
1

1

1
...(2)

Dropping suffix i, normal equations (1) and (2) become

∑ ∑ ∑= +y
x

c
x

c
x

0 2 1
1 1

and  ∑ ∑ ∑= +y x c
x

c x0 1
1

.

3.29 FITTING OF THE CURVE 2x = ax2 + bx + c

Normal equations are

Σ 2xx2 = aΣx4+ bΣx3 + cΣx2

 Σ 2x x = aΣx3 + bΣx2 + cΣx

and Σ 2x = aΣx2 + bΣx + mc

where, m is number of points (xi, yi)

3.30 FITTING OF THE CURVE y = ae–3x + be–2x

Normal equations are
 Σye–3x = a Σe–6x + b Σe–5x

and Σye–2x = a Σe–5x + b Σe–4x
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EXAMPLES

Example 1. Find the curve of best fit of the type y = aebx to the following data by the
method of Least squares:

x: 1 5 7 9 12
y: 10 15 12 15 21.
Sol. The curve to be fitted is y = aebx

or Y = A + BX, where, Y = log10 y, A = log10 a, X = x and B = b log10 e
∴ The normal equations are ΣY = 5A + BΣX

and    ΣXY = AΣX + BΣX2

X = x y Y = log10 y X2 XY

1 10 1.0000 1 1
5 15 1.1761 25 5.8805
7 12 1.0792 49 7.5544
9 15 1.1761 81 10.5849

12 21 1.3222 144 15.8664

ΣX = 34 ΣY = 5.7536 ΣX2 = 300 ΣXY = 40.8862

Substituting the above values in the normal equations, we get

 5.7536 = 5A + 34B

and  40.8862 = 34A + 300B

On solving, A = 0.9766 ; B = 0.02561

∴ a = antilog10 A = 9.4754 ; b = 
B

log10 e
 = 0.059

Hence the required curve is y = 9.4754e0.059x.

Example 2. Determine  the  constants  a  and b by the method of least squares such that
y = aebx fits the following data:

x 2 4 6 8 10

y 4.077 11.084 30.128 81.897 222.62

Sol. y = aebx

Taking log on both sides

log y = log a + bx log e

or  Y = A + BX,

where,  Y = log y, A = log a, B = b log10 e, X = x.
Normal equations are

 ΣY = mA + BΣX ...(1)

and ΣXY = AΣX + BΣX2. ...(2)
Here, m = 5.
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Table is as follows:

x y X Y XY X2

2 4.077 2 .61034 1.22068 4

4 11.084 4 1.04469 4.17876 16

6 30.128 6 1.47897 8.87382 36

8 81.897 8 1.91326 15.30608 64

10 222.62 10 2.347564 23.47564 100

ΣX = 30 ΣY = 7.394824 ΣXY = 53.05498 ΣX2 = 220

Substituting these values in equations (1) and (2), we get
7.394824 = 5A + 30B

and 53.05498 = 30A + 220B.
Solving, we get A = 0.1760594 and B = 0.2171509
∴  a = antilog (A) = antilog (0.1760594) = 1.49989

and  b = 
B

log10 e
 = 

0 2171509
0 4342945
.
.

 = 0.50001

Hence the required equation is
 y = 1.49989 e0.50001x.

Example 3. Obtain a relation of the form y = abx for the following data by the method of
least squares: [G.B.T.U. MCA (SUM) 2010]

x 2 3 4 5 6

y 8.3 15.4 33.1 65.2 127.4

Sol. The curve to be fitted is y = abx

or Y = A + Bx,

where, A = log10 a, B = log10 b and Y = log10 y.

∴ The normal equations are ΣY = 5A + BΣx

and  ΣxY = AΣx + BΣx2.

x y Y = log10 y x2 xY

2 8.3 0.9191 4 1.8382
3 15.4 1.1872 9 3.5616
4 33.1 1.5198 16 6.0792
5 65.2 1.8142 25 9.0710
6 127.4 2.1052 36 12.6312

Σx = 20 ΣY = 7.5455 Σx2 = 90 ΣxY = 33.1812

Substituting the above values, we get

7.5455 = 5A + 20B and 33.1812 = 20A + 90B.

On solving A = 0.31 and B = 0.3

∴  a = antilog A = 2.04 and b = antilog B = 1.995.

Hence the required curve is y = 2.04(1.995)x.
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Example 4. Obtain the least squares fit of the form f(t) = a e–3t + be–2t for the data:
(U.P.T.U. 2008)

t: 0.1 0.2 0.3 0.4

f(t): 0.76 0.58 0.44 0.35

Sol. Normal equations to the curve f(t) = a e–3t + be–2t are:

Σ f(t) e–3t = a Σ e–6t + b Σ e–5t …(1)

Σ f(t) e–2t = a Σ e–5t
 + b Σ e–4t …(2) See art. 3.30

Table of values is

t f(t) e–4t e–5t e–6t f(t) e–2t f(t) e–3t

0.1 0.76 0.6703 0.6065 0.5488 0.6222 0.5630

0.2 0.58 0.4493 0.3679 0.3012 0.3888 0.3183

0.3 0.44 0.3012 0.2231 0.1653 0.2415 0.1789

0.4 0.35 0.2019 0.1353 0.0907 0.1573 0.1054

Total Σe–4t Σe–5t Σe–6t Σ f(t) e–2t Σ f(t) e–3t

= 1.6227 = 1.3328 = 1.106 = 1.4098 = 1.1656

Substituting values in (1) and (2), we get
  1.106 a + 1.3328 b = 1.1656
1.3328 a + 1.6227 b = 1.4098

On solving, we get a = 0.6778, b = 0.3121.
Hence the least squares fit is f (t) = 0.6778 e–3t + 0.3121e–2t.
Example 5. By the method of least squares, find the curve y = ax + bx2 that best fits the

following data: (U.P.T.U. 2014)

x 1 2 3 4 5

y 1.8 5.1 8.9 14.1 19.8

Sol. Normal equations are

 Σxy = aΣx2 + bΣx3 …(1)

and  Σx2y = aΣx3 + bΣx4 …(2)

Let us form a table as below:

x y x2 x3 x4 xy x2y

1 1.8 1 1 1 1.8 1.8
2 5.1 4 8 16 10.2 20.4
3 8.9 9 27 81 26.7 80.1
4 14.1 16 64 256 56.4 225.6
5 19.8 25 125 625 99 495

Total Σx2 = 55 Σx3 = 225 Σx4 = 979 Σxy = 194.1 Σx2y = 822.9
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Substituting these values in equations (1) and (2), we get
 194.1 = 55 a + 225 b

and  822.9 = 225 a + 979 b

⇒   a = 
83 85

55
.

 ~ 1.52 and b = 
317.4
664

 ~ .49

Hence required parabolic curve is y = 1.52 x + 0.49 x2.

Example 6. Fit the curve pvγ = k to the following data: [U.P.T.U. MCA (C.O.) 2007]

p (kg/cm2) 0.5 1 1.5 2 2.5 3

v (litres) 1620 1000 750 620 520 460

Sol.   pvγ = k

⇒    v = 
k
p
F
HG
I
KJ

1/γ

 = k1/γ p–1/γ

Taking log,  log v = 
1 1
γ γ

log k −  log p

which is of the form   Y = A + BX

where Y = log v, X = log p, A = 
1
γ

 log k and B = – 
1
γ

p v X Y XY X2

0.5 1620 – 0.30103 3.20952 – 0.96616 0.09062
1 1000 0 3 0 0

1.5 750 0.17609 2.87506 0.50627 0.03101
2 620 0.30103 2.79239 0.84059 0.09062

2.5 520 0.39794 2.716 1.08080 0.15836
3 460 0.47712 2.66276 1.27046 0.22764

Total ΣX = 1.05115 ΣY = 17.25573 ΣXY = 2.73196 ΣX2 = 0.59825

Here, m = 6
Normal equations are

 17.25573 = 6A + 1.05115 B

and 2.73196 = 1.05115 A + 0.59825 B

Solving these, we get
  A = 2.99911 and B = – 0.70298

∴    γ = – 
1
B

1
0.70298

=  = 1.42252

Again,   log k = γA = 4.26629
∴   k = antilog (4.26629) = 18462.48
Hence, required curve is

pv1.42252 = 18462.48.
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Example 7. The pressure of the gas corresponding to various volumes V is measured,
given by the following data:

V (cm3): 50 60 70 90 100

P (kg cm–2): 64.7 51.3 40.5 25.9 78

Fit the data to the equation PV γ = C.

Sol.  PV γ = C

⇒ P = CV– γ

Taking log on both sides, we get

  log P = log C – γ log V

⇒   Y = A + BX

where,  Y = log P, A = log C, B = – γ, X = log V

Normal equations are

 ΣY = mA + BΣX …(1)

and  ΣXY = AΣX + BΣX2 …(2)

Here m = 5

The table is as below:

V P X = log V Y = log P XY X2

50 64.7 1.69897 1.81090 3.07666 2.88650

60 51.3 1.77815 1.71012 3.04085 3.16182

70 40.5 1.84510 1.60746 2.96592 3.40439

90 25.9 1.95424 1.41330 2.76193 3.81905

100 78 2 1.89209 3.78418 4

ΣX = 9.27646 ΣY = 8.43387 ΣXY = 15.62954 ΣX2 = 17.27176

From Normal equations, we have

8.43387 = 5A + 9.27646 B

and  15.62954 = 9.27646 A + 17.27176 B

Solving these, we get

A = 2.22476, B = – 0.28997

∴  γ = – B = 0.28997

C = antilog (A) = antilog (2.22476) = 167.78765

Hence, the required equation of curve is

PV0.28997 = 167.78765.
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Example 8. (i) Given the following experimental values:

x: 0 1 2 3

y: 2 4 10 15

Fit by the method of Least squares a parabola of the type y = a + bx2.

(ii) Find the Least squares fit of the form y = a0 + a1x
2 to the following data:

x: – 1 0 1 2

y: 2 5 3 0 (U.P.T.U. 2008)

Sol. (i) Error of estimate for ith point (xi, yi) is Ei = (yi  –  a – bxi
2)

By method of Least squares, the values of a, b are chosen such that

 U = 
i

i
i

i iy a bx
= =
∑ ∑= − −

1

4
2

1

4
2 2E ( )  is minimum.

Normal equation are given by

 
∂
∂
U
a

 = 0 ⇒ Σy = ma + bΣx2 …(1)

and  
∂
∂
U
b

 = 0 ⇒ Σx2y = aΣx2 + bΣx4 …(2)

x y x2 x2y x4

0 2 0 0 0

1 4 1 4 1

2 10 4 40 16

3 15 9 135 81

Total Σy = 31 Σx2 = 14 Σx2y = 179 Σx4 = 98

Here     m = 4

From (1) and (2),    31 = 4a + 14b and 179 = 14a + 98b
Solving for a and b, we get  a = 2.71, b = 1.44
Hence the required curve is y = 2.71 + 1.44 x2.
(ii) Normal equations are

  Σy = ma0 + a1 Σx2 ...(1)

and Σx2y = a0 Σx2 + a1 Σx4 ...(2)

The table is as follows:

x y x2 x2y x4

– 1 2 1 2 1

0 5 0 0 0

1 3 1 3 1

2 0 4 0 16

Σy = 10 Σx2 = 6 Σx2y = 5 Σ x4 = 18
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Here,  m = 4

From (1) and (2),    10 = 4a0 + 6a1

 5 = 6a0 + 18a1

⇒  a0 = 4.1667, a1 = – 1.1111

Hence, the required curve is y = 4.1667 – 1.1111 x2

Example 9. Use the method of Least squares to fit the curve: y = 
c
x

c x0
1+  to the following

table of values: [G.B.T.U. (MCA) 2007, 2011]

x: 0.1 0.2 0.4 0.5 1 2
y: 21 11 7 6 5 6.

Sol. As derived in art. 3.28, normal equations to the curve  y = 
c
x

c x0
1+  are

 ∑ ∑ ∑= +y
x

c
x

c
x

0 2 1
1 1

...(1)

and  ∑ ∑ ∑= +y x c
x

c x0 1
1

...(2)

Table is as below:

x y y/x y x
1

x
1

x2

0.1 21 210 6.64078 3.16228 100

0.2 11 55 4.91935 2.23607 25

0.4 7 17.5 4.42719 1.58114 6.25

0.5 6 12 4.24264 1.41421 4

1 5 5 5 1 1

2 6 3 8.48528 0.70711 0.25

Σx = 4.2 Σ(y/x) = 302.5 Σy x  = 33.71524
1

x∑  = 10.10081
1
2x∑  = 136.5

From equations (1) and (2), we have

302.5 = 136.5 c0 + 10.10081 c1

and 33.71524 = 10.10081 c0 + 4.2 c1

Solving these, we get

  c0 = 1.97327 and c1 = 3.28182

Hence the required equation of curve is

 y = 
1.97327

3.28182
x

x+ .
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ASSIGNMENT

1. (i) Using the method of least squares, fit the non-linear curve of the form y = aebx to the following
data:

x 0 2 4

y 5.012 10 31.62

(ii) The voltage V across a capacitor at time t seconds is given by the following table. Use the
principle of least squares to fit a curve of the form V = aekt to the data:

t 0 2 4 6 8

V 150 63 28 12 5.6

(iii) For the data given below, find the equation to the best fitting exponential curve of the form
y = aebx.

x 1 2 3 4 5 6

y 1.6 4.5 13.8 40.2 125 300

2. (i) State some important curve-fitting procedures. (U.P.T.U. 2008)

(ii) Derive the least square equations for fitting a curve of the type y = ax + 
b
x

 to a set of n points

(xi, yi) ; i = 1, 2, …, n.

3. (i) Fit a curve y = axb to the following data:

x 1 2 3 4 5 6

y 2.98 4.26 5.21 6.1 6.8 7.5

(ii) Fit a least square geometric curve y = axb to the following data:

x 1 2 3 4 5

y 0.5 2 4.5 8 12.5

(iii) Fit a curve of the form y = axb to the data given below:

x 1 2 3 4 5

y 7.1 27.8 62.1 110 161

4. (i) Fit a curve of the form y = abx in least square sence to the data given below:

x 2 3 4 5 6

y 144 172.8 207.4 248.8 298.5

(ii) Fit an exponential curve of the form y = abx to the following data:

x 1 2 3 4 5 6 7 8

y 1 1.2 1.8 2.5 3.6 4.7 6.6 9.1
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5. The pressure and volume of a gas are related by the equation pva = b where a and b are constants.
Fit this equation to the following set of data:

p (kg/cm2) 0.5 1 1.5 2 2.5 3

v (litres) 1.62 1 0.75 0.62 0.52 0.46

6. (i) Determine the constants of the curve y = ax + bx2 for the following data:

x 0 1 2 3 4

y 2.1 2.4 2.6 2.7 3.4

(ii) Using method of least squares, derive the normal equations to fit the curve y = ax2 + bx.
Hence fit this curve to the following data: (G.B.T.U. 2011)

x 1 2 3 4 5 6 7 8

y 1 1.2 1.8 2.5 3.6 4.7 6.6 9.1

7. Fit a curve of the type xy = ax + b to the following data:

x 1 3 5 7 9 10

y 36 29 28 26 24 15

8. Fit a relation y = ax + 
b
x

 which satisfies the following data, using method of least squares:

x 1 2 3 4 5 6 7 8

y 5.4 6.2 8.2 10.3 12.6 14.8 17.2 19.5

(G.B.T.U. 2010)

9. Derive the least square equations for fitting a curve of the type y = ax2 + 
b
x

 to a set of n points.

Hence fit a curve of this type to the data:

x 1 2 3 4

y – 1.51 0.99 3.88 7.66

10. Derive  the  least  squares  approximations  of  the type ax2 + bx + c to the function 2x at the points
xi = 0, 1, 2, 3, 4.

11. A person runs the same race track for 5 consecutive days and is timed as follows:

Day (x) 1 2 3 4 5

Time (y) 15.3 15.1 15 14.5 14

Make a least square fit to the above data using a function a + 
b
x

c

x
+ 2 .
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12. Use the method of least squares to fit the curve y = c0 x + 
c

x
1  for the following data:

x 0.2 0.3 0.5 1 2

y 16 14 11 6 3

13. Experiments with a periodic process gave the following data:

t° 0 50 100 150 200 250 300 350

y 0.754 1.762 2.041 1.412 0.303 – 0.484 – 0.38 0.520

Estimate the parameters a and b in the model y = b + a sin t using the least squares approximation.
14. A physicist wants to approximate the following data:

x 0 0.5 1 2

f(x) 0 0.57 1.46 5.05

using a function a ebx + c. He believes that b ≈ 1. Compute the values of a and c that give the best
least squares approximation assuming that b = 1.

15. Determine the normal equations if the cubic polynomial y = a0 + a1x + a2x
2 + a3x

3 is fitted to the
data (xi, yi); 0 ≤ i ≤ m.

16. Estimate y at x = 5 by fitting a least squares curve of the form y = 
b

x x a( )−
 to the following data:

x 3.6 4.8 6 7.2 8.4 9.6 10.8

y 0.83 0.31 0.17 0.10 0.07 0.05 0.04

Hint: Rewrite the equation as 
1 1 2

y
a
b

x
b

x= − +
F
HG

I
KJ

Answers
1. (i) y = 4.642 e0.46x (ii) V = 146.3 e–0.4118t (iii) y = 0.5580 e1.0631 x

3. (i) y = 2.978 x0.5143 (ii) y = 0.5012 x1.9977 (iii) y = 7.173x1.952

4. (i) y = 99.86 (1.2)x (ii) y = 0.6823 (1.384)x 5. pv1.42 = 0.99

6. (i) a = 1.97, b = – 0.298 (ii) y = 0.107798 x2 + 0.217125 x 7. xy = 16.18x + 40.78

8. y = 2.39188 x + 
2 98195.

x
9. y = 0.509x2 – 

2 04.
x

10. y = 1.143x2 – 0.971x + 1.286 11. y = 13.0065 + 
6.7512 4.4738

x x
− 2

12. y = – 1.1836 x + 
7 5961.

x
13. a = 1.312810, b = 0.752575

14. a = 0.784976, b = – 0.733298
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15. Σy = m a0 + a1 Σx + a2 Σx2 + a3 Σx3

Σxy = a0 Σx + a1 Σx2 + a2 Σx3 + a3 Σx4

Σx2y = a0 Σx2 + a1 Σx3 + a2 Σx4 + a3 Σx5

Σx3y = a0 Σx3 + a1 Σx4 + a2 Σx5 + a3 Σx6.

16. y = 
3 774

2
.

( )x x −
 ; y (5) = 0.2516

3.31 CORRELATION

In a bivariate distribution, if the change in one variable affects a change in the other variable,
the variables are said to be correlated.

If the two variables deviate in the same direction i.e., if the increase (or decrease) in one
results in a corresponding increase (or decrease) in the other, correlation is said to be direct or
positive.

e.g., the correlation between income and expenditure is positive.
If the two variables deviate in opposite direction i.e., if the increase (or decrease) in one

results in a corresponding decrease (or increase) in the other, correlation is said to be inverse
or negative.

e.g., the correlation between volume and the pressure of a perfect gas or the correlation
between price and demand is negative.

Correlation is said to be perfect if the deviation in one variable is followed by a corre-
sponding proportional deviation in the other.

3.323.323.323.323.32 REASONS RESPONSIBLE FOR REASONS RESPONSIBLE FOR REASONS RESPONSIBLE FOR REASONS RESPONSIBLE FOR REASONS RESPONSIBLE FOR THE EXISTENCE OF CORRELATHE EXISTENCE OF CORRELATHE EXISTENCE OF CORRELATHE EXISTENCE OF CORRELATHE EXISTENCE OF CORRELATIONTIONTIONTIONTION

1. Due to mere chance. The correlation between variables may be due to mere chance.
Consider the data regarding six students selected at random from a college.

Students: A B C D E F

% of marks obtained in: 43% 47% 60% 80% 55% 40%
previous exam.

Height (in inches): 60 62 65 70 64 59

Here the variables are moving in the same direction and a high degree of correlation is
expected between the variables. We cannot expect this degree of correlation to hold good for
any other sample drawn from the concerned population. In this case, the correlation has oc-
curred just due to chance.
2. Due to the effect of some common cause. The correlation between variables may be due
to the effect of some common cause. For example, positive correlation between the number of
girls seeking admission in colleges A and B of a city may be due to the effect of increasing
interest of girls towards higher education.
3. Due to the presence of cause-effect relationship between variables. For example, a
high degree correlation between ‘temperature’ and ‘sale of coffee’ is due to the fact that people
like taking coffee in winter season.
4. Due to the presence of interdependent relationship between the variables. For
example, the presence of correlation between amount spent on entertainment of family and
total expenditure of family is due to fact that both variables affect each other.
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3.33 SCATTER OR DOT DIAGRAMS

It  is  the  simplest  method  of  the diagrammatic representation of bivariate data. Let (xi, yi),
i = 1, 2, 3,......, n be a bivariate distribution. Let the values of the variables  x and  y be plotted
along the x-axis and y-axis on a suitable scale. Then corresponding to every ordered pair,
there corresponds a point or dot in the xy-plane. The diagram of dots so obtained is called a dot
or scatter diagram.

If the dots are very close to each other and the number of observations is not very large,
a fairly good correlation is expected. If the dots are widely scattered, a poor correlation is
expected.

3.34 KARL PEARSON’S CO-EFFICIENT OF CORRELATION (OR PRODUCT
MOMENT CORRELATION CO-EFFICIENT)

[U.P.T.U. (C.O.) 2009; U.P.T.U. 2006, 2007, 2015]

Correlation co-efficient between two variables x and y, usually denoted by r(x, y) or rxy is a
numerical measure of linear relationship between them and is defined as

rxy = 
Σ

Σ Σ

Σ

Σ Σ

Σ( )( )

( ) ( )

( )( )

( ) . ( )

( )( )x x y y

x x y y

n
x x y y

n
x x

n
y y

n
x x y y

i i

i i

i i

i i

i i

x y

− −

− −
=

− −

− −
=

− −

2 2 2 2

1

1 1

1

σ σ
.

∴    rxy = 
Σ( )( )x x y y

n x y

− −
σ σ

Alternate form of r(x, y):

r(x, y) = 
n xy x y

n x x n y y

Σ Σ Σ

Σ Σ Σ Σ

−

− −2 2 2 2( ) ( )

Here n is the no. of pairs of values of x and y.
Note. Correlation co-efficient is independent of change of origin and scale.

Let us define two new variables u and v as

 u = 
x a

h
v

y b
k

− = −
,  where a, b, h, k are constants, then rxy = ruv.

Then, r(u, v) = 
n uv u v

n u u n v v

Σ Σ Σ

Σ Σ Σ Σ

−

− −2 2 2 2( ) ( )
.

EXAMPLES

Example 1. Find the coefficient of correlation between the values of x and y:
[U.P.T.U. (C.O.) 2008]

x 1 3 5 7 8 10

y 8 12 15 17 18 20
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Sol. Here, n = 6. The table is as follows:

x y x2 y2 xy

1 8 1 64 8
3 12 9 144 36
5 15 25 225 75
7 17 49 289 119
8 18 64 324 144

10 20 100 400 200

Σ x = 34 Σ y = 90 Σ x2 = 248 Σ y2 = 1446 Σ xy = 582

Karl Pearson’s coefficient of correlation is given by

   r (x, y) = 
n xy x y

n x x n y y

Σ Σ Σ

Σ Σ Σ Σ

−

− −2 2 2 2( ) ( )

= 
( ) ( )

( ) ( ) ( ) ( )

6 582 34 90

6 248 34 6 1446 902 2

× − ×

× − × −
 = 0.9879

Example 2. The following data regarding the heights (y) and weights (x) of 100 college
students are given:

Σx = 15000, Σx2 = 2272500, Σy = 6800, Σy2 = 463025 and Σxy = 1022250.
Find the correlation coefficient between height and weight.
Sol. Here, n = 100
Correlation co-efficient r(x, y) is given by

 r = 
n xy x y

n x x n y y

Σ Σ Σ

Σ Σ Σ Σ

−

− −2 2 2 2( ) ( )

= 
( ) ( )

( ) ( ) ( ) ( )

100 1022250 15000 6800

100 2272500 15000 100 463025 68002 2

× − ×

× − × −
 = 0.6.

Example 3. Find the co-efficient of correlation for the following table: (U.K.T.U. 2011)
x: 10 14 18 22 26 30
y: 18 12 24 6 30 36

Sol. Let u = 
x − 22

4
, v = 

y − 24
6

x y u v u2 v2 uv

10 18 – 3 – 1 9 1 3
14 12 – 2 – 2 4 4 4
18 24 – 1 0 1 0 0
22 6 0 – 3 0 9 0
26 30 1 1 1 1 1
30 36 2 2 4 4 4

Total Σu = – 3 Σv = – 3 Σu2 = 19 Σv2 = 19 Σuv = 12
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Here, n = 6,   u
n

u= = − = −1 1
6

3
1
2

Σ ( )  ; v
n

v= = − = −1 1
6

3
1
2

Σ ( )

ruv = 
n uv u v

n u u n v v

Σ Σ Σ

Σ Σ Σ Σ

−

− −2 2 2 2( ) ( )

= 
( ) ( )( )

( ) ( ) ( ) ( )

6 12 3 3

6 19 3 6 19 32 2

× − − −

× − − × − −
 = 

63

105 105
 = 0.6

Hence,   rxy = ruv = 0.6.
Example 4. Ten students got the following percentage of marks in Principles of Economics

and Statistics:
Roll Nos.: 1 2 3 4 5 6 7 8 9 10
Marks in Economics: 78 36 98 25 75 82 90 62 65 39
Marks in Statistics: 84 51 91 60 68 62 86 58 53 47

Calculate the co-efficient of correlation.
Sol. Let the marks in the two subjects be denoted by x and y respectively.

x y u = x – 65 v = y – 66 u2 v2 uv

78 84 13 18 169 324 234
36 51 – 29 – 15 841 225 435
98 91 33 25 1089 625 825
25 60 – 40 – 6 1600 36 240
75 68 10 2 100 4 20
82 62 17 – 4 289 16 – 68
90 86 25 20 625 400 500
62 58 – 3 – 8 9 64 24
65 53 0 – 13 0 169 0
39 47  – 26 – 19 676 361 494

Total Σu = 0 Σv = 0 Σu2 = 5398 Σv2 = 2224 Σuv = 2734

Here, n = 10, u
n

= 1
 Σui = 0, v

n
vi= 1 Σ  = 0

 ruv = 
n uv u v

n u u n v v

Σ Σ Σ

Σ Σ Σ Σ

−

− −2 2 2 2( ) ( )

= 
( ) ( )

( ) ( ) ( ) ( )

10 2734 0 0

10 5398 0 10 2224 02 2

× − ×

× − × −
 = 0.789

Hence, rxy = ruv = 0.789.
Example 5. A computer while calculating correlation co-efficient between two variables

X and Y from 25 pairs of observations obtained the following results :
n = 25, ΣX = 125, ΣX2 = 650,

ΣY = 100, ΣY2 = 460, ΣXY = 508.
It was, however, later discovered at the time of checking that he had copied down two

pairs as X Y while the correct values were X Y
6 14 8 12
8 6 6 8

Obtain the correct value of correlation co-efficient.
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Sol. Corrected ΣX = 125 – 6 – 8 + 8 + 6 = 125
Corrected   ΣY = 100 – 14 – 6 + 12 + 8 = 100
Corrected  ΣX2 = 650 – 62 – 82 + 82 + 62 = 650
Corrected  ΣY2 = 460 – 142 – 62 + 122 + 82 = 436
Corrected ΣXY = 508 – 6 × 14 – 8 × 6 + 8 × 12 + 6 × 8 = 520
(Subtract the incorrect values and add the corresponding correct values)

 X X
1

25
= =1

n
Σ  × 125 = 5 ; Y Y

1
25

= =1
n

Σ  × 100 = 4

Corrected rxy = 
n

n n

Σ Σ Σ

Σ Σ Σ Σ

XY X Y

X X Y Y

−

− −2 2 2 2( ) ( )

= 
( ) ( )

( ) ( ) ( ) ( )

25 520 125 100

25 650 125 25 436 1002 2

× − ×

× − × −
 = 0.67.

Example 6. If z = ax + by and r is the correlation co-efficient between x and y, show that
  σz

2 = a2σx
2 + b2σy

2 + 2abr σx σy.
Sol.  z = ax + by

⇒  z ax by= + , zi = axi + byi

zi – z a x x b y yi i= − + −( ) ( )

Now,   σz
2 = 

1 12

n
z z

niΣ( )− =  Σ[a(xi – x ) + b(yi – y )]2

= 
1
n

 Σ[a2(xi – x )2 + b2(yi – y )2 + 2ab(xi – x )(yi – y )]

= a2 . 
1 1

2
12 2 2

n
x x b

n
y y ab

n
x x y yi i i iΣ Σ Σ( ) . ( ) . ( )( )− + − + − −

= a2σx
2 + b2σy

2 + 2abr σxσy ∵ r n
x x y yi i

x y
=

− −1 Σ( )( )

σ σ

Example 7. Establish the formula: σx y
2

−  = σx
2 + σy

2 – 2rxyσxσy

where rxy is the correlation coefficient between x and y. Using the above formula, calculate the
correlation coefficient from the following data relating to the marks of 10 candidates in aptitude
test (x) and Achievement rating (y).

Marks

Aptitude (x): 22 53 46 67 43 35 88 11 95 13

Achievement (y): 18 39 31 42 55 64 82 10 96 14

Sol. Let   z = x – y
∴  z x y= −
∴ z – z x x y y= − −( – ) ( )

or, ( ) ( ) ( ) ( )( )z z x x y y x x y y− = − + − − − −2 2 2 2

U
V
||

W
||
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Summing up for n terms,

Σ(z – z )2 = Σ(x – x )2 + Σ(y – y )2 – 2Σ(x – x )(y – y )

or,  
Σ Σ Σ Σ( ) ( ) ( ) ( )( )z z

n
x x

n
y y

n
x x y y

n
− = − + − − − −2 2 2 2

⇒   σz
2 = σx

2 + σy
2 – 2rσxσy, where r = 

Σ( )( )x x y y
n x y

− −
σ σ

⇒   σ x y−
2  = σx

2 + σy
2 – 2rσxσy ...(1)

Now,  n = 10

  x = + + + + + + + + + =22 53 46 67 43 35 88 11 95 13
10

473
10

 = 47.3

  y = + + + + + + + + + =18 39 31 42 55 64 82 10 96 14
10

451
10

 = 45.1

Now we form the table as

x y z = x – y x – x y – y z – z (x – x )2 (y – y )2 (z – z )2

22 18 4 – 25.3 – 27.1 1.8 640.09 734.41 3.24
53 39 14 5.7 – 6.1 11.8 32.49 37.21 139.24
46 31 15 – 1.3 – 14.1 12.8 1.69 198.81 163.84
67 42 25 19.7 – 3.1 22.8 38.09 9.61 519.84
43 55 – 12 – 4.3 9.9 – 14.2 18.49 98.01 201.64
35 64 – 29 – 12.3 18.9 – 31.2 151.29 357.21 973.44
88 82 6 40.7 36.9 3.8 1656.49 1361.61 14.44
11 10 1 – 36.3 – 35.1 – 1.2 1317.69 1232.01 1.44
95 96 – 1 47.7 50.9 – 3.2 2275.29 2590.81 10.24
13 14 – 1 – 34.3 – 31.1 – 3.2 1176.49 967.21 10.24

Σ(x – x )2 Σ(y – y )2 Σ(z – z )2

= 7658.1 = 7586.9 = 2037.6

where,  z
z

n
= =Σ 22

10
 = 2.2

Now,   σx
2 = 

Σ( ) .x x
n
− =

2 7658 1
10

 = 765.81, σy
2 = 

Σ( ) .y y
n
− =

2 7586 9
10

 = 758.69

  σ σx y z
z z

n− = = − =2 2
2 2037 6

10
Σ( ) .

 = 203.76.

Substituting the values in the formula (1),

  σ x y−
2  = σx

2 + σy
2 – 2r σxσy

⇒  203.76 = 765.81 + 758.69 – 2r (27.67)(27.54)

 r = 
1524 5 203 76

1524 06
. .

.
−

 = 0.866.
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Example 8. (i) Calculate coefficient of correlation from the following results:

n = 10,  ΣX = 100,  ΣY = 150,  Σ(X – 10)2 = 180, Σ(Y – 15)2 = 215, Σ(X – 10)(Y – 15) = 60.

(ii) Calculate Karl Pearson’s coefficient of correlation between X and Y for the following
information:

n = 12, ΣX = 120, ΣY = 130, Σ(X – 8)2 = 150, Σ(Y – 10)2 = 200 and Σ(X – 8)(Y – 10) = 50

Sol. (i) Mean of first series, X
X= =Σ
n

100
10

 = 10

Mean of second series,Y
Y= =Σ
n

150
10

 = 15

Now, r = 
Σ

Σ Σ

(X X)(Y Y)

(X X) . (Y Y)2 2

− −

− −

= Σ

Σ Σ

(X )(Y 15)

(X 10) . (Y 15)2 2

− −

− −

10  = 
60

180 215×
 = 0.305

(ii) Σx = Σ(X – 8) = ΣX – Σ8 = 120 – (8 × 12) = 24

Σy = Σ(Y – 10) = ΣY – Σ10 = 130 – (10 × 12) = 10

Σxy = Σ(X – 8)(Y – 10) = 50 (given)

Σx2 = Σ(X – 8)2 = 150

Σy2 = Σ(Y – 10)2 = 200

Now,    r = 
n xy x y

n x x n y y

Σ Σ Σ

Σ Σ Σ Σ

−

− −2 2 2 2( ) ( )
 = 

( ) ( )

( ) ( ) ( ) ( )

12 50 24 10

12 150 24 12 200 102 2

× − ×

× − × −

= 
360

1224 2300
 = 0.2146.

3.35 CALCULATION OF CO-EFFICIENT OF CORRELATION FOR A BIVARIATE
FREQUENCY DISTRIBUTION

If the bivariate data on x and y is presented on a two way correlation table and f is the frequency
of a particular rectangle in the correlation table, then

rxy = 
Σ Σ Σ

Σ Σ Σ Σ

fxy
n

fx fy

fx
n

fx fy
n

fy

−

−L
NM

O
QP −L
NM

O
QP

1

1 12 2 2 2( ) ( )

Since change of origin and scale do not affect the co-efficient of correlation.
∴   rxy = ruv where the new variables u, v are properly chosen.
Example 9. The following table gives according to age the frequency of marks obtained

by 100 students in an intelligence test:
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Age (in years)
18 19 20 21 Total

Marks

10–20 4 2 2 8

20–30 5 4 6 4 19

30–40 6 8 10 11 35

40–50 4 4 6 8 22

50–60 2 4 4 10

60–70 2 3 1 6

Total 19 22 31 28 100

Calculate the co-efficient of correlation between age and intelligence.
Sol. Let age and intelligence be denoted by x and y respectively.

Mid x
value 18 19 20 21 f u fu fu2 fuv

y

15 10–20 4 2 2 8 – 3 – 24 72 30

25 20–30 5 4 6 4 19 – 2 – 38 76 20

35 30–40 6 8 10 11 35 – 1 – 35 35 9

45 40–50 4 4 6 8 22 0 0 0 0

55 50–60 2 4 4 10 1 10 10 2

65 60–70 2 3 1 6 2 12 24 – 2

f 19 22 31 28 100 Total – 75 217 59

v – 2 – 1 0 1 Total

fv – 38 – 22 0 28 – 32

fv2 76 22 0 28 126

fuv 56 16 0 – 13 59

Let us define two new variables u and v as u = 
y − 45

10
, v = x – 20

   rxy = ruv = 
Σ Σ Σ

Σ Σ Σ Σ

fuv
n

fu fv

fu
n

fu fv
n

fv

−

−L
NM

O
QP −L
NM

O
QP

1

1 12 2 2 2( ) ( )

= 
59

1
100

75 32

217
1

100
75 126

1
100

32

59 24
643
4

2894
25

2 2

− − −

− −L
NM

O
QP − −L
NM

O
QP

= −

×

( )( )

( ) ( )

 = 0.25.
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3.36 RANK CORRELATION

Sometimes we have to deal with problems in which data cannot be quantitatively measured
but qualitative assessment is possible.

Let a group of n individuals be arranged in order of merit or proficiency in possession of
two characteristics A and B. The ranks in the two characteristics are, in general, different.
For example, if A stands for intelligence and B for beauty, it is not necessary that the most
intelligent individual may be the most beautiful and vica versa. Thus an individual who is
ranked at the top  for the characteristic A may be ranked at the bottom for the characteristic
B. Let (xi, yi),  i = 1, 2, ...... n be the ranks of the n individuals in the group for  the characteristics
A and B respectively. Pearsonian co-efficient of correlation between the ranks xi’s and yi’s is
called the rank correlation co-efficient between the characteristics A and B for that group of
individuals.

Thus rank correlation co-efficient

 r = 
Σ

Σ Σ

Σ( )( )

( ) ( )

( )( )x x y y

x x y y

n
x x y y

i i

i i

i i

x y

− −

− −
=

− −

2 2

1

σ σ
...(1)

Now xi’s and yi’s are merely the permutations of n numbers from 1 to n. Assuming that
no two individuals are bracketed or tied in either classification i.e., (xi , yi) ≠ (xj , yj) for i ≠ j, both
x and y take all integral values from 1 to n.

∴   x y
n

= = 1
 (1 + 2 + 3 + ...... + n) = 

1 1
2

1
2n

n n n
.

( )+ = +

 Σxi = 1 + 2 + 3 + ...... + n = 
n n( )+ 1

2
 = Σyi

  Σxi
2 = 12 + 22 + ...... + n2 = 

n n n
yi

( )( )+ + =1 2 1
6

2Σ

If Di denotes the difference in ranks of the ith individual, then

  Di = xi – yi = (xi – x ) – (yi – y ) [∵ x y= ]
1 12 2

n n
x x y yi i iΣ ΣD = − − −[( ) ( )]

= 
1 1

2
12 2

n
x x

n
y y

n
x x y yi i i iΣ Σ Σ( ) ( ) . ( )( )− + − − − −

= σx
2 + σy

2 – 2rσxσy ...(2) | using (1)

But  σx
2 = 

1
n  Σxi

2 – x 2  = 
1
n

 Σyi
2 – y2  = σy

2

∴ From (2), 
1
n

 ΣDi
2 = 2σx

2 – 2rσx
2 = 2(1 – r) σx

2 = 2(1 – r) 
1 2 2

n
x xiΣ −L

NM
O
QP

= 2(1 – r) 
1 1 2 1

6
1

4

2

n
n n n n

.
( )( ) ( )+ + − +L

NM
O
QP

= (1 – r)(n + 1) 
4 2 3 3

6
1 1

6

2n n r n+ − −L
NM

O
QP =

− −( )( )
or 1 – r = 

6
1

2

2

ΣDi

n n( )−

Hence,  r = 1 – 6

1

2

2

ΣDi

n n( )−

L
NMM

O
QPP
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Note. This is called Spearman’s Formula for Rank Correlation.
Σdi = Σ(xi – yi) = Σxi – Σyi = 0 always.

This serves as a check on calculations.

EXAMPLES

Example 1. Compute the rank correlation coefficient for the following data:
Person: A B C D E F G H I J
Rank in Maths: 9 10 6 5 7 2 4 8 1 3
Rank in Physics: 1 2 3 4 5 6 7 8 9 10

Sol. Here the ranks are given and n = 10.

Person R1 R2 D = R1 – R2 D2

A 9 1 8 64

B 10 2 8 64

C 6 3 3 9

D 5 4 1 1

E 7 5 2 4

F 2 6 – 4 16

G 4 7 – 3 9

H 8 8 0 0

I 1 9 – 8 64

J 3 10 – 7 49

ΣD2 = 280

∴ r = 1 – 
6

1
1

6 280
10(100 1

2

2
ΣD

n n( ) )−

RST
UVW

= − ×
−

RST
UVW  = 1 – 1.697 = – 0.697.

Example 2. The marks secured by recruits in the selection test (X) and in the proficiency
test (Y) are given below:

Serial No.: 1 2 3 4 5 6 7 8 9
X: 10 15 12 17 13 16 24 14 22

Y: 30 42 45 46 33 34 40 35 39

Calculate the rank correlation co-efficient.
Sol. Here the marks are given. Therefore, first of all, write down ranks. In each series,

the item with the largest size is ranked 1, next largest 2 and so on. Here n = 9.

X 10 15 12 17 13 16 24 14 22 Total

Y 30 42 45 46 33 34 40 35 39

Ranks in X (x) 9 5 8 3 7 4 1 6 2

Ranks in Y (y) 9 3 2 1 8 7 4 6 5

D = x – y 0 2 6 2 – 1 – 3 – 3 0 – 3 0

D2 0 4 36 4 1 9 9 0 9 72
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∴ r = 1 – 
6

1
1

6 72
9 80

2

2
ΣD

n n( )−

RST
UVW

= − ×
×
RST

UVW = 1 – .6 = 0.4

Example 3. Rank correlation co-efficient of marks obtained by 10 students in Mathematics
and English was found to be 0.5. It was later discovered that the difference in ranks in two
subjects obtained by one of the students was wrongly taken as 3 instead of 7. Find the correct
rank correlation co-efficient.

Sol.  Incorrect rk = 0.5, n = 10

∴ Incorrect ΣD2 = 
n n rk( )( )2 1 1

6
− −

 = 
10 99 0 5

6
× × .

 = 82.5

Now,  correct ΣD2 = Incorrect ΣD2 – (3)2 + (7)2 = 82.5 – 9 + 49 = 122.5

∴  Correct rk = 1 – 
6

1
1

6 122 5
10(100 1

2

2
ΣD

n n( )
.

)−

RST
UVW

= − ×
−

RST
UVW  = 0.2575.

Example 4. Ten competitors in a beauty contest were ranked by three judges in the
following orders:

First Judge: 1 6 5 10 3   2 4   9 7 8

Second Judge: 3 5 8   4 7 10 2   1 6 9

Third Judge: 6 4 9   8 1   2 3 10 5 7

Use the method of rank correlation to determine which pair of judges has the nearest
approach to common taste in beauty?

Sol. Let R1, R2, R3 be the ranks given by three judges.
Calculation of rank correlation coefficient

Competitor R1 R2 R3 D12 D13 D23 D12
2 D13

2 D23
2

= R1 – R2 = R1 – R3 = R2 – R3

A 1 3 6 – 2 – 5 – 3  4 25 9
B 6 5 4 1 2 1 1 4 1
C 5 8 9 – 3 – 4 – 1 9 16 1
D 10 4 8 6 2 – 4 36 4 16
E 3 7 1 – 4 2 6 16 4 36
F 2 10 2 – 8 0 8 64 0 64
G 4 2 3 2 1 – 1 4 1 1
H 9 1 10 8 – 1 – 9 64 1 81
I 7 6 5 1 2 1 1 4 1
J 8 9 7 – 1 1 2 1 1 4

n = 10 ΣD12
2 ΣD13

2 ΣD23
2

= 200 = 60 = 214

Rank correlation coefficient between first and second judges,

rk12  = 1 – 
6

1
12

2

2
ΣD

n n( )−

RS|T|
UV|W|  = 1 – 

6 200
10 99

×RST
UVW( )

 = – 0.212
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Rank correlation coefficient between first and third judges,

rk13  = 1 – 
6

1
13

2

2

ΣD

n n( )−

RS|T|
UV|W|

 = 1 –  
6 60
10 99

×
×

RST
UVW = 0.636

Rank correlation coefficient between second and third judges,

rk23  = 1 – 
6

1
23

2

2

ΣD

n n( )−

RS|T|
UV|W|

 = 1 – 
6 214
10 99

×
×

RST
UVW = – 0.297

Correlation between first and second judges is negative i.e., their opinions regarding
beauty test are opposite to each other. Similarly, opinions of second and third judges are
opposite to each other, but the opinions of first and third judges are of similar type as their
correlation is positive. It means that their likings and dislikings are very much common.

3.37 TIED RANKS

If any two or more individuals have same rank or the same value in the series of marks, then
the above formula fails and requires an adjustment. In such cases, each individual is given an
average rank. This common average rank is the average of the ranks which these individuals
would have assumed if they were slightly different from each other. Thus, if two individual
are ranked equal at the sixth place, they would have assumed the 6th and 7th ranks if they

were ranked slightly different. Their common rank = 
6 7

2
+

 = 6.5. If three individuals are

ranked equal at fourth place, they would have assumed the 4th, 5th and 6th ranks if they

were ranked slightly different. Their common rank = 
4 5 6

3
+ +

 = 5.

Adjustment. Add 
1

12
 m(m2 – 1) to ΣD2 where m stands for the number of times an item is

repeated.

This adjustment factor is to be added for each repeated item.

Thus r = 1 – 
6

1
12

1
1

12
1

1

2 2 2

2

ΣD + − + − +RST
UVW

−

m m m m

n n

( ) ( ) ...

( )
.

Example 5. Obtain the rank correlation co-efficient for the following data:

X: 68 64 75 50 64 80 75 40 55 64

Y: 62 58 68 45 81 60 68 48 50 70.

Sol. Here, marks are given, so write down the ranks.

X 68 64 75 50 64 80 75 40 55 64 Total

Y 62 58 68 45 81 60 68 48 50 70

Ranks in X (x) 4 6 2.5 9 6 1 2.5 10 8 6

Ranks in Y (y) 5 7 3.5 10 1 6 3.5 9 8 2

D = x – y – 1 – 1 – 1 – 1 5 – 5 – 1 1 0 4 0

D2 1 1 1 1 25 25 1 1 0 16 72
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In the X-series, the value 75 occurs twice. Had these values been slightly different, they

would have been given the ranks 2 and 3. Therefore, the common rank given to them is 
2 3

2
+

= 2.5. The value 64 occurs thrice. Had these values been slightly different, they would have

been given the ranks 5, 6, and 7. Therefore the common rank given to them is 
5 6 7

3
+ +

 = 6.

Similarly, in the Y-series, the value 68 occurs twice. Had these values been slightly different,
they would have been given the ranks 3 and 4? Therefore, the common rank given to them is
3 4

2
+

 = 3.5.

Thus, m has the values 2, 3, 2.

∴   r = 1 – 
6

1
12

1
1

12
1

1
12

1

1

2
1 1

2
2 2

2
3 3

2

2

ΣD + − + − + −RST
UVW

−

m m m m m m

n n

( ) ( ) ( )

( )

= 1 – 
6 72

1
12

2 2 1
1

12
3 3 1

1
12

2 2 1

10 10 1

2 2 2

2

+ − + − + −L
NM

O
QP

−

. ( ) . ( ) . ( )

( )

= 1 – 
6 75
990
×RST
UVW = 

6
11

 = 0.545.

ASSIGNMENT

1. Calculate the coefficient of correlation for the following data: (U.P.T.U. 2006)

Husband’s age (in yrs.) x 23 27 28 28 29 30 31 33 35 36

Wife’s age (in yrs.) y 18 20 22 27 21 29 27 29 28 29

2. Calculate the coefficient of correlation for the following data:

Height of father 65 66 67 67 68 69 70 72
(in inches)

Height of son 67 68 65 68 72 72 69 71
(in inches)

3. Define Karl Pearson’s coefficient of correlation. How would you interpret the sign and magnitude
of a correlation coefficient?

4. Calculate the coefficient of correlation between the marks obtained by 8 students in Mathematics
and Statistics:

Students A B C D E F G H

Mathematics 25 30 32 35 37 40 42 45

Statistics 08 10 15 17 20 23 24 25

[U.P.T.U. (C.O.) 2009]
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5. Find the correlation coefficient between x and y for the following data:

x 60 34 40 50 45 41 22 43

y 75 32 34 40 45 33 12 30

[U.K.T.U. 2010]
6. The marks of the same 15 students in two subjects A and B are analysed. The two numbers

within the brackets denote the ranks of the same student in A and B respectively:

(1, 10)  (2, 7)  (3, 2)  (4, 6)  (5, 4)  (6, 8)  (7, 3)  (8, 1) (9, 11) (10, 15) (11, 9) (12, 5) (13, 14) (14, 12)
(15, 13)

Use Spearman’s formula to find the rank correlation coefficient.

7. Ten students got the following percentage of marks in Chemistry and Physics:

Students: 1 2 3 4 5 6 7 8 9 10

Marks in Chemistry: 78 36 98 25 75 82 90 62 65 39

Marks in Physics: 84 51 91 60 68 62 86 58 63 47

Calculate the rank correlation co-efficient.

8. A firm not sure of the response to its product in ten different colour shades decides to produce
them in those colour shades, if the ranking of these colour shades by two typical consumer judges
is highly correlated.

The two judges rank the ten colours in the following order:

Colour : Red Green Blue Yellow White Black Pink Purple Orange Ivory

Ranking
by I : 6 4 3 1 2 7 9 8 10 5
Judge

Ranking
by II : 4 1 6 7 5 8 10 9 3 2
Judge

Is there any agreement between the two judges, to allow the introduction of the product by the
firm in the market?

9. Two judges in a music competition rank the 12 entries as follows:

x 1 2 3 4 5 6 7 8 9 10 11 12

y 12 9 6 10 3 5 4 7 8 2 11 1

What degree of agreement is there between  the judgement of the two judges?

10. Calculate the coefficient of correlation between the following ages of husband (x) and wife (y) by
taking 30 and 28 as assumed mean incase of x and y respectively:

x : 24 27 28 28 29 30 32 33 35 35 40

y : 18 20 22 25 22 28 28 30 27 30 32

Answers
1. 0.82 2. 0.603 4. 0.9804 5. 0.9158
6. 0.51 7. 0.84 8. 0.22, no 9. – 0.454

10. 0.8926.

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com


282 A TEXTBOOK OF ENGINEERING MATHEMATICS

3.38 REGRESSION ANALYSIS (U.P.T.U. 2015)

The term ‘regression’ was first used by Sir Francis Galton (1822–1911), a British Biometrician
in connection with the height of parents and their offsprings. He found that the offspring of
tall or short parents tend to regress to the average height. In other words, though tall fathers
do tend to have tall sons yet the average height of tall fathers is more than the average height
of their sons and the average height of short fathers is less than the average height of their
sons.

The term ‘regression’ stands for some sort of functional relationship between two or
more related variables. The only fundamental difference, if any, between problems of curve-
fitting and regression is that in regression, any of the variables may be considered as inde-
pendent or dependent while in curve-fitting, one variable cannot be dependent.

Regression measures the nature and extent of correlation. Regression is the estimation
or prediction of unknown values of one variable from known values of another variable.

3.39 CURVE OF REGRESSION AND REGRESSION EQUATION

If two variates x and y are correlated i.e., there exists an association or relationship between
them, then the scatter diagram will be more or less concentrated round a curve. This curve is
called the curve of regression and the relationship is said to be expressed by means of curvilinear
regression.

The mathematical equation of the regression curve is called regression equation.

3.40 LINEAR REGRESSION

When the points of the scatter diagram concentrate round a straight line, the regression is
called linear and this straight line is known as the line of regression.

Regression will be called non-linear if there exists a relationship other than a straight
line between the variables under consideration.

3.41 LINES OF REGRESSION (U.P.T.U. 2006, 2007)

A line of regression is the straight line which gives the best fit in the least square sense to the
given frequency.

In case of n pairs (xi, yi) ; i = 1, 2, ..., n from a bivariate data, we have no reason or
justification to assume y as dependent variable and x as independent variable. Either of the
two may be estimated for the given values of the other. Thus if we wish to estimate y for given
values of x, we shall have the regression equation of the form y = a + bx, called the regression
line of y on x. If we wish to estimate x for given values of y, we shall have the regression line of
the form x = A + By, called the regression line of x on y.

Thus it implies, in general, we always have two lines of regression.
If the line of regression is so chosen that the sum of squares of deviation parallel to the

axis of y is minimised [See Fig. (a)], it is called the line of regression of y on x and it gives the
best estimate of y for any given value of x.

If the line of regression is so chosen that the sum of squares of deviations parallel to the
axis of x is minimised [See Fig. (b)], it is called the line of regression of x on y and it gives the
best estimate of x for any given value of y.
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Fig. (a) Fig. (b)

The independent variable is called predictor or regresser or explanator and the dependent
variable is called the predictant or regressed or explained variable.

3.42 DERIVATION OF LINES OF REGRESSION

3.42.1. Line of Regression of y on x
To obtain the line of regression of y on x, we shall assume y as dependent variable and x

as independent variable. Let y = a + bx be the equation of regression line of y on x.
The residual for ith point is Ei = yi – a – bxi.
Introduce a new quantity U such that

   U = Ei
i

n
2

1=
∑  = ( )y a bxi i

i

n

− −
=
∑ 2

1

...(1)

According to the principle of Least squares, the constants a and b are chosen in such a
way that the sum of the squares of residuals is minimum.

Now, the condition for U to be maximum or minimum is

  
∂
∂
U
a

 = 0 and
∂
∂
U
b

 = 0

From (1),   ∂
∂
U
a

i

n

=
=
∑2

1

(yi – a – bxi)(– 1)

 
∂
∂
U
a

 = 0 gives  2 
i

n

=
∑

1

(yi – a – bxi)(– 1) = 0

⇒ Σy = na + b Σx ..(2)

Also, ∂
∂
U
b

y a bx x
i

n

i i i= − − −
=
∑2

1

( )( )

  
∂
∂
U
b

 = 0 gives 2 
i

n

=
∑

1

(yi – a – bxi)(– xi) = 0

⇒   Σxy = a Σx + b Σx2 ...(3)
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Equations (2) and (3) are called normal equations.
Solving (2) and (3) for ‘a’ and ‘b’, we get

 b = 
Σ Σ Σ

Σ Σ

Σ Σ Σ
Σ Σ

xy
n

x y

x
n

x

n xy x y
n x x

−

−
= −

−

1

12 2 2 2
( ) ( )

...(4)

and  a = 
Σ Σy
n

b
x

n
y bx− = − ...(5)

Eqn. (5) gives y a bx= +

Hence y = a + bx line passes through point ( , )x y .

Putting a = y bx−  in equation of line y = a + bx, we get

 y – y b x x= −( ) ...(6)

Equation (6) is called regression line of y on x. ‘b’ is called the regression coefficient of y
on x and is usually denoted by byx.

Hence eqn. (6) can be rewritten as

  y – y b x xyx= −( )

where x yand  are mean values while

  byx = 
n xy x y
n x x

Σ Σ Σ
Σ Σ

−
−2 2( )

In equation (3), shifting the origin to ( , )x y , we get
Σ(x – x )(y – y ) = a Σ(x – x ) + b Σ(x – x )2

⇒ nr σxσy = a(0) + bnσx
2

⇒ b = r 
σ
σ

y

x
Hence, regression coefficient byx can also be defined as

  byx = r 
σ
σ

y

x

where r is the coefficient of correlation, σx and σy are the standard deviations of x and y series
respectively.

3.42.2. Line of Regression of x on y
Proceeding in the same way as 3.42.1, we can derive the regression line of x on y as

 x – x  = bxy(y – y )

where bxy is the regression coefficient of x on y and is given by

  bxy = 
n xy x y
n y y

Σ Σ Σ
Σ Σ

−
−2 2( )

or   bxy = r 
σ
σ

x

y

where the terms have their usual meanings.

∵ Σ

Σ

Σ

( ) ,

( )

( )( )

x x

n
x x

x x y y
n

r

x

x y

− =

− =

− −
=

0
1 2 2σ

σ σ
and
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Note. If r = 0, the two lines of regression become y = y  and x = x  which are two straight lines parallel to
x and y axes respectively and passing through their means y  and x . They are mutually perpendicular.
If r = ± 1, the two lines of regression will coincide.

3.43 USE OF REGRESSION ANALYSIS (U.P.T.U. 2008)

(i) In the field of Business, this tool of statistical analysis is widely used. Businessmen are
interested in predicting future production, consumption, investment, prices, profits and sales
etc.

(ii) In the field of economic planning and sociological studies, projections of population,
birth rates, death rates and other similar variables are of great use.

3.44 COMPARISON OF CORRELATION AND REGRESSION ANALYSIS
[G.B.T.U. M.B.A. (C.O.) 2011]

Both the correlation and regression analysis helps us in studying the relationship between
two variables yet they differ in their approach and objectives.

(i) Correlation studies are meant for studying the covariation of the two variables. They
tell us whether the variables under study move in the same direction or in reverse directions.
The degree of their covariation is also reflected in the correlation co-efficient but the correla-
tion study does not provide the nature of relationship. It does not tell us about the relative
movement in the variables and we cannot predict the value of one variable corresponding to
the value of other variable. This is possible through regression analysis.

(ii) Regression presumes one variable as a cause and the other as its effect. The
independent variable is supposed to be affecting the dependent variable and as such we can
estimate the values of the dependent variable by projecting the relationship between them.
However, correlation between two series is not necessarily a cause-effect relationship.

(iii) Coefficient of correlation cannot exceed unity but one of the regression coefficients
can have a value higher than unity but the product of two regression coefficients can never
exceed unity.

3.45 PROPERTIES OF REGRESSION CO-EFFICIENTS

Property I. Correlation co-efficient is the geometric mean between the regression co-efficients.

Proof. The co-efficients of regression are 
r ry

x

x

y

σ
σ

σ
σ

and .

G.M. between them = 
r r

ry

x

x

y

σ
σ

σ
σ

× = 2  = r = co-efficient of correlation.

Property II. If one of the regression co-efficients is greater than unity, the other must be less
than unity.

Proof. The two regression co-efficients are byx = 
r

b
ry

x
xy

x

y

σ
σ

σ
σ

and = .

Let   byx > 1, then 
1

1
byx

< …(1)

Since  byx. bxy = r2 ≤ 1 (∵ – 1 ≤ r ≤ 1)

∴ bxy ≤ 
1

1
byx

< . | Using (1)

Similarly, if bxy > 1, then byx < 1.
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Property III. Arithmetic mean of regression  co-efficients  is  greater  than  the correlation
co-efficient.
Proof. We have to prove that

 
b byx xy+

2
 > r

or r ry

x

x

y

σ
σ

σ
σ

+  > 2r

or σx
2 + σy

2 > 2σxσy

or (σx – σy)
2 > 0, which is true.

Property IV. Regression co-efficients are independent of the origin but not of scale.

Proof. Let u = 
x a

h
v

y b
k

–
, = −

, where a, b, h and k are constants

 byx = 
r

r
k
h

k
h

r k
h

by

x

v

u

v

u
vu

σ
σ

σ
σ

σ
σ

= =
F
HG
I
KJ =.

Similarly,  bxy = 
h
k

 buv.

Thus, byx and bxy are both independent of a and b but not of h and k.
Property V. The correlation co-efficient and the two regression co-efficients have same sign.

Proof. Regression co-efficient of y on x = byx = r 
σ
σ

y

x

Regression co-efficient of x on y = bxy = r σ
σ

x

y

Since σx and σy are both positive; byx, bxy and r have same sign.

3.46 ANGLE BETWEEN TWO LINES OF REGRESSION

If θ is the acute angle between the two regression lines in the case of two variables x and y, show
that

  tan θ = 
1 r

r

2
x y

x
2

y
2

−
+

.
σ σ

σ σ
, where r, σx, σy have their usual meanings.

Explain the significance of the formula when r = 0 and r = ± 1.
[U.P.T.U. 2007, 2015; G.B.T.U. (C.O.) 2011]

Proof. Equations to the lines of regression of y on x and x on y are

y y
r

x xy

x
− = −

σ
σ

( ) and  x x
r

y yx

y
− = −

σ
σ

( )

Their slopes are  m1 = 
r y

x

σ
σ

and m2 = 
σ
σ

y

xr
.

∴  tan θ = ± 
m m

m m
r

ry

x

y

x

y

x

2 1

2 1
2

2

1
1

−
+

= ±
−

+

σ
σ

σ
σ

σ
σ
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= ± 
1 12 2

2 2

2

2 2
−

+
= ± −

+
r

r
r

r
y

x

x

x y

x y

x y

. . .
σ
σ

σ
σ σ

σ σ

σ σ
Since r2 ≤ 1 and σx, σy are positive.

∴ +ve sign gives the acute angle between the lines.

Hence   tan θ = 
1 2

2 2
−

+
r

r
x y

x y

.
σ σ

σ σ

when r = 0, θ = 
π
2

∴ The two lines of regression are perpendicular to each other.

Hence the estimated value of y is the same for all values of x and vice-versa.

When r = ± 1, tan θ = 0 so that θ = 0 or π
Hence the lines of regression coincide and there is perfect correlation between the two

variates x and y.

EXAMPLES

Example 1. If the regression coefficients are 0.8 and 0.2, what would be the value of
coefficient of correlation?

Sol. We know that,

 r2 = byx . bxy = 0.8 × 0.2 = 0.16

Since r has the same sign as both the regression coefficients byx and bxy

Hence r = 0.16  = 0.4.

Example 2. Calculate linear regression coefficients from the following:

x → 1 2 3 4 5 6 7 8
y → 3 7 10 12 14 17 20 24

Sol. Linear regression coefficients are given by

 byx = 
n xy x y
n x x

Σ Σ Σ
Σ Σ

−
−2 2( )

and  bxy = 
n xy x y
n y y

Σ Σ Σ
Σ Σ

−
−2 2( )

Let us prepare the following table:

x y x2 y2 xy

1 3 1 9 3
2 7 4 49 14
3 10 9 100 30
4 12 16 144 48
5 14 25 196 70
6 17 36 289 102
7 20 49 400 140
8 24 64 576 192

Σx = 36 Σy = 107 Σx2 = 204 Σy2 = 1763 Σxy = 599
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Here, n = 8

∴   byx = 
( ) ( )

( ) ( )
8 599 36 107

8 204 36 2
× − ×

× −
 = 

940
336

 = 2.7976

and   bxy = 
( ) ( )
( ) ( )
8 599 36 107
8 1763 107

940
26552

× − ×
× −

=  = 0.3540

Example 3. The following table gives age (x) in years of cars and annual maintenance
cost (y) in hundred rupees:

X: 1 3 5 7 9

Y: 15 18 21 23 22

Estimate the maintenance cost for a 4 year old car after finding the regression equation.

Sol.

x y xy x2

1 15 15 1
3 18 54 9
5 21 105 25
7 23 161 49
9 22 198 81

Σx = 25 Σy = 99 Σxy = 533 Σx2 = 165

Here, n = 5

  x
x

n
= =Σ 25

5
 = 5, y

y
n

= =Σ 99
5

 = 19.8

∴ byx = 
n xy x y
n x x

Σ Σ Σ
Σ Σ

−
−

= × − ×
× −2 2 2

5 533 25 99
5 165 25( )

( ) ( )
( ) ( )

 = 0.95

Regression line of y on x is given by

 y y b x xyx− = −( )

⇒  y – 19.8 = 0.95 (x – 5)
⇒    y = 0.95x + 15.05

When x = 4 years, y = (0.95 × 4) + 15.05 = 18.85 hundred rupees = ̀  1885.

Example 4. In a partially destroyed laboratory record of an analysis of a correlation
data, the following results only are legible:

Variance of x = 9
Regression equations: 8x – 10y + 66 = 0, 40x – 18y = 214.
What were (a) the mean values of x and y (b) the standard deviation of y and the

co-efficient of correlation between x and y? [U.P.T.U. 2008, 2009; U.K.T.U. 2010]

Sol. (a) Since both the lines of regression pass through the point ( , )x y  therefore,
we have

 8 10 66 0x y− + = …(1)

40 18 214 0x y− − = …(2)
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Multiplying (1) by 5, 40 50 330 0x y− + = …(3)

Subtracting (3) from (2),     32 544 0y − = ∴ y  = 17

∴ From (1),  8 x  – 170 + 66 = 0 or 8 x  = 104 ∴ x  = 13

Hence,   x  = 13, y  = 17

(b) Variance of x = σx
2 = 9 (given)

∴ σx = 3

The equations of lines of regression can be written as

y = 0.8x + 6.6 and x = 0.45y + 5.35

∴ The regression co-efficient of y on x is
r y

x

σ
σ

 = 0.8 …(4)

The regression co-efficient of x on y is
r x

y

σ
σ  = 0.45 …(5)

Multiplying (4) and (5), r2 = 0.8 × 0.45 = 0.36  ∴ r = 0.6

(+ve sign with square root is taken because regression co-efficients are +ve).

From (4), σy = 
0.8 0.8 3

0.6
σ x

r
=

×
 = 4.

Example 5. The  regression  lines of y on x and x on y are respectively y = ax + b,

 x = cy + d. Show that

σ
σ

y

x

a
c

= , x
bc d
1 ac

and y
ad b
1 ac

= +
−

= +
−

.

[U.P.T.U. (C.O.) 2009, U.P.T.U. (MCA) 2008]

Sol. The regression line of y on x is

 y = ax + b …(1)

∴ byx = a

The regression line of x on y is

      x = cy + d …(2)

∴ bxy = c

We know that,   byx = r 
σ
σ

y

x

…(3)

and   bxy = r 
σ
σ

x

y
…(4)

Dividing eqn. (3) by (4), we get

 
b

b
yx

xy

y

x

=
σ

σ

2

2
⇒

a
c

a
c

y

x

y

x
= ⇒ =

σ

σ

σ
σ

2

2
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Since both the regression lines pass through the point ( , )x y  therefore,

    y ax b= + and x cy d= +

⇒  ax y b− = − …(5)

  x cy d− = …(6)
Multiplying equation (6) by a and then subtracting from (5), we get

(ac – 1) y ad b= − − ⇒ y
ad b

ac
= +

−1

Similarly, we get     x
bc d

ac
= +

−1
.

Example 6. For two random variables, x and y with the same mean, the two regression

equations are y = ax + b and x = αy + β. Show that 
b 1 a

1β α
= −

−
. Find also the common mean.

(G.B.T.U. 2010)
Sol. Here,   byx = a, bxy = α
Let the common mean be m, then regression lines are

   y – m = a (x – m)
⇒     y = ax + m (1 – a) …(1)

and    x – m = α(y – m)
⇒      x = αy + m (1 – α) …(2)
Comparing (1) and (2) with the given equations.

    b = m (1 – a), β = m (1 – α)

∴  
b a
β α

= −
−

1
1

Since regression lines pass through ( , )x y

∴     x y= +α β and y ax b= +  will hold.

⇒    m = am + b,  m = αm + β
⇒  am + b = αm + β

⇒   m = 
β

α
−
−

b
a

.

Example 7. (i) Obtain the line of regression of y on x for the data given below:

x: 1.53 1.78 2.60 2.95 3.42

y: 33.50 36.30 40.00 45.80 53.50.

(ii) The following data regarding the heights (y) and weights (x) of 100 college students
are given:

 Σx = 15000, Σx2 = 2272500, Σy = 6800, Σy2  = 463025 and Σxy = 1022250.

Find the equation of regression line of height on weight.

Sol. (i) The line of regression of y on x is given by

 y – y b x xyx= −( ) ...(1)
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where byx is the coefficient of regression given by

 byx = 
n xy x y
n x x

Σ Σ Σ
Σ Σ

−
−2 2( )

...(2)

Now we form the table as,

x y x2 xy

1.53 33.50 2.3409 51.255
1.78 36.30 2.1684 64.614
2.60 40.00 6.76 104
2.95 45.80 8.7025 135.11
3.42 53.50 11.6964 182.97

Σx = 12.28 Σy = 209.1 Σx2 = 32.6682 Σxy = 537.949

Here, n = 5

  byx = 
( ) ( )

( ) ( )
5 537.949 12.28 209.1

5 32.6682 12.28 2
× − ×

× −
 = 9.726

Also,  mean x
x

n
= =Σ 12.28

5
 = 2.456 and y

y
n

= =Σ 2091.
5

 = 41.82

∴ From (1), we get

  y – 41.82 = 9.726(x – 2.456) = 9.726x – 23.887

 y = 17.932 + 9.726x

(ii)   x
x

n
= =Σ 15000

100
 = 150, y

y
n

= =Σ 6800
100

 = 68

Regression coefficient of y on x,

  byx = 
n xy x y
n x x

Σ Σ Σ
Σ Σ

−
−2 2( )

 = 
( ) ( )

( ) ( )
100 1022250 15000 6800

100 2272500 15000 2
× − ×

× −
 = 0.1

Regression line of height (y) on weight (x) is given by

  y – y b x xyx= −( )

⇒ y – 68 = 0.1(x – 150)
⇒ y = 0.1x + 53.
Example 8. For 10 observations on price (x) and supply (y), the following data were

obtained (in appropriate units):

 Σx = 130, Σy = 220, Σx2 = 2288, Σy2 = 5506 and Σxy = 3467

Obtain the two lines of regression and estimate the supply when the price is 16 units.

Sol. Here,    n = 10, x
x

n
= Σ

 = 13 and y
y

n
= Σ

 = 22

Regression coefficient of y on x is

  byx = 
n xy x y
n x x

Σ Σ Σ
Σ Σ

−
−2 2( )

 = 
( ) ( )

( ) ( )
10 3467 130 220

10 2288 130 2
× − ×

× −
 = 1.015
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∴ Regression line of y on x is

  y – y b x xyx= −( )

  y – 22 = 1.015(x – 13)
⇒  y = 1.015x + 8.805 ...(1)
Regression coefficient of x on y is

  bxy = 
n xy x y
n y y

Σ Σ Σ
Σ Σ

−
−2 2( )

 = 
( ) ( )

( ) ( )
10 3467 130 220

10 5506 220 2
× − ×

× −
 = 0.9114

Regression line of x on y is

  x – x b y yxy= −( )

 x – 13 = 0.9114(y – 22)
 x = 0.9114y – 7.0508 ...(2)

Since we are to estimate supply (y) when price (x) is given therefore we are to use
regression line of y on x here.

When x = 16 units,
 y = 1.015(16) + 8.805 = 25.045 units.

Example 9. The following results were obtained from records of age (x) and systolic
blood pressure (y) of a group of 10 men:

x y
Mean 53 142
Variance 130

and Σ(x – x )(y – y ) = 1220

Find the appropriate regression equation and use it to estimate the blood pressure of a
man whose age is 45.

Sol. Given

Mean x  = 53 and y  = 142; Variance σx
2 = 130

n = 10 and Σ(x – x )(y – y ) = 1220

Since we are to estimate blood pressure (y) of a 45 years old man, we will find regression
line of y on x.

Regression coefficient

byx = r y

x

σ
σ

 = 
Σ ( ) ( )x x y y

n x y

y

x

− − F
HG
I
KJσ σ

σ
σ

= 
Σ ( ) ( )

( ) ( )
x x y y

n x

− − =
σ2

1220
10 130

 = 0.93846

Regression line of y on x is given by

 y y−  = b x xyx ( )−
⇒ y – 142 = 0.93846 (x – 53)
⇒  y = 0.93846 x + 92.26162
When x = 45, y = 134.49
Hence the required blood pressure = 134.49.
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Example 10. The following results were obtained from marks in Applied Mechanics
and Engineering Mathematics in an examination:

Applied Mechanics (x) Engineering Mathematics (y)

Mean 47.5 39.5

Standard Deviation 16.8 10.8

r = 0.95.
Find both the regression equations. Also estimate the value of y for x = 30.

Sol. x  = 47.5, y  = 39.5
σx = 16.8, σy = 10.8 and r = 0.95.

Regression coefficients are

 byx = r 
σ
σ

y

x
= ×0 95

10 8
16 8

.
.
.

 = 0.6107

and  bxy = r 
σ
σ

x

y
= ×0 95

16 8
10 8

.
.
.

 = 1.477.

Regression line of y on x is

  y – y b x xyx= −( )

⇒    y – 39.5 = 0.6107 (x – 47.5) = 0.6107x – 29.008
 y = 0.6107x + 10.49 ...(1)

Regression line of x on y is

  x – x b y yxy= −( )

⇒  x – 47.5 = 1.477 (y – 39.5)
 x = 1.477y – 10.8415 ...(2)

Putting x = 30 in equation (1), we get
 y = (0.6107)(30) + 10.49 = 28.81.

Example 11. The equations of two regression lines, obtained in a correlation analysis of
60 observations are:

5x = 6y + 24 and 1000y = 768x – 3608.
What is the correlation coefficient? Show that the ratio of coefficient of variability of x to

that of y is 
5
24

. What is the ratio of variances of x and y?

Sol. Regression line of x on y is
 5x = 6y + 24

⇒  x = 
6
5

24
5

y +

∴   bxy = 
6
5

...(1)

Regression line of y on x is
  1000y = 768x – 3608

⇒  y = 0.768x – 3.608
∴   byx = 0.768 ...(2)
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From (1),   r 
σ
σ

x

y
= 6

5
...(3)

From (2), r 
σ
σ

y

x
 = 0.768 ...(4)

Multiplying equations (3) and (4), we get
 r2 = 0.9216 ⇒ r = 0.96 ...(5)

Dividing (4) by (3), we get

   
σ
σ

x

y

2

2
6

5 0 768
=

× .
 = 1.5625.

Taking square root, we get

σ
σ

x

y
= =125

5
4

. ...(6)

Since the regression lines pass through the point (x y, ), we have

  5 6x y=  + 24

1000 y x= 768  – 3608.

Solving the above equations for x  and y , we get x = 6, y  = 1.

Co-efficient of variability of x = 
σ x

x

Co-efficient of variability of y = 
σ y

y
.

∴   Required ratio = 
σ

σ
x

yx
y×  = 

y
x

x

y

σ
σ

F
HG
I
KJ  = 

1
6

5
4

×  = 
5

24
. | Using (6)

Example 12. A panel of two judges, A and B, graded seven TV serial performances by
awarding marks independently as shown in the following table:

Performance 1 2 3 4 5 6 7

Marks by A 46 42 44 40 43 41 45

Marks by B 40 38 36 35 39 37 41

The eighth TV performance which judge B could not attend, was awarded 37 marks by
judge A. If the judge B had also been present, how many marks would be expected to have been
awarded by him to the eighth TV performance?

Use regression analysis to answer this question.

Sol. Let the marks awarded by judge A be denoted by x and the marks awarded by
judge B be denoted by y.

Here, n = 7;  x
x

n
= = + + + + + +Σ 46 42 44 40 43 41 45

7
 = 43

 y
y

n
= = + + + + + +Σ 40 38 36 35 39 37 41

7
 = 38
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Let us form the table as

x y xy x2

46 40 1840 2116

42 38 1596 1764

44 36 1584 1936

40 35 1400 1600

43 39 1677 1849

41 37 1517 1681

45 41 1845 2025

Σx = 301 Σy = 266 Σxy = 11459 Σx2 = 12971

Regression coefficient,

 byx = 
n xy x y
n x x

Σ Σ Σ
Σ Σ

−
−2 2( )

 = 
( ) ( )

( ) ( )
7 11459 301 266

7 12971 301 2
× − ×

× −
 = 0.75

Regression line of y on x is given by

 y – y b x xyx= −( )

 y – 38 = 0.75(x – 43)
⇒ y = 0.75x + 5.75

when x = 37,  y = 0.75(37) + 5.75 = 33.5 marks
Hence, if judge B had also been present, 33.5 marks would be expected to have been

awarded to the eighth TV performance.
Example 13. Two variables x and y have zero means, the same variance σ2 and zero

correlation, show that:
u = x cos α + y sin α and v = x sin α – y cos α

have the same variance σ2 and zero correlation. (U.P.T.U. 2007)
Sol. We are given that

   r (x, y) = 0 ⇒ Cov (x, y) = 0, σx
2 = σy

2 = σ2

We have,   σu
2 = V (x cos α + y sin α)
= cos2 α V (x) + sin2 α V(y) + 2 sin α cos α Cov (x, y)
= (cos2 α + sin2 α) σ2 |∵ Cov (x, y) = 0
= σ2

Similarly, σv
2 = σ2

    Cov (u, v) = E [(u – u ) (v – v )]
= E [(x cos α + y sin α – x  cos α – y  sin α)

(x sin α – y cos α – x  sin α + y  cos α)]

= E[(x cos α + y sin α) (x sin α – y cos α)] |∵ x  = 0 = y

= [E(x2) – E(y2)] sin α cos α + E(xy) (sin2 α – cos2 α)
= 0 |∵ σx

2 = σy
2 = σ2 and E(xy) = 0

∴  r = 
Cov ( , )u v

u vσ σ
 = 0.
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ASSIGNMENT

1. (i) Discuss regression and its importance. Given the following data:
x: 1 5 3 2 1 1 7 3
y: 6 1 0 0 1 2 1 5

Find a regression line of x on y. (U.P.T.U. 2008)
(ii) In a study between the amount of rainfall and the quantity of air pollution removed the

following data were collected:
Daily rainfall: 4.3 4.5 5.9 5.6 6.1 5.2 3.8 2.1

(in .01 cm)
   Pollution removed: 12.6 12.1 11.6 11.8 11.4 11.8 13.2 14.1

(mg/m3)
Find the regression line of y on x.

(iii) Find the two lines of regression and coefficient of correlation for the data given below:
n = 18, Σ x = 12, Σ y = 18, Σ x2 = 60, Σ y2 = 96, Σ xy = 48 [U.P.T.U. (MCA) 2009]

(iv) From the data given, find the equation of lines of regression of x on y and y on x. Also calculate
the correlation co-efficient.
x: 2 4 6 8 10

y: 5 7 9 8 11 (U.P.T.U. 2011)

2. (i) Can Y = 5 + 2.8 X and  X = 3 – 0.5 Y be the estimated regression equations of Y on X and X on
Y respectively? Explain your answer with suitable theoretical arguments.

(ii) Find the co-efficient of correlation when the two regression equations are
X = – 0.2 Y + 4.2, Y = – 0.8 X + 8.4

3. (i) If  F  is  the  pull required to lift a load W by means of a pulley block, fit a linear law of the
form F = mW + c connecting F and W, using the data

W: 50 70 100 120

F: 12 15 21 25

where F and W are in kg wt. Compute F when W = 150 kg wt. (U.P.T.U. 2007)
(ii) A simply supported beam carries a concentrated load P (kg) at its mid-point. The following

table gives maximum deflection y (cm) corresponding to various values of P:
P: 100 120 140 160 180 200

y: 0.45 0.55 0.60 0.70 0.80 0.85

Find a law of the form y = a + bP. Also find the value of maximum deflection when P = 150 kg.
4. (i) Find both the lines of regression of following data:

x: 5.60 5.65 5.70 5.81 5.85

y: 5.80 5.70 5.80 5.79 6.01

(ii) Obtain regression line of x on y for the given data:

x: 1 2 3 4 5 6

y: 5.0 8.1 10.6 13.1 16.2 20.0 [U.P.T.U. (MCA) 2007]

(iii) Given that:

x: 1 3 5 7 8 10

y: 8 12 15 17 18 20

Find the equations of both lines of regression. [U.P.T.U. (C.O.) 2008]
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5. (i) The two regression equations of the variables x and y are x = 19.13 – 0.87 y and y = 11.64 – 0.50x.
Find (a) mean of x’s (b) mean of y’s and (c) correlation coefficient between x and y.

(ii) Two random variables have the regression lines with equations 3x + 2y = 26 and 6x + y = 31.
Find the mean values and the correlation coefficient between x and y.

[G.B.T.U. (MBA) 2011]

(iii) In a partially destroyed laboratory data, only the equations giving the two lines of regression
of y on x and x on y are available and are respectively

7x – 16y + 9 = 0,   5y – 4x – 3 = 0.

Calculate the coefficient of correlation, x  and y .

(iv) The regression equations calculated from a given set of observations for two random vari-
ables are

x = – 0.4y + 6.4 and y = – 0.6x + 4.6

Calculate (i) x (ii) y (iii) r.

(v) Two lines of regression are given by

x + 2y – 5 = 0 and 2x + 3y – 8 = 0 and σx
2 = 12,

Calculate:

(a) the mean values of x and y (b) variance of y

(c) the coefficient of correlation between x and y. [U.P.T.U. (MCA) 2008, G.B.T.U. (C.O.) 2011]

6. An analyst for a company was studying travelling expenses (y) in ̀  and duration (x) of these trips
for 102 sales trip. He has found relation between x and y linear and data as follows:

Σx = 510, Σy = 7140, Σx2 = 4150, Σxy = 54900, Σy2 = 740200

Calculate  (i) Two regression lines

(ii) A given trip has to take 7 days. How much money should be allowed so that they

will not run short of money?

7. Assuming that we conduct an experiment with 8 fields planted with corn, four fields having no
nitrogen fertiliser and four fields having 80 kgs of nitrogen fertilizer. The resulting corn yields
are shown in table in bushels per acre :

Field: 1 2 3 4 5 6 7 8
Nitrogen (kgs) x: 0 0 0 0 80 80 80 80

Corn yield y: 120 360 60 180 1280 1120 1120 760
(acre)

(a) Compute a linear regression equation of y on x.

(b) Predict corn yield for a field treated with 60 kgs of fertilizer.

8. If the coefficient of correlation between two variables x and y is 0.5 and the acute angle between

their lines of regression is tan− F
HG
I
KJ

1 3
5

, show that σx = 
1
2

σ y . (U.P.T.U. 2009)

9. Given N = 50, Mean of y = 44, Variance of x is 
9
16

 of the variance of y.

Regression equation of x on y is 3y – 5x = – 180

Find (i) Mean of x (ii) Coeff. of correlation between x and y.

10. The means of a bivariate frequency distribution are at (3, 4) and r = 0.4. The line of regression of
y on x is parallel to the line y = x. Find the two lines of regression and estimate value of x when
y = 1.
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11. The following results were obtained in the analysis of data on yield of dry bark in ounces (y) and
age in years (x) of 200 cinchona plants:

x y

Average: 9.2 16.5

Standard deviation: 2.1 4.2

Correlation coefficient = 0.84

Construct the two lines of regression and estimate the yield of dry bark of a plant of age 8 years.

12. A panel of judges A and B graded 7 debators and independently awarded the following marks:

Debator: 1 2 3 4 5 6 7

Marks by A: 40 34 28 30 44 38 31

Marks by B: 32 39 26 30 38 34 28

An eighth debator was awarded 36 marks by judge A while judge B was not present. If judge B
were also present, how many marks would you expect him to award to the eighth debator assum-
ing that the same degree of relationship exists in their judgement?

Answers
1. (i) 72 x = – 20 y + 247 (ii) y = – 0.6842x + 15.5324

(iii) y = 0.6923 x + 0.53846 ; x = 0.4615 y + 0.2051

(iv) x = 1.3 y – 4.4, y = .65x + 4.1; r = .9192

2. (i) No (ii) r = – 0.4

3. (i) F = 0.18793W + 2.27595; F = 30.4654 kg wt.

(ii) y = 0.04765 + 0.004071 P; y = 0.6583 cm

4. (i)Regression line of y on x: y = 0.74306 x + 1.56821

Regression line of x on y:    x = 0.63602 y + 2.0204

(ii) x = 0.34195 y – 0.660355 (iii) y = 1.3012 x + 7.6265 ; x = 0.75y – 5.5833.

5. (i) (a) 15.935 (b) 3.67 (c) – 0.659

(ii) x  = 4, y  = 7, r = – 0.5 (iii) r = 0.7395, x  = – 0.1034, y  = 0.5172

(iv) x  = 6, y  = 1, r = – 0.48989

(v) (a) x  = 1, y  = 2 (b) 4 (c) – 
3

2
6. (i) y = 12x + 10, x = 0.07986y – 0.59068 (ii) ` 94

7. (a) y = 11.125x + 180 (b) 847.5 acre

9. (i) 62.4 (ii) 0.8

10. y = x + 1 ; x = 0.16y + 2.36 ; x = 2.52

11. y = 1.68x + 1.044, x = 0.42y + 2.27 ; y = 14.484

12. 33 marks.

3.47 POLYNOMIAL FIT: NON-LINEAR REGRESSION

Let y = a + bx + cx2 ...(1)
be  a  second  degree  parabolic  curve  of  regression  of  y  on x to be fitted for the data (xi, yi),
i = 1, 2, ......, n.
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Residual at x = xi is
 Ei = yi – f(xi) = yi – a – bxi – cxi

2

Now, let  U = 
i

n

i
i

n

= =
∑ ∑=

1

2

1

E (yi – a – bxi – cxi
2)2

By principle of Least squares, U should be minimum for the best values of a, b and c.

For this,
∂
∂
U
a

 = 0, 
∂
∂
U
b

 = 0 and 
∂
∂
U
c

 = 0

 
∂
∂
U
a

 = 0 ⇒ 2
1i

n

=
∑ (yi – a – bxi – cxi

2) (– 1) = 0

⇒ Σy = na + bΣx + cΣx2 ...(1)

 
∂
∂
U
b

 = 0 ⇒ 2
1i

n

=
∑ (yi – a – bxi – cxi

2) (– xi) = 0

⇒ Σxy = aΣx + bΣx2 + cΣx3 ...(2)

 
∂
∂
U
c

 = 0 ⇒ 2
1i

n

=
∑ (yi – a – bxi – cxi

2) (– xi
2) = 0

⇒ Σx2y = aΣx2 + bΣx3 + cΣx4 ...(3)

Equations (1), (2) and (3) are the normal equations for fitting a second degree parabolic
curve of regression of y on x. Here n is the no. of pairs of values of x and y.

EXAMPLES

Example 1. (a) Fit a second degree parabola to the following data:

x 0.0 1.0 2.0

y 1.0 6.0 17.0

(b) Fit a second degree curve of regression of y on x to the following data:

x 1.0 2.0 3.0 4.0

y 6.0 11.0 18.0 27

(c) Fit a second degree parabola in the following data:

x 0.0 1.0 2.0 3.0 4.0

y 1.0 4.0 10.0 17.0 30.0
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Sol. The equation of second degree parabola is given by
y = a + bx + cx2 ...(1)

Normal equations are
Σy = ma + bΣx + cΣx2 ...(2)

  Σxy = aΣx + bΣx2 + cΣx3 ...(3)
and  Σx2y = aΣx2 + bΣx3 + cΣx4 ...(4)

(a) Here, m = 3. Table is as follows:

x y x2 x3 x4 xy x2y

0 1 0 0 0 0 0
1 6 1 1 1 6 6
2 17 4 8 16 34 68

Total 3 24 5 9 17 40 74

Substituting in eqns. (2), (3) and (4), we get
24 = 3a + 3b + 5c ...(5)
40 = 3a + 5b + 9c ...(6)
74 = 5a + 9b + 17c ...(7)

Solving eqns. (5), (6) and (7), we get a = 1, b = 2, c = 3
Hence the required second degree parabola is y = 1 + 2x + 3x2

(b) Here, m = 4. Table is as follows:

x y x2 x3 x4 xy x2y

1 6 1 1 1 6 6
2 11 4 8 16 22 44
3 18 9 27 81 54 162
4 27 16 64 256 108 432

Σx = 10 Σy = 62 Σx2 = 30 Σx3 = 100 Σx4 = 354 Σxy = 190 Σx2y = 644

Substituting values in eqns. (2), (3) and (4), we get
62 = 4a + 10b + 30c ...(8)

190 = 10a + 30b + 100c ...(9)
644 = 30a + 100b + 354c ...(10)

Solving equations (8), (9) and (10), we get a = 3, b = 2, c = 1
Hence the required second degree parabola is y = 3 + 2x + x2

(c) Here, m = 5. Table is as follows:

x y x2 x3 x4 xy x2y

0.0 1.0 0 0 0 0 0
1.0 4.0 1 1 1 4 4
2.0 10.0 4 8 16 20 40
3.0 17.0 9 27 81 51 153
4.0 30.0 16 64 256 120 480

Σx = 10 Σy = 62 Σx2 = 30 Σx3 = 100 Σx4 = 354 Σxy = 195 Σx2y = 677
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Substituting values in eqns. (2), (3) and (4), we get

62 = 5a + 10b + 30c ...(11)

195 = 10a + 30b + 100c ...(12)

677 = 30a + 100b + 354c ...(13)

Solving eqns. (11), (12) and (13), we get a = 1.2, b = 1.1 and c = 1.5

Hence the required second degree parabola is y = 1.2 + 1.1x + 1.5x2.

Example 2. Fit a second degree parabola to the following data taking y as dependent
variable:

x 1 2 3 4 5 6 7 8 9

y 2 6 7 8 10 11 11 10 9

Sol. Normal equations to fit a second degree parabola of the form y = a + bx + cx2 are

and

Σ Σ Σ
Σ Σ Σ Σ

Σ Σ Σ Σ

y ma b x c x
xy a x b x c x

x y a x b x c x

= + +
= + +
= + +

U
V|
W|

2

2 3

2 2 3 4

…(1)

Here, m = 9

x y x2 x3 x4 xy x2y

1 2 1 1 1 2 2
2 6 4 8 16 12 24
3 7 9 27 81 21 63
4 8 16   64 256 32 128
5 10 25 125 625 50 250
6 11 36 216 1296 66 396
7 11 49 343 2401 77 539
8 10 64 512 4096 80 640
9 9 81 729 6561 81 729

Σx = 45 Σy = 74 Σx2 = 285 Σx3 = 2025 Σx4 = 15333 Σxy = 421 Σx2y = 2771

Putting in (1), we get
    74 = 9a + 45b + 285c
  421 = 45a + 285b + 2025c
2771 = 285a + 2025b + 15333c

Solving the above equations, we get a = – 1, b = 3.55, c = – 0.27
Hence the required equation of second degree parabola is y = – 1 + 3.55x – 0.27x2.
Example 3. Employ the method of least squares to fit a parabola y = a + bx + cx2 in the

data: (x, y): (– 1, 2), (0, 0), (0, 1), (1, 2)
Sol. Normal equations to the parabola y = a + bx + cx2 are

  Σy = ma + bΣx + cΣx2 ...(1)
Σxy = aΣx + bΣx2 + cΣx3 ...(2)

and Σx2y = aΣx2 + bΣx3 + cΣx4 ...(3)
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Here, m = 4. The table is as follows:

x y x2 x3 x4 xy x2y

– 1 2 1 – 1 1 – 2 2
0 0 0 0 0 0 0
0 1 0 0 0 0 0
1 2 1 1 1 2 2

Σx = 0 Σy = 5 Σx2 = 2 Σx3 = 0 Σx4 = 2 Σxy = 0 Σx2y = 4

Substituting these values in equations (1), (2) and (3); we get
5 = 4a + 2c ...(4)
0 = 2b ...(5)

and 4 = 2a + 2c ...(6)
Solving (4), (5) and (6), we get a = 0.5, b = 0 and c = 1.5
Hence the required second degree parabola is y = 0.5 + 1.5x2

Example 4. Fit a second degree parabola to the following data by Least Squares method:

x 1 2 3 4 5

y 1090 1220 1390 1625 1915

[U.P.T.U. (MCA) 2009, U.P.T.U. 2007; U.K.T.U. 2010]

Sol. Here m = 5 (odd)

Let  u = x – 3, v = y – 1220

x y u v u2 u2v uv u3 u4

1 1090 – 2 – 130 4 – 520 260 – 8 16
2 1220 – 1 0 1 0 0 – 1 1
3 1390 0 170 0 0 0 0 0
4 1625 1 405 1 405 405 1 1
5 1915 2 695 4 2780 1390 8 16

Total Σu = 0 Σv = 1140 Σu2 = 10 Σu2v = 2665 Σuv = 2055 Σu3 = 0 Σu4 = 34

Putting these values in normal equations, we get

1140 = 5a′ + 10c′, 2055 = 10b′, 2655 = 10a′ + 34c′
⇒  a′ = 173, b′ = 205.5, c′ = 27.5

∴  v = 173 + 205.5u + 27.5u2 …(1)

Put  u = x – 3 and v = y – 1220

From (1), y – 1220 = 173 + 205.5 (x – 3) + 27.5 (x – 3)2

⇒  y = 27.5x2 + 40.5x + 1024.

3.48 MULTIPLE LINEAR REGRESSION

Now we proceed to discuss the case where the dependent variable is a function of two or more
linear or non-linear independent variables. Consider such a linear function as

 y = a + bx + cz …(1)
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The sum of the squares of residual is

U = ( )y a bx czi i i
i

n

− − −
=
∑ 2

1
…(2)

Differentiating U partially w.r.t. a, b, c ; we get

∂
∂
U
a

 = 0 ⇒ 2
1

( )y a bx czi i i
i

n

− − −
=
∑  (– 1) = 0

∂
∂
U
b

 = 0 ⇒ 2
1

( )y a bx czi i i
i

n

− − −
=
∑  (– xi) = 0

and
∂
∂
U
c

 = 0 ⇒ 2
1

( )y a bx czi i i
i

n

− − −
=
∑  (– zi) = 0

which on simplification and omitting the suffix i, yields.
  ∑y = ma + b∑x + c∑z
∑xy = a∑x + b∑x2 + c∑xz
∑yz = a∑z + b∑xz + c∑z2

Solving the above three equations, we get values of a, b and c. Consequently, we get the
linear function y = a + bx + cz called regression plane.

EXAMPLES

Example 1. Obtain a regression plane by using multiple linear regression to fit the data
given below:

x 1 2 3 4

z 0 1 2 3

y 12 18 24 30 [U.P.T.U. MCA (C.O.) 2008]

Sol. Let y = a + bx + cz be the required regression plane where a, b, c are the constants
to be determined by following equations:

Σy = ma + bΣx + cΣz

Σyx = aΣx + bΣx2 + cΣzx

and Σyz = aΣz + bΣzx + cΣz2

Here, m = 4

x z y x2 z2 yx zx yz

1 0 12 1 0 12 0 0
2 1 18 4 1 36 2 18
3 2 24 9 4 72 6 48
4 3 30 16 9 120 12 90

Σx = 10 Σz = 6 Σy = 84 Σx2 = 30 Σz2 = 14 Σyx = 240 Σzx = 20 Σyz = 156
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Substitution yields, 84 = 4a + 10b + 6c
 240 = 10a + 30b + 20c

and  156 = 6a + 20b + 14c
Solving, we get a = 10, b = 2, c = 4
Hence the required regression plane is y = 10 + 2x + 4z
Example 2. Find the multiple linear regression of X1 on X2 and X3 from the data relating

to three variables:

X1 4 6 7 9 13 15

X2 15 12 8 6 4 3

X3 30 24 20 14 10 4

Sol. Let X1 = a + bX2 + cX3 be the required regression plane where a, b, c are the
constants, determined by following normal equations

ΣX1 = ma + bΣX2 + cΣX3
ΣX1X2 = aΣX2 + bΣX2

2 + cΣX2X3
ΣX1X3 = aΣX3 + bΣX2X3 + cΣX3

2

Here, m = 6

X1 X2 X3 X1X2 X2
2 X2X3 X1X3 X3

2

4 15 30 60 225 450 120 900

6 12 24 72 144 288 144 576

7 8 20 56 64 160 140 400

9 6 14 54 36 84 126 196

13 4 10 52 16 40 130 100

15 3 4 45 9 12 60 16

Total 54 48 102 339 494 1034 720 2188

Substituting the values, we get
54 = 6a + 48b + 102c

339 = 48a + 102b + 1034c
720 = 102a + 1034b + 2188c

On solving, we get,   a = 16.413, b = – 0.00536, c = – 0.4335
Hence X1 = 16.413 – 0.00536X2 – 0.4335X3

ASSIGNMENT

1. Fit a parabola of the form y = a + bx + cx2 to the data:

x 1 2 3 4

y 1.7 1.8 2.3 3.2

by the method of least squares. (U.P.T.U. 2009)
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2. Find the best values of a0, a1, a2 so that the parabola y = a0 + a1x + a2x
2 fits the data:

x 1 1.5 2 2.5 3 3.5 4

y 1.1 1.2 1.5 2.6 2.8 3.3 4.1

[U.P.T.U. (C.O.) 2008]
3. (i) Fit a second degree parabola to the following data:

x 1 2 3 4 5

y 25 28 33 39 46

[U.P.T.U. (C.O.) 2011]
(ii) Fit a second degree parabola to the following data:

x 1 2 3 4 5 6 7 8 9 10

y 124 129 140 159 228 289 315 302 263 210

(U.P.T.U. 2009)
4. Fit a second degree parabola to the following data taking x as the independent variable:

(i) x 0 1 2 3 4

y 1 5 10 22 38

(ii) x 1 2 3 4 5 6 7 8 9

y 3 7 8 9 11 12 13 14 15

(U.P.T.U. 2007)
5. The profit of a certain company in Xth year of its life are given by:

x 1 2 3 4 5

y 1250 1400 1650 1950 2300

Taking u = x – 3 and v = 
y − 1650

50
, show that the parabola of second degree of v on u is

v + 0.086 = 5.3 u + 0.643u2 and deduce that the parabola of second degree of y on x is
y = 1144 + 72x + 32.15x2

6. (i) The corresponding values of x and y are given below:

x 87 84 79 64 47 37

y 292 283 270 235 197 181

Fit a parabola of the form y = ax2 + bx + c. Also find the value of y for  x = 80 correct upto third
place of decimal. (U.P.T.U. 2006)
(ii) Determine the constants a, b and c by the method of least squares such that y = ax2 + bx + c

fits the following data:

x 2 4 6 8 10

y 4.01 11.08 30.12 81.89 222.62
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7. The velocity V of a liquid is known to vary with temperature T, according to a quadratic law V = a
+ bT + cT2. Find the best values of a, b and c for the following table:

T 1 2 3 4 5 6 7

V 2.31 2.01 1.80 1.66 1.55 1.47 1.41

[G.B.T.U. (MCA) 2010]
8. The following table gives the results of the measurements of train resistances, V is the velocity in

miles per hour, R is the resistance in pounds per ton:

V 20 40 60 80 100 120

R 5.5 9.1 14.9 22.8 33.3 46

If R is related to V by the relation R = a + bV + cV2; find a, b and c by using the method of least
squares.

9. Find the multiple linear regression of X1 on X2 and X3 from the data relating to three variables:

X1 7 12 17 20

X2 4 7 9 12

X3 1 2 5 8 (U.P.T.U. 2009)

10. Fit a second degree parabola to the following data:

x 1 2 3 4 5 6 7 8 9

y 2 6 7 8 10 11 8 13 5

(U.P.T.U. 2015)

Answers
1. y = 2 – 0.5 x + 0.2 x2 2. y = 0.45714 + 0.39286 x + 0.12857 x2

3. (i) y = 22.8 + 1.44x + 0.64x2 (ii) y = 18.866 + 66.1576 x – 4.3333 x2

4. (i) y = 1.43 + 0.24x + 2.21x2 (ii) y = 1.5238 + 2.38398 x – 0.10173 x2

6. (i) y = 0.010626822 x2 + 0.908257322 x + 132.2040143 ; 272.876

(ii) a = 5.358035714, b = – 38.89492857, c = 67.56

7. V = 2.5928 – 0.3258 T + 0.02274 T2 8. R = 4.35 + 0.00241 V + 0.0028705 V2

9. X1 = 0.6441 + 1.661X2 + 0.0169 X3 10. y = – 1.619 + 4.031 x – 0.339 x2.

3.49 THEORETICAL PROBABILITY DISTRIBUTIONS

Generally, frequency distribution are formed from the observed or experimental data. However,
frequency distribution of certain populations can be deduced mathematically by fitting
theoretical probability distribution under certain assumptions.

Frequency distributions can be classified under two heads:
(i) Observed Frequency Distributions.

(ii) Theoretical or Expected Frequency Distributions.
Observed frequency distributions are based on actual observation and experimentation.

If certain hypothesis is assumed, it is sometimes possible to derive mathematically what
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the frequency distribution of certain universe should be. Such distributions are called
Theoretical Distributions.

Theoretical probability distributions are of two types:
(i) Discrete probability distribution. Binomial, poisson, geometric, negative binomial,
hypergeometric, multinomial, multivariate hypergeometric distributions.
(ii) Continuous probability distributions.

Uniform, normal Gamma, exponential, χ2, Beta, bivariate normal, t, F-distributions.
Here, we will study three important theoretical probability distributions:
1. Binomial Distribution (or Bernoulli’s Distribution)
2. Poisson’s Distribution
3. Normal Distribution.

3.50 BINOMIAL PROBABILITY DISTRIBUTION [G.B.T.U. 2010, 2013]

It was discovered by a Swiss Mathematician Jacob James Bernoulli in the year 1700.
This distribution is concerned with trials of a repretitive nature in which only the occur-

rence or non-occurrence, success or failure, acceptance or rejection, yes or no of a particular
event is of interest.

For convenience, we shall call the occurrence of the event ‘a success’ and its non-occur-
rence ‘a failure’.

Let there be n independent trials in an experiment. Let a random variable X denote the
number of successes in these n trials. Let p be the probability of a success and q that of a
failure in a single trial so that p + q = 1. Let the trials be independent and p be constant for
every trial.

Let us find the probability of r successes in n trials.

r successes can be obtained in n trials in nCr ways.

∴ P(X = r) = n
r

r

C P(S S S ...... S
times

� 	�� 
��  F F F ...... F
times( – )n r

� 	�� 
��

= n
r

r

C P(S) P S) ...... P S)
factors

( (� 	��� 
���  P(F) P F) ...... P F)
factors

( (
( – )n r

� 	��� 
���

= n
r

r

p p p pC ......
factors

� 	�� 
�� q q q q
n r

......
factors( – )

� 	�� 
��

= nCrp
rqn–r ...(1)

Hence P(X = r) = nCr p
r qn–r where p + q = 1 and r = 0, 1, 2, ..., n.

The distribution (1) is called the binomial probability distribution and X is called the
binomial variate.
Note 1. P(X = r) is usually written as P(r).

Note 2. The successive probabilities P(r) in (1) for r = 0, 1, 2, ......, n are
nC0q

n, nC1q
n–1 p, nC2qn–2p2, ......, nCnpn

which are the successive terms of the binomial expansion of (q + p)n. That is why this distribution is
called “binomial” distribution.
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Note 3. n and p occurring in the binomial distribution are called the parameters of the distribution.
Note 4. In a binomial distribution:

(i) n, the number of trials is finite.

(ii) each trial has only two possible outcomes usually called success and failure.

(iii) all the trials are independent.

(iv) p (and hence q) is constant for all the trials.

3.51 RECURRENCE OR RECURSION FORMULA FOR THE BINOMIAL DISTRIBUTION

In a binomial distribution,

P(r) = nCr q
n–r pr = 

n
n r r

!
( ) ! !−  qn–r pr

 P(r + 1) = nCr+1 q
n–r–1 pr+1 = 

n
n r r

!
( ) ! ( ) !− − +1 1

 qn–r–1 pr+1

∴  
P

P
( )

( )
( ) !

( ) !
!

( ) !
r

r
n r

n r
r

r
p
q

+ = −
− −

×
+

×1
1 1

= 
( ) ( ) !

( ) !
!

( ) !
n r n r

n r
r

r r
p
q

− × − −
− −

×
+ ×

×
1

1 1  × = 
n r
r

p
q

−
+
F
HG
I
KJ1 .

⇒  P(r + 1) = 
n r
r

p
q

−
+ 1

.  P(r)

which is the required recurrence formula. Applying this formula successively, we can find
P(1), P(2), P(3), ......, if P(0) is known.

3.52 MEAN AND VARIANCE OF THE BINOMIAL DISTRIBUTION
[U.P.T.U. 2008, G.B.T.U. 2012]

For the binomial distribution, P(r) = nCr q
n–r pr

Mean μ = r r r
r

n

r

n

P( ) =
==
∑∑

00
 . nCrq

n–r pr

= 0 + 1 . nC1 q
n–1 p + 2 . nC2 q

n–2 p2 + 3 . nC3 q
n–3 p3 + ...... + n . nCn pn

= nqn–1 p + 2 . 
n n( )

.
− 1

2 1
 qn–2p2 + 3 . 

n n n( )( )
. .

− −1 2
3 2 1

 qn–3 p3 + ...... + n.pn

= nqn–1p + n(n – 1) qn–2p2 + 
n n n( )( )

.
− −1 2
2 1

 qn–3p3 + ...... + npn

= np[n–1C0q
n–1 + n–1C1q

n–2p + n–1C2q
n–3p2 + ... + n–1Cn–1 p

n–1]
= np(q + p)n–1 = np (∵ p + q = 1)

Hence the mean of the binomial distribution in np.

Variance σ2 = r r
r

n

r

n
2 2

00

P( ) − =
==
∑∑ μ [r + r(r – 1)] P(r) – μ2

 = r r
r

n

r

n

P( ) +
==
∑∑

00

r(r – 1) P(r) – μ2 = μ + 
r

n

=
∑

2

r(r – 1) nCrq
n–rpr

 – μ2

(since the contribution due to r = 0 and r = 1 is zero)
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= μ + [2 .1 . nC2q
n–2p2 + 3.2 . nC3q

n–3p3 + ... + n(n – 1) nCnpn] – μ2

= μ + 2 1
1

2 1
3 2

1 2
3 2 1

12 2 3 3. .
( )

.
. .

( )( )
. .

... ( )
n n

q p
n n n

q p n n pn n n− + − − + + −
L
NM

O
QP

− −  – μ2

= μ + [n(n – 1)qn–2p2 + n(n – 1)(n – 2)qn–3p3 + ... + n(n – 1)pn] – μ2

= μ + n(n – 1) p2[qn–2 + (n – 2)qn–3p + ... + pn–2] – μ2

= μ + n (n – 1)p2 [n–2C0q
n–2 + n–2C1q

n–3p + ... + n–2Cn–2p
n–2] – μ2

= μ + n(n – 1)p2(q + p)n–2 – μ2 = μ + n(n – 1)p2 – μ2 [∵ q + p = 1]
= np + n(n – 1)p2 – n2p2 = np[1 – p] = npq. [∵ μ = np]

Hence the variance of the binomial distribution is npq.

Standard deviation of the binomial distribution is npq .

3.53 MOMENT GENERATING FUNCTION OF BINOMIAL DISTRIBUTION

1. About origin

Mx(t) = E(etx) = e p qtx

x

n
n

x
x n x

=

−∑
0

C  = n
x

x

n
t x n x t npe q q peC

=

−∑ = +
0

( ) ( )

2. About mean [G.B.T.U. 2012, U.P.T.U. 2008, 2015]
 Mx–np (t) = E[et(x – np)]

= e–npt E(etx) = e–npt Mx(t) = e–npt (q + pet)n

= (qe–pt + pet–pt)n = (qe–pt + peqt)n |∵ 1 – p = q

3.54 MOMENTS ABOUT MEAN OF BINOMIAL DISTRIBUTION

Mx–np(t) = (qe–pt + peqt)n

= q pt
p t p t

p qt
q t q t

n

1
2 3

1
2 3

2 2 3 3 2 2 3 3
− + − +
F
HG

I
KJ + + + + +
F
HG

I
KJ

L
N
MM

O
Q
PP! !

...
! !

...

= ( )
!

( )
!

( )
!

( ) ...q p
t

pq q p
t

pq q p
t

pq q p
n

+ + + + − + + +
L
N
MM

O
Q
PP

2 3
2 2

4
3 3

2 3 4

= 1
2 3 4

1 3
2 3 4

+ + − + − +
RS|
T|

UV|
W|

L
N
MM

O
Q
PP

t
pq

t
pq q p

t
qp pq

n

!
.

!
( )

!
( ) ...

= 1
2 3 4

1 3
2 3 4

+ + − + − +
RS|
T|

UV|
W|

L
N
MM

n t
pq

t
pq q p

t
pq pqC1 !

.
!

( )
!

( ) ...

+ nC2 
t

pq
t

pq q p
2 3 2

2 3!
.

!
( ) ... ...+ − +

RS|
T|

UV|
W|

+
O

Q
PPP

Now,

 μ2 = coefficient of t2

2 !
 = npq
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    μ3 = coefficient of t
3

3 !
 = npq (q – p)

    μ4 = coefficient of t4

4 !
 = npq (1 – 3 pq) + 3n(n – 1) p2q2

= 3n2p2q2 + npq (1 – 6pq)
Hence,

   β1 = 
μ
μ

3
2

2
3

 = 
( ) ( )q p

npq
p

npq
−

=
−2 21 2

∴     γ1 = 1 2− p

npq

and    β2 = 
μ
μ

4

2
2 3

1 6
= +

− pq
npq

∴    γ2 = 
1 6− pq

npq

Note 1. γ1 = 1 2− p

npq
 gives a measure of skewness of the binomial distribution. If p < 1

2 , skewness is

positive, if p > 1
2 , skewness is negative and if p = 1

2 , it is zero.

β2 = 3 + 
1 6− pq

npq
 gives a measure of the kurtosis of the binomial distribution.

Note 2. If n independent trials constitute one experiment and this experiment is repeated N times then
the frequency of r successes is N . nCr p

r qn–r.

3.55 APPLICATIONS OF BINOMIAL DISTRIBUTION

1. In problems concerning no. of defectives in a sample production line.
2. In estimation of reliability of systems.
3. No. of rounds fired from a gun hitting a target.
4. In Radar detection.

EXAMPLES

Example 1. (i) Comment on the following statement:
For a Binomial distribution, mean is 6 and variance is 9.
(ii) A die is tossed thrice. A success is getting 1 or 6 on a toss. Find the mean and variance

of the number of success.
Sol. (i)  μ = np = 6 ...(1)

 σ2 = npq = 9 ...(2)
Dividing (2) by (1), we get

 q = 
9
6

 = 1.5

which is impossible as 0 ≤ q ≤1
∴ The above statement is False.
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(ii) Prob. of getting success (1 or 6) on a toss = 
2
6

1
3

=  = p

∴  q = 1 – 
1
3

2
3

=

No. of tosses of a die,  n = 3

(i) Mean = np = 3
1
3
F
HG
I
KJ  = 1. (ii) Variance = npq = (3) 1

3
2
3

2
3

F
HG
I
KJ
F
HG
I
KJ = .

Example 2. If 10% of the bolts produced by a machine are defective, determine the
probability that out of 10 bolts choosen at random

(i) 1 (ii) None (iii) at most 2 bolts will be defective.

Sol. Here,   p(defective) = 
10
100

1
10

= (given)

∴ q(non-defective) = 1 – 
1
10

9
10

=

Also,   n = 10, (n is no. of bolts chosen). (given)
The probability of r defective bolts out of n bolts chosen at random is given by

P(r) = nCr p
r qn–r ...(1)

(i) Here r = 1,

∴ P(1) = 10C1 
1
10

9
10

1 10 1F
HG
I
KJ
F
HG
I
KJ

−
| Using (1)

= 10 1
10

9
10

9F
HG
I
KJ
F
HG
I
KJ  = (.9)9 = 0.3874 ...(2)

(ii) Here r = 0

∴ P(0) = 10C0 
1
10

9
10

0 10 0F
HG
I
KJ
F
HG
I
KJ

−
 = 9

10

10F
HG
I
KJ  = 0.3486 ...(3) | Using (1)

(iii) Prob. that at most 2 bolts will be defective = P(r ≤ 2) = P(0) + P(1) + P(2) ...(4)

Now, P(2) = 10C2 
1
10

9
10

2 10 2F
HG
I
KJ
F
HG
I
KJ

−
| Using (1)

= 45 
1

100
F
HG
I
KJ  (0.43046) = 0.1937

∴ From (4), Required Probability = P(0) + P(1) + P(2)
  = 0.3486 + 0.3874 + 0.1937 = 0.9297.

Example 3. A binomial variable X satisfies the relation 9P (X = 4) = P(X = 2) when n = 6.
Find the value of the parameter p and P(X = 1).

Sol. We know that
 P(X = r) = nCr p

r qn–r ...(1)

∴   P(X = 4) = 6C4 p
4 q2 = 15p4q2

and   P(X = 2) = 6C2p
2 q4 = 15 p2 q4 | Since n = 6

The given relation is

   9 P(X = 4) = P(X = 2) ⇒  9(15p4 q2) = 15p2q4
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⇒  9p2 = q2 = (1 – p)2 |∵ p + q = 1

⇒  9p2 = 1 + p2 – 2p

⇒   8p2 + 2p – 1 = 0  ⇒ (4p – 1) (2p + 1) = 0

∴  p = 1
4

| ∵ p cannot be negative

Now,     P(X = 1) = 6C1 
1
4

3
4

1 5F
HG
I
KJ
F
HG
I
KJ  = .3559. ∵ q p= − =1

3
4

Example 4. Fit a binomial distribution to the following frequency data:
x : 0 1 2 3 4
f : 30 62 46 10 2

Sol. The table is as follows:

x f fx

0 30 0
1 62 62
2 46 92
3 10 30
4 2 8

Σf = 150 Σfx = 192

Mean of observations = 
Σ
Σ

fx
f

= 192
150

 = 1.28

⇒     np = 1.28
⇒  4p = 1.28 (n is no. of trials)
⇒  p = 0.32
∴  q = 1 – p = 1 – 0.32 = 0.68
Also, N = 150 | ∵ N = Σf
Hence the binomial distribution is = N(q + p)n = 150 (0.68 + 0.32)4.
Example 5. A student is given a true-false examination with 8 questions. If he corrects at

least 7 questions, he passes the examination. Find the probability that he will pass given that he
guesses all questions.

Sol. Here, n = no. of questions asked = 8

 p = 
1
2

1
2

, q = | Since the question can either be true or false

Probability that he will pass
= P(r ≥ 7) = P(7) + P(8)

= 8C7 
1
2

1
2

1
2

1
2

8
1
2

1
2

1
1
2

7 8 7
8

8 8 8 7 1 8F
HG
I
KJ
F
HG
I
KJ + F

HG
I
KJ
F
HG
I
KJ = FHG

I
KJ
F
HG
I
KJ + FHG

I
KJ

− −
C8 .

= 
1
2

8 1
9

256

8F
HG
I
KJ + =( )  = .03516.
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Example 6. During war, 1 ship out of 9 was sunk on an average in making a certain
voyage. What was the probability that exactly 3 out of a convoy of 6 ships would arrive safely?

Sol. p, the probability of a ship arriving safely = 1 – 
1
9

8
9

=  ; q = 
1
9

, n = 6

The probability that exactly 3 ships arrive safely = P(r = 3) = 6C3 
1
9

8
9

10240
9

3 3

6
F
HG
I
KJ
F
HG
I
KJ = .

Example 7. A policeman fires 6 bullets on a dacoit. The probability that the dacoit will be
killed by a bullet is 0.6. What is the probability that dacoit is still alive?

Sol. Here n = no. of bullets fired = 6, p = 0.6, q = 1 – p = 0.4
Probability that dacoit is still alive (not killed)

= P(r = 0) = nC0 p
0 qn–0 = 6C0 (.6)0 (.4)6 = (.4)6 = .004096.

Example 8. If the probability of hitting a target is 10% and 10 shots are fired indepen-
dently. What is the probability that the target will be hit at least once?

Sol. Here, p = 
10
100

1
10

= , q = 1 – p = 1 – 
1
10

9
10

= , n = 10

Probability that the target will be hit at least once
= P(r ≥ 1) = 1 – P(r = 0)

= 1 – [nC0 p
0 qn] = 1 – 10

0 101
10

9
10

C0
F
HG
I
KJ
F
HG
I
KJ

L
N
MM

O
Q
PP  = 0.6513.

Example 9. Out of 800 families with 4 children each, how many families would be expected
to have (i) 2 boys and 2 girls (ii) at least one boy (iii) no girl (iv) atmost two girls? Assume equal
probabilities for boys and girls. (U.P.T.U. 2014)

Sol. Since probabilities for boys and girls are equal,

p = probability of having a boy = 
1
2

; q = probability of having a girl = 
1
2

n = 4 N = 800
(i) The expected number of families having 2 boys and 2 girls

= 800 4C2 
1
2

2F
HG
I
KJ  

1
2

2F
HG
I
KJ  = 800 × 6 × 1

16
 = 300.

(ii) The expected number of families having at least one boy

= 800 4
3

4
2 2

4
3

4
41

2
1
2

1
2

1
2

1
2

1
2

1
2

C C C C1 2 3 4
F
HG
I
KJ
F
HG
I
KJ + F

HG
I
KJ
F
HG
I
KJ + F

HG
I
KJ
F
HG
I
KJ + F

HG
I
KJ

L
N
MM

O
Q
PP

= 800 × 
1

16
 [4 + 6 + 4 + 1] = 750

(iii) The expected number of families having no girl i.e., having 4 boys

= 800 . 4C4 
1
2

4F
HG
I
KJ  = 50.

(iv) The expected number of families having atmost two girls i.e., having at least 2 boy

= 800 4
2 2

4
3

4
41

2
1
2

1
2

1
2

1
2

C C C2 3 4
F
HG
I
KJ
F
HG
I
KJ + F

HG
I
KJ
F
HG
I
KJ + F

HG
I
KJ

L
N
MM

O
Q
PP  = 800 × 

1
16

 [6 + 4 + 1] = 550.
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Example 10. Six dice are thrown 729 times. How many times do you expect at least
three dice to show a five or six?

Sol. p = the chance of getting 5 or 6 with one die = 
2
6

1
3

=

 q = 1 – 
1
3

2
3

= , n = 6, N = 729

since dice are in sets of 6 and there are 729 sets.
The expected number of times at least three dice showing five or six

= N . P(r ≥ 3)
= 729 [P(3) + P(4) + P(5) + P(6)]

= 729 6
3 3

6
2 4

6
5

6
62

3
1
3

2
3

1
3

2
3

1
3

1
3

C C C C3 4 5 6
F
HG
I
KJ
F
HG
I
KJ + F

HG
I
KJ
F
HG
I
KJ + F

HG
I
KJ
F
HG
I
KJ + F

HG
I
KJ

L
N
MM

O
Q
PP

= 729

36
 [160 + 60 + 12 + 1] = 233.

Example 11. The probability of a man hitting a target is 
1
3

. How many times must he

fire so that the probability of his hitting the target at least once is more than 90%?

Sol.  p = 1
3

The probability of not hitting the target in n trials is qn.
Therefore, to find the smallest n for which the probability of hitting at least once is more

than 90%, we have
 1 – qn > 0.9

⇒    1 – 
2
3
F
HG
I
KJ

n
 > 0.9

⇒ 2
3
F
HG
I
KJ

n
 < 0.1

The smallest n for which the above inequality holds true is 6 hence he must fire 6 times.
Example 12. In a bombing action, there is 50% chance that any bomb will strike the

target. Two direct hits are needed to destroy the target completely. How many bombs are re-
quired to be dropped to give a 99% chance or better of completely destroying the target?

Sol. We have, p = 
50

100
1
2

=

Since the probability must be greater than 0.99, if n bombs are dropped, we have

 nC2 
1
2
F
HG
I
KJ

n
 + nC3 

1
2
F
HG
I
KJ

n
 + nC4 

1
2
F
HG
I
KJ

n
 + ...... + nCn 1

2
F
HG
I
KJ

n
 ≥ 0.99

⇒ 1
2
F
HG
I
KJ

n
 [nC2 + nC3 + nC4 + ...... + nCn] ≥ 0.99

2 1

2

n

n
n− −

 ≥ 0.99
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⇒ 1
1

2
0 99−

+
≥

n
n .

⇒
1

2
0 01

+
≤

n
n .

⇒ 2n ≥ 100n + 100
By trial, n = 11 satisfies the inequality.
Hence 11 bombs are required to be dropped.

ASSIGNMENT

1. (i) Ten coins are tossed simultaneously. Find the probability of getting at least seven heads.
(ii) A die is thrown five times. If getting an odd number is a success, find the probability of getting

at least four successes. (M.T.U. 2012)
2. (a) The probability of any ship of a company being destroyed on a certain voyage is 0.02. The

company owns 6 ships for the voyage. What is the probability of :
(i) losing one ship (ii) losing atmost two ships (iii) losing none?

(b) Assume that on the average one telephone number out of fifteen called between 2 P.M. and
3 P.M. on week-days is busy. What is the probability that if 6 randomly selected telephone
numbers are called (i) not more than 3 (ii) at least 3 of them will be busy?

3. (i) The incidence of occupational disease in an industry is such that the workers have a 20%
chance of suffering from it. What is the probability that out of six workers chosen at random,
four or more will suffer from the disease?

(ii) The probability that a man aged 60 will live to be 70 is 0.65. What is the probability that out
of 10 men, now 60, at least 7 will live to be 70?

4. (i) If the mean of a binomial distribution is 3 and the variance is 3
2 , find the probability of

obtaining at least 4 successes.
(ii) In a binomial distribution, for n = 5 if P(x = 1) = 0.4096 and P(x = 2) = 0.2048, then find the

value of p.

(iii) The sum and product of the mean and variance of a binomial distribution are 
25
3

50
3

and

respectively. Find the distribution. (U.P.T.U. 2007)
(iv) If the probability of a defective bolt is 0.1, find (a) The mean (b) The standard deviation for the

distribution in a total of 400 bolts.

(v) If the moment generating function of a random variable X is 1
3

2
3

5
+FHG
I
KJet , find P(X = 2).

5. (a) The probability that a bomb dropped from a plane will strike the target is 
1
5

. If six bombs are

dropped, find the probability that (i) exactly two will strike the target, (ii) at least two will strike
the target.

(b) Four persons in a group of 20 are graduates. If 4 persons are selected at random from 20, find
the probability that
(i) all are graduates (ii) at least one is a graduate.

6. A bag contains 5 white, 7 red and 8 black balls. If four balls are drawn, one by one, with replace-
ment, what is the probability that
(i) none is white (ii) all are white

(iii) at least one is white (iv)  only 2 are white?
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7. (i) In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle
is 5

6 . What is the probability that he will knock down fewer than 2 hurdles ?

(ii) If on an average one ship in every ten is wrecked, find the probability that out of 5 ships
expected to arrive, 4 at least will arrive safely.

8. The prob. that a bulb produced by a factory will fuse after a use of 150 days is 0.05. Find the prob.
that out of 5 such bulbs [M.T.U. (B. Pharma) 2011]
(i) None (ii) Atmost one

(iii) More than one (iv)  At least one will fuse after 150 days of use.
9. Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. What

is the probability that

(i) all the five cards are spades (ii) only three are spades (iii) none is spade?

10. Manish takes a step forward with probability 0.4 and backward with probability 0.6. Find the
probability that at the end of 11 steps, he is one step away from the starting point.

[Hint. Manish will take either 6 steps forward and 5 backward or 5 steps forward and 6 backward].

11. (a) In 800 families with 5 children each, how many families would be expected to have (i) 3 boys
and 2 girls, (ii) 2 boys and 3 girls, (iii) no girl (iv) at the most two girls. (Assume probabilities
for boys and girls to be equal.)

(b) Out of 800 families with 5 children each, how many would you expect to have (i) 3 boys
(ii) 5 girls (iii) either 2 or 3 boys? Assume equal probabilities for boys and girls.

(M.T.U. 2012)

(c) Out of 320 families with 5 children each, what percentage would be expected to have (i) 2 boys
and 3 girls (ii) at least one boy? Assume equal probability for boys and girls.

(G.B.T.U. 2011)

12. In 100 sets of ten tosses of an unbiased coin, in how many cases do you expect to get

(i) 7 heads and 3 tails (ii) at least 7 heads?

13. The following data are the number of seeds germinating out of 10 on damp filter for 80 sets of
seeds. Fit a binomial distribution to this data:

x : 0 1 2 3 4 5 6 7 8 9 10 Total

f : 6 20 28 12 8 6 0 0 0 0 0 80

[Hint. Here n = 10, N = 80, Mean = 
Σ
Σ
fx
f

 = 2.175 ∴ np = 2.175 etc.]

14. Fit a binomial distribution for the following data and compare the theoretical frequencies with
the actual ones :

x : 0 1 2 3 4 5

f : 2 14 20 34 22 8

15. Fit a binomial distribution to the data given in the following table:

(i) x : 0 1 2 3 4

f : 24 41 28 5 2 (M.T.U. 2012)

(ii) x : 0 1 3 4

f : 28 62 10 4 (U.K.T.U. 2011)

16. (i) Assuming half the population of a town consumes chocolates so that the chance of an individual

being consumer is 
1
2

 and that 100 investigators each take 10 individuals to see whether they

are consumers, how many investigators would you expect to report that 3 people or less were
consumers? (U.P.T.U. 2006)
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(ii) Assuming that 20% of the population of a city are literate, so that the chance of an individual

being literate is 1
5

 and assuming that 100 investigators each take 10 individuals to see

whether they are literate, how many investigators would you expect to report 3 or less were
literate?

17. Following results were obtained when 100 batches of seeds were allowed to germinate on damp

filter paper in a laboratory : β1 = 
1
15

89
302, β = . Determine the Binomial distribution. Calculate the

expected frequency for x = 8 assuming p > q.
18. A coffee connoisseur claims that he can distinguish between a cup of instant coffee and a cup of

percolator coffee 75% of the time. It is agreed that his claim will be accepted if he correctly
identifies at least 5 of the 6 cups. Find his chances of having the claim (i) accepted (ii) rejected
when he does have the ability he claims.

19. A multiple-choice test consists of 8 questions with 3 answers to each question of which only one is
correct. A student answers each question by rolling a balanced die and checking the first answer
if he gets 1 or 2, the second answer if he gets 3 or 4 and the third answer if he gets 5 or 6. To get a
distinction, the student must secure at least 75% correct answers. If there is no negative marking,
what is the probability that the student secures a distinction?

20. An irregular six-faced die is thrown and the expectation that in 10 throws, it will give five even
numbers is twice the expectation that it will give four even numbers. How many times in 10,000
sets of 10 throws each, would you expect it to give no even number?

Answers

1. (i) 
11
64

(ii)
3

16
2. (a) (i) 0.1085, (ii) 0.9997, (iii) 0.8858 (b) (i) 0.9997 (ii) 0.005

3. (i) 
53

3125
(ii) 0.5137

4. (i) 
11
32

, (ii)
1
5

, (iii)
2
3

1
3

15
+FHG
I
KJ

(iv) (a) 40 (b) 6 (v) 0.1646
5. (a) (i) 0.246 (ii) 0.345 (b)  (i) 0.0016 (ii) 0.5904

6. (i) 
81

256
, (ii) 

1
256

, (iii) 
175
256

, (iv) 
27
128

7. (i) 
5
2

5
6

9F
HG
I
KJ , (ii) 0.91854

8. (i) 19
20

5F
HG
I
KJ (ii) 6

5
19
20

4F
HG
I
KJ (iii) 1 – 6

5
19
20

4F
HG
I
KJ (iv) 1 – 19

20

5F
HG
I
KJ

9. (i) 1
4

5F
HG
I
KJ (ii) 90 1

4

5F
HG
I
KJ (iii) 3

4

5F
HG
I
KJ 10. 0.36787

11. (a) (i) 250 (ii) 250 (iii) 25 (iv) 400
(b) (i) 250 (ii) 25 (iii) 500
(c) (i) 31.25% (ii) 96.875%

12. (i) 12 nearly (ii) 17 nearly 13. 80 (0.7825 + 0.2175)10

14. 100 (0.432 + 0.568)5 15. (i) 100 (0.7 + 0.3)4, (ii) 104 (0.7404 + 0.2596)4
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16. (i) 17 (ii) 88 17. 100 1
4

3
4

20

+FHG
I
KJ , 0.075168752

18. (i) 0.534 (ii) 0.466
19. 0.0197 20. 1.

POISSON DISTRIBUTION

3.56 POISSON DISTRIBUTION AS A LIMITING CASE OF BINOMIAL DISTRIBUTION
[U.P.T.U. 2007 ; G.B.T.U. 2010, 2013 ; M.T.U. 2013, 2014]

Poisson distribution was discovered by S.D. Poisson in the year 1837.
If the parameters n and p of a binomial distribution are known, we can find the distribution.

But in situations where n is very large and p is very small, application of binomial distribution
is very labourious. However, if we assume that as n → ∞ and p → 0 such that np always remains
finite, say λ, we get the Poisson approximation to the binomial distribution.

Now, for a binomial distribution
 P(X = r) = nCrq

n–rpr

= 
n n n n r

r
( )( ) ... ( )

!
− − − +1 2 1

 × (1 – p)n–r × pr

= 
n n n n r

r n n

n r r( )( ) ... ( )
!

− − − + × −FHG
I
KJ × FHG

I
KJ

−1 2 1
1

λ λ | Since np = λ ∴ p = 
λ
n

= 
λ

λ

λ

r

r

n

rr
n n n n r

n
n

n

!
( )( ) ... ( )× − − − + ×

−FHG
I
KJ

−FHG
I
KJ

1 2 1
1

1

= 
λ

λ

λ

r

n

rr
n
n

n
n

n
n

n r
n

n

n

!
......F

HG
I
KJ

−F
HG
I
KJ

−F
HG
I
KJ

− +F
HG

I
KJ ×

−FHG
I
KJ

−FHG
I
KJ

1 2 1
1

1

= 
λ

λ

λ

λ

λ

r

n

rr n n
r

n

n

n

!
......1

1
1

2
1

1
1

1

−FHG
I
KJ −FHG

I
KJ − −F
HG

I
KJ ×

−FHG
I
KJ

L

N
MMM

O

Q
PPP

−FHG
I
KJ

−
−

As n → ∞, each of the (r – 1) factors

1
1

1
2

1
1−FHG

I
KJ −FHG

I
KJ − −F

HG
I
KJn n

r
n

, , ......, tends to 1. Also 1 −FHG
I
KJ

λ
n

r

 tends to 1.

Since Lt
x

x

x→ ± ∞
+FHG
I
KJ1

1
 = e, the Naperian base. ∴ 1 −FHG

I
KJ

L

N
MMM

O

Q
PPP

−
−

λ λ

λ

n

n

 ⎯→ e–λ as n → ∞
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Hence in the limiting case when n → ∞, we have

 P(X = r) = e
r

r−λ λ.
!

 (r = 0, 1, 2, 3, ...) ...(1)

where λ is a finite number = np.
(1)  represents a probability distribution which is called the Poisson probability distribution.

Note 1. λ is called the parameter of the distribution.
Note 2. The sum of the probabilities P(r) for r = 0, 1, 2, 3, ...... is 1, since

P(0) + P(1) + P(2) + P(3) + ...... =  e–λ + 
λ λ λλ λ λe e e− − −

+ +
1 2 3

2 3

! ! !
 + ......

= e–λ 1
1 2 3

2 3
+ + + +
F
HG

I
KJ

λ λ λ
! ! !

......  = e–λ . eλ = 1.

3.57 RECURRENCE FORMULA FOR THE POISSON DISTRIBUTION
[U.P.T.U. (B. Pharma.) 2009]

For Poisson distribution, P(r) = 
e

r

r−λ λ
!

and P(r + 1) = 
e

r

r− +

+

λ λ 1

1( ) !

∴
P

P
( )

( )
!

( ) !
r

r
r

r r
+ =

+
=

+
1

1 1
λ λ

or P(r + 1) = 
λ

r + 1
 P(r), r = 0, 1, 2, 3, ......

This is called the recurrence or recursion formula for the Poisson distribution.

3.58 MEAN AND VARIANCE OF THE POISSON DISTRIBUTION [U.P.T.U. 2006]

For the Poisson distribution, P(r) = 
e

r

r−λ λ
!

 Mean μ = r r r
e

r
r

r

r

P( ) .
!

=

∞ −

=

∞

∑ ∑=
0 0

λ λ

 = e–λ λ λ λ λλ
r

r
r

e
( ) ! ! !

......
−

= + + +
F
HG

I
KJ

−

=

∞

∑ 1 1 2

2 3

1

 = λe–λ 1
1 2

2

+ + +
F
HG

I
KJ

λ λ
! !

......  = λe–λ . eλ = λ

Thus, the mean of the Poisson distribution is equal to the parameter λλλλλ.

  Variance σ2 = r r r
e
r

e
r

r

r r

rrr

2 2 2 2
2

100

P( ) – .
! !

μ
λ

λ
λλ

λ= − =
−

−

=

∞

=

∞

=

∞

∑∑∑  – λ2

= e–λ 1
1

2
2

3
3

4
4

2 2 2 2 3 2 4.
!

.
!

.
!

.
!

......
λ λ λ λ

+ + + +
L
NMM

O
QPP

 – λ2
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= λe–λ 1
2
1

3
2

4
3

2 2 3

+ + + +
L
NMM

O
QPP

λ λ λ
! ! !

......  – λ2

= λe–λ 1
1 1

1
1 2

2
1 3

3

2 3

+ + + + + + +
L
NM

O
QP

( )
!

( )
!

( )
!

......
λ λ λ

 – λ2

= λe–λ 1
1 2 3 1

2
2

3
3

2 3 2 3

+ + + +
F
HG

I
KJ + + + +
F
HG

I
KJ

L
N
MM

O
Q
PP

λ λ λ λ λ λ
! ! !

......
! ! !

......  – λ2

= λe–λ eλ λ λ λ+ + + +
F
HG

I
KJ

L
N
MM

O
Q
PP1

1 2

2

! !
......  – λ2

= λe–λ [eλ + λeλ] – λ2 = λe–λ . eλ (1 + λ) – λ2 = λ(1 + λ) – λ2 = λ.
Hence, the variance of the Poisson distribution is also λλλλλ.
Thus, the mean and the variance of the Poisson distribution are each equal to

the parameter λλλλλ.
Note 1. The mean and the variance of the Poisson distribution can also be derived from those of the
binomial distribution in the limiting case when n → ∞, p → 0 and np = λ.

Mean of Binomial distribution is np.

∴ Mean of Poisson distribution = Lt Lt
n n

np
→ ∞ → ∞

= λ = λ

Variance of Binomial distribution is npq = np (1 – p)

∴ Variance of Poisson distribution = Lt
n → ∞

np (1 – p) = Lt
n n→ ∞

−FHG
I
KJλ λ

1  = λ.

Note 2. For Poisson distribution, μ3 = λ and μ4 = 3λ2 + λ.
Coefficients of skewness and kurtosis are given by

 β1 = 
1
λ

 and γ1 = 1
λ

 . Also, β2 = 3 + 
1
λ

 and γ2 = 
1
λ

Hence Poisson distribution is always a skewed distribution.
Remark. While fitting the Poisson distribution to a given data, we round the figures to the nearest
integer but it should be kept in mind that the total of the observed and the expected frequencies should
be same.

3.59 MODE OF POISSON DISTRIBUTION

Let    P(x = r) = e–λ 
λr

r !
, r = 0, 1, 2, ......, ∞

The value of r which has a greater probability than any other value is the mode of the
Poisson distribution. Thus r is mode if

  P(X = r) ≥ P(X = r + 1) and P(X = r) ≥ P(X = r – 1)

⇒ e
r

e
r

r r− − +
≥

+

λ λλ λ.
!

.
( ) !

1

1
and

e
r

e
r

r r− − −
≥

−

λ λλ λ.
!

.
( ) !

1

1

⇒  1 ≥ 
λ

r + 1
and

λ
r

 ≥ 1

⇒    r ≥ λ – 1 and r ≤ λ i.e., λ – 1 ≤ r ≤ λ
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Case I. If λ is a positive integer, there are two modes λ – 1 and λ.
Case II. If λ is not a positive integer, there is one mode and is the integral value be-

tween λ – 1 and λ.

3.60 APPLICATIONS OF POISSON DISTRIBUTION

This distribution is applied to problems concerning :
(i) Arrival pattern of defective vehicles in a workshop.

(ii) Patients in a hospitals.
(iii) Telephone calls.
(iv) Demand pattern for certain spare parts.
(v) Number of fragments from a shell hitting a target.

(vi) Emission of radioactive (α) particles.

EXAMPLES

Example 1. If  the  variance  of  the  Poisson  distribution is 2, find the probabilities for
r = 1, 2, 3, 4 from the recurrence relation of the Poisson distribution. Also find P(r ≥ 4).

(M.T.U. 2013)
Sol. λ, the parameter of Poisson distribution = Variance = 2
Recurrence relation for the Poisson distribution is

 P(r + 1) = 
λ

r + 1
 P(r) = 

2
1r +  P(r) ...(1)

Now P(r) = e
r

r−λ λ
!

⇒ P(0) = e−2 02
0
( )
!

 = e–2 = 0.1353

Putting r = 0, 1, 2, 3 in (1), we get

  P(1) = 2P(0) = 2 × 0.1353 = 0.2706 ; P(2) = 
2
2

 P(1) = 0.2706

  P(3) = 
2
3

 P(2) = 
2
3

 × 0.2706 = 0.1804 ; P(4) = 
2
4

 P(3) = 
1
2

 × 0.1804 = 0.0902.

Now, P(r ≥ 4) = 1 – [P(0) + P(1) + P(2) + P(3)]
 = 1 – [0.1353 + 0.2706 + 0.2706 + 0.1804] = 0.1431.

Example 2. Using Poisson distribution, find the probability that the ace of spades will be
drawn from a pack of well-shuffled cards at least once in 104 consecutive trials. (U.P.T.U. 2015)

Sol.  p = 
1
52

, n = 104

∴  λ = np = 104 × 
1
52

 = 2

 Prob. (at least once) = P(r ≥ 1) = 1 – P(0)

= 1 – 
e−λ λ.

!

0

0
 = 1 – e–2 = 1 – 0.135335 ≈ 0.8647.
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Example 3. (i) Fit a Poisson distribution to the following data and calculate theoretical
frequencies.

Deaths: 0 1 2 3 4
Frequencies: 122 260 15 2 1

[U.P.T.U. 2014 ; U.K.T.U. 2010]
(ii) The frequency of accidents per shift in a factory is shown in the following table:

Accident per shift Frequency

0 192
1 100
2 24
3 3
4 1

Total 320

Calculate the mean number of accidents per shift. Fit a Poisson distribution and calcu-
late theoretical frequencies.

Sol. (i) Mean of given distribution = 
Σ
Σ

fx
f

⇒  λ = 
60 30 6 4

200
+ + +

 = 0.5

Required Poisson distribution = N . e
r

e
r r

r r r− −
= =

λ λ.
!

.
(. )
!

( . )
( . )

!

.
200

5
121 306

0 55

r N. P(r) Theoretical frequency

0 121.306 × 
( . )

!
0 5
0

0
 = 121.306 121

1 121.306 × ( . )
!

0 5
1

1
 = 60.653 61

2 121.306 × 
( . )

!
0 5
2

2
 = 15.163 15

3 121.306 × 
( . )

!
0 5
3

3
 = 2.527 3

4 121.306 × 
( . )

!
0 5
4

4
 = 0.3159 0

Total = 200

(ii) Mean number of accidents per shift

 λ = Σ
Σ

fx
f

= + + +100 48 9 4
320

 = 0.5031
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∴ Required Poisson distribution

= N . 
e

r
e

r r

r r r− −
= =

λ λ.
!

.
(. )
!

( . )(. )
!

.
320

5031 193 48 50315031

r N. P(r) Theoretical frequency

0 193.48 194
1 97.34 97
2 24.38 24
3 4.10 4
4 0.51 1

Total = 320

Example 4. (i) Suppose that a book of 600 pages contains 40 printing mistakes. Assume
that these errors are randomly distributed throughout the book and r, the number of errors per
page has a Poisson distribution. What is the probability that 10 pages selected at random will be
free from errors?

(ii) Wireless sets are manufactured with 25 solders joints each, on the average 1 joint in
500 is defective. How many sets can be expected to be free from defective joints in a consignment
of 10000 sets?

Sol. (i)  p = 40
600

1
15

= , n = 10

∴  λ = np = 10 1
15

2
3

F
HG
I
KJ =

P(r) = 
e

r
e

r

r r− −
=

λ λ
!

( / )
!

/2 3 2 3

∴ P(0) = e− 2 3 02 3
0

/ ( / )
!

 = e–2/3 = 0.51.

(ii)  p = 
1

500
, n = 25

∴  λ = np = 25 × 
1

500
1
20

=  = 0.05

No. of sets in a consignment, N= 10000

Probability of having no defective joint = P(r = 0) = 
e− . ( )

!

05 0

0
0.05

 = 0.9512.

∴ The expected no. of sets free from defective joints = 0.9512 × 10000 = 9512.
Example 5. A manufacturer knows that the condensors he makes contain on an average

1% of defectives. He packes them in boxes of 100. What is the probability that a box picked at
random will contain 4 or more faulty condensors?

Sol.  p = 0.01, n = 100
∴   λ = np = 1

 P(r) = e
r

e
r

r− −
=

λ λ
! !

1
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P(4 or more faulty condensors) = P(4) + P(5) + ... + P(100)
 = 1 – [P(0) + P(1) + P(2) + P(3)]

 = 1 – 
e e e e− − − −

+ + +
L
NMM

O
QPP

1 1 1 1

0 1 2 3! ! ! !

 = 1 – e–1 1 1
1
2

1
6

1
8
3

+ + +L
NM

O
QP = −

e
 = 1 – 0.981 = 0.019.

Example 6. (i) If the probabilities of a bad reaction from a certain injection is 0.0002,
determine the chance that out of 1000 individuals more than two will get a bad reaction.

(ii) The probability that a man aged 50 years will die within a year is 0.01125. What is the
probability that of 12 such men, at least 11 will reach their 51st birthday?

(Given: e–.135 = 0.87366)
Sol. (i) Here,  p = 0.0002, n = 1000
∴      λ = np = 1000 × 0.0002 = 0.2.
Since the prob. of bad reaction is very small and no. of trials is very high, we use Poisson

distribution here.
The prob. that out of 100 individuals, more than 2 will get a bad reaction is

= P(r > 2) = 1 – P(r ≤ 2) = 1 – [P(0) + P(1) + P(2)] ...(1)

Now, P(0) = 
e−0.2 0.2( )0

0
 = 0.8187 (Here r = 0)

P(1) = 
e−0.2 0.2( )1

1
 = 0.1637 (Here r = 1)

and P(2) = 
e−0.2 0.2( )2

2
 = 0.0164. (Here r = 2)

∴ From (1), Reqd. probability = 1 – [0.8187 + 0.1637 + 0.0164] = 0.0012.
(ii)  p = 0.01125, n = 12
∴  λ = np = 12 × 0.01125 = 0.135
P (at least 11 survive)  = P(atmost 1 dies)

= P(0) + P(1) = 
e e− −

+
λ λλ λ.

!
.
!

0 1

0 1

= e–.135 (1 + 0.135) = 1.135 × 0.87366 = 0.9916.
Example 7. A car-hire firm has two cars, which it hires out day by day. The number of

demands for a car on each day is distributed as a Poisson distribution with mean 1.5. Calculate
the proportion of days on which neither car is used and the proportion of days on which some
demand is refused (e–1.5 = 0.2231).

Sol. Since the number of demands for a car is distributed as a Poisson distribution with
mean λ = 1.5.

∴ Proportion of days on which neither car is used
= Probability of there being no demand for the car

= 
λ λ0

0
e−

!
 = e–1.5 = 0.2231
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Proportion of days on which some demand is refused
= probability for the number of demands to be more than two

= 1 – P (x ≤ 2) = 1 – e
e e−

− −
+ +

F
HG

I
KJ

λ
λ λλ λ

1 2

2

! !

= 1 – e–1.5 1 1.5
(1.5)

2

2

+ +
F
HG

I
KJ  = 0.1912625.

Example 8. Suppose the number of telephone calls on an operator received from 9 : 00 to
9 : 05 follow a Poisson distribution with a mean 3. Find the probability that

(i) The operator will receive no calls in that time interval tomorrow.
(ii) In the next three days, the operator will receive a total of 1 call in that time interval.

(Given: e–3 = 0.04978)
Sol. Here, λ = 3

(i) P(0) = e−λ λ.
!

0

0
 = e–3 = 0.04978

(ii) Reqd. probability = P(0) P(0) P(1) + P(0) P(1) P(0) + P(1) P(0) P(0)

= 3
e e− −RS|T|
UV|W|

λ λλ λ.
!

.
!

0 2 1

0 1
 = 9(e–3)3 = 0.00111.

Example 9. The no. of arrivals of customers during any day follows Poisson distribution
with a mean of 5. What is the probability that the total no. of customers on two days selected at
random is less than 2? (Given: e–10 = 4.54 × 10–5)

Sol.  λ = 5
Arrival of Customers

I day II day Total

0 0 0
0 1 1
1 0 1

Reqd. probability = P(0) P(0) + P(0) P(1) + P(1) P(0)

= e e e e e e− − − − − −
+ +

5 0 5 0 5 0 5 1 5 1 5 05
0

5
0

5
0

5
1

5
1

5
0

.
!

.
.
!

.
!

.
.
!

.
!

.
.
!

= e–10 + 2 . 5 . e–10 = 11 e–10 = 11 × 4.54 × 10–5

= 4.994 × 10–4.
Example 10. An insurance company finds that 0.005% of the population dies from a

certain kind of accident each year. What is the probability that the company must pay off no
more than 3 of 10,000 insured risks against such incident in a given year?

Sol.  p = 
0.005
100

 = 0.00005, n = 10000

∴  λ = np = 10000 × 0.00005 = 0.5
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Reqd. Probability = 1 – P(r ≤ 3) = 1 – [P(0) + P(1) + P(2) + P(3)]

= 1 – 
e e e e− − − −

+ + +
L
NMM

O
QPP

0.5 0.5 0.5 0.50.5 0.5 0.5 0.5( )
!

( )
!

( )
!

( )
!

0 1 2 3

0 1 2 3

= 1 – e–5 [1 + 0.5 + 0.125 + 0.021] = 0.0016.
Example 11. In a certain factory turning out razor blades, there is a small chance of

0.002 for any blade to be defective. The blades are supplied in packets of 10. Calculate the
approximate number of packets containing no defective, one defective and two defective blades
in a consignment of 10,000 packets. (Given: e–0.02 = 0.9802) [U.P.T.U. 2009]

Sol. p(defective) = 0.002
  n = 10 (no. of blades in a packet)

∴  λ = np = 10 × 0.002 = 0.02
No. of packets in the consignment, N = 10,000.

(i) Probability of having no defective = P(0) = 
e−0.02 0.02( )

!

0

0
 = 0.9802 | Here r = 0

Approximate no. of packets having zero defective in the consignment = 0.9802 × 10000
= 9802

(ii) Probability of having one defective = P(1) = 
e−0.02 0.02( )

!

1

1
 = 0.9802 × 0.02 = 0.019604

Approximate no. of packets having one defective in the consignment
= 0.019604 × 10000 ≈ 196.

(iii) Probability of having two defective blades

 P(2) = 
e−

=
×0.02 0.02 0.980198 0.0004( )

!
( ) ( )2

2 2
 = 0.000196.

∴ Approximate no. of packet having two defectives in the consignment
= 0.000196 × 10000 = 1.96 ≈ 2.

Example 12. (i) Six coins are tossed 6400 times. Using the Poisson distribution, deter-
mine the approximate probability of getting six heads x times. [U.P.T.U. (C.O.) 2008]

(ii) A Poisson distribution has a double mode at x = 3 and x = 4. What is the probability
that x will have one or the other of these two values? [U.P.T.U. (C.O.) 2008]

Sol. (i) Probability of getting one head with one coin = 1
2

.

∴ The probability of getting six heads with six coins = 
1
2

1
64

6F
HG
I
KJ =

∴ Average number of six heads with six coins in 6400 throws = np = 6400 × 
1

64
 = 100

∴ The mean of the Poisson distribution = 100.
Approximate probability of getting six heads x times when the distribution is Poisson

= 
λ λx xe

x
e

x

− −
=

!
( ) .

!
100 100

 .
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(ii) Since  2 modes are given when λ is an integer, modes are λ – 1 and λ.
∴ λ – 1 = 3 ⇒ λ = 4

Probability (when r = 3) = 
e−4 34

3
( )
!

Probability (when r = 4) = 
e−4 44

4
( )
!

∴ Required Probability = P(r = 3 or 4) = P(r = 3) + P(r = 4)

= 
e e− −

+ =
4 3 4 44
3

4
4

64
3

( )
!

( )
!

 e–4 = 0.39073.

Example 13. For a Poisson distribution with mean m, show that

μr+1 = mr μr–1 + m 
d
dm

rμ
 where, μr = ( )x m

e .m
x !

r

x 0

m x
−

=

∞ −

∑ . (U.P.T.U. 2007)

Sol. μr = ( ) .
.
!

x m
e m

x
r

x

m x
−

=

∞ −

∑
0

d
dm

e
x

m x m
e
x

xm x m r x m mr
m

x r
m

x r r x

x

μ
=

−
− + − − −

L
N
MM

O
Q
PP

− −
− −

=

∞

∑ !
. ( )

!
{ ( ) ( ) . }1 1

0

⇒ m
d
dm

e
x

r
m

x

μ
=

−

=

∞

∑ !
0

 mx (x – m)r+1 – rm e
x

m

x

−

=

∞

∑ !
0

 mx (x – m)r–1 = μr+1 – mr μr–1

⇒ μr+1 = m 
d
dm

rμ
 + mr μr–1.

Example 14. Show that in a Poisson distribution with unit mean, mean deviation about

mean is 
2
e
F
HG
I
KJ  times the standard deviation. (G.B.T.U. 2012)

Sol.   Here, λ = 1

∴ P(X = x) = 
e

x
e
x

x− −
=

1 11. ( )
! !

 ; x = 0, 1, 2, ...

Mean deviation about mean 1 is

= | − | =
| −

= + + + +
L
NM

O
QP=

∞
−

=

∞
−∑ ∑

x x

x p x e
x

x
e

0

1

0

11
1

1
1
2

2
3

3
4

( )
|

! ! ! !
... ...(1)

we have,
n

n
n

n n n( ) ! ( ) ! ! ( ) !+
=

+ −
+

= −
+1

1 1
1

1 1
1

∴ From (1), Mean deviation about mean = e–1 1 1
1
2

1
2

1
3

+ −
F
HG
I
KJ + −
F
HG

I
KJ +

L
NMM

O
QPP! ! !

...

= e–1 (1 + 1) = 2
3

1
2× =
e

 × S.D. | Since Variance = mean = 1
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ASSIGNMENT

1. If X is a Poisson variate such that P(X = 2) = 9P(X = 4) + 90P(X = 6), find the standard deviation.
2. If a random variable has a Poisson distribution such that P(1) = P(2), find

(i) mean of the distribution (ii) P(4).

3. Suppose that X has a Poisson distribution. If P(X = 2) = 2
3  P(X = 1) find, (i) P(X = 0) (ii) P(X = 3).

4. A certain screw making machine produces on average 2 defective screws out of 100, and packs
them in boxes of 500. Find the probability that a box contains 15 defective screws.

5. (i) The incidence of occupational disease in an industry is such that the workmen have a 10%
chance of suffering from it. What is the probability that in a group of 7, five or more will suffer
from it?

(ii) The experience shows that 4 industrial accidents occur in a plant on an average per month.
Calculate the probabilities of less than 3 accidents in a certain month. Use Poisson distribution.
(Given : e–4 = 0.01832). [M.T.U. (MBA) 2011]

6. (i) Suppose a book of 585 pages contains 43 typographical errors. If these errors are randomly
distributed throughout the book, what is the probability that 10 pages, selected at random,
will be free from errors ?

(ii) Assume that the probability of an individual coalminer being killed in a mine accident during

a year is 
1

2400
. Use Poisson’s distribution to calculate the probability that in a mine employing

200 miners there will be at least one fatal accident in a year.
7. (i) A manufacturer of cotter pins knows that 5% of his product is defective. If he sells cotter pins

in boxes of 100 and guarantee that not more than 10 pins will be defective, what is the
approximate prob. that a box will fail to meet the guaranteed quality?

(ii) An insurance company insures 4000 people against loss of both eyes in a car accident. Based
on previous data it was assumed 10 persons out of 1,00,000 will have such type of injury in car
accident. What is probability that more than 2 of the insured will collect on their policy in a
given year? (M.T.U. 2013)

8. Records show that the probability is 0.00002 that a car will have a flat tyre while driving over a
certain bridge. Use Poisson distribution to find the probability that among 20,000 cars driven
over the bridge, not more than one will have a flat tyre.

9. Between the hours of 2 and 4 P.M., the average no. of phone calls per minute coming into the
switch board of a company is 2.5. Find the probability that during a particular minute, there will
be no phone call at all. [Given : e–2 = 0.13534 and e–0.5 = 0.60650.]

10. (i) Fit a Poisson distribution to the following data given the number of yeast cells per square for
400 squares :
No. of cells per sq. : 0 1 2 3 4 5 6 7 8 9 10
No. of squares : 103 143 98 42 8 4 2 0 0 0 0
It is given that e–1.3225 = 0.2665.

(ii) Data was collected over a period of 10 years, showing number of deaths from horse kicks in
each of the 200 army corps. The distribution of deaths was as follows:
No. of deaths : 0 1 2 3 4 Total
Frequency : 109 65 22 3 1 200
Fit a Poisson distribution to the data and calculate the theoretical frequencies.

[M.T.U. (B. Pharma) 2011 ; M.T.U. (MBA) 2011]
(iii) The following table gives the no. of days in a 50 day period during which automobile accidents

occured in a city.
No. of accidents : 0 1 2 3 4
No. of days : 21 18 7 3 1
Fit a Poisson distribution to the data. (G.B.T.U. 2011)
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11. The number of accidents in a year involving taxi drivers in a city follows a Poisson distribution
with mean equal to 3. Out of 1000 taxi drivers, find approximately the number of drivers with

(i) no accidents (ii) more than 3 accidents in a year.

12. The distribution of the number of road accidents per day in a city is Poisson with mean 4. Find the
number of days out of 100 days when there will be

(i) no accident (ii) at least 2 accidents

(iii) atmost 3 accidents (iv) between 2 and 5 accidents.
13. It is given that 2% of the electric bulbs manufactured by a company are defective. Using Poisson

distribution, find the probability that a sample of 200 bulbs will contain (i) no defective bulb
(ii) two defective bulbs (iii) at the most three defective bulbs. (G.B.T.U. 2011)

14. A manager accepts the work submitted by his typist only when there is no mistake in the work.
The typist has to type on an average 20 letters per day of about 200 words each. Find the chance
of her making a mistake if

(i) less than 1% of the letters submitted by her are rejected

(ii) on 90% days all the letters submitted by her are accepted.

As the probability of making a mistake is small, you may use Poisson distribution. (Take e = 2.72)

[Hint: (i) e–200p ≥ 0.99 (ii) e–4000p = 0.90]

15. In a certain factory manufacturing razor blades, there is a small chance of 0.002 for any blade to
be defective. The blades are supplied in packets of 10. Use suitable distribution to calculate the
approximate number of packets containing no defective, one defective and two defective blades
respectively in a consignment of 20,000 packets. (M.T.U. 2014)

Answers

1. 1 2. (i) 2 (ii) 
2

3 2e
3. (i) e–(4/3) (ii) 

32
81

e–(4/3) 4. 0.035

5. (i) 0.0008 (ii) 0.23816 6. (i) 0.4795 (ii) 0.08 7. (i) 0.0136875 (ii) 0.007926
8. 0.938 9. 0.08208

10. (i) Theoretical frequencies are 107, 141, 93, 41, 13, 4, 1, 0, 0, 0, 0.

(ii) 108.67 × 
( . )

!
0 61 r

r
 ; 109, 66, 20, 4 and 1 (iii) (50) e

r

r−0 9 0 9. ( . )
!

 ; 20, 18, 8, 3 and 1.

11. (i) 50 (ii) 353
12. (i) 2 (ii) 91 (iii) 43 (iv) 39
13. (i) 0.018315 (ii) 0.146525 (iii) 0.43347
14. (i) p ≤ 0.0000506 (ii) p = 0.0000263 15. 19604, 392, 4

3.61 NORMAL DISTRIBUTION [U.P.T.U. 2007]

The normal distribution is a continuous distribution. It can be derived from the binomial distri-
bution in the limiting case when n, the number of trials is very large and p, the probability of a

success, is close to 1
2 . The general equation of the normal distribution is given by

 f(x) = 
1
2

1
2

2

σ π

μ
σe

x− −F
HG
I
KJ
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where the variable x can assume all values from – ∞ to + ∞. μ and σ, called the parameters of
the distribution, are respectively the mean and the standard deviation of the distribution and
– ∞ < μ < ∞, σ > 0. x is called the normal variate and f(x) is called probability density function of
the normal distribution.

If a variable x has the normal distribution with mean μ and standard deviation σ, we
briefly write x : N(μ, σ2).

The graph of the normal distribution is called the normal curve. It is bell-shapped and
symmetrical about the mean μ. The two tails of the curve extend to + ∞ and – ∞ towards the
positive and negative directions of the x-axis respectively and gradually approach the x-axis
without ever metting it. The curve is unimodal and
the mode of the normal distribution coincides with its
mean μ. The line x = μ divides the area under the
normal curve above x-axis into two equal parts. Thus,
the median of the distribution also coincides with its
mean and mode. The area under the normal curve
between any two given ordinates x = x1 and x = x2
represents the probability of values falling into the given
interval. The total area under the normal curve above
the x-axis is 1.

3.62 BASIC PROPERTIES OF THE NORMAL DISTRIBUTION

The probability density function of the normal distribution is given by

f(x) = 
1

2

1
2

2

σ π

μ
σe

x− −F
HG
I
KJ

(i) f(x) ≥ 0 (ii)
–

( )
∞

∞z =f x dx 1,

i.e., the total area under the normal curve above the x-axis is 1.
(iii) The normal distribution is symmetrical about its mean.
(iv) It is a unimodal distribution. The mean, mode and median of this distribution coincide.

3.63 STANDARD FORM OF THE NORMAL DISTRIBUTION

If X is a normal random variable with mean μ and
standard  deviation σ, then the random variable Z =
X − μ

σ
 has the normal distribution with mean 0 and

standard deviation 1. The random variable Z is called
the standardized (or standard) normal random vari-
able.

The probability density function for the nor-
mal distribution in standard form is given by

f(z) = 1
2

1
2

2

π
e

z−

f(x)

O m x

f(z)

O z

(– < z < )∞ ∞
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It is free from any parameter. This helps us to compute areas under the normal probability
curve by making use of standard tables.
Note 1. If f(z) is the probability density function for the normal distribution, then

P(z1 ≤ Z ≤ z2) = 
z

z

1

2z  f(z) dz = F(z2) – F(z1), where F(z) = 
− ∞z z  f(z) dz = P(Z ≤ z)

The function F(z) defined above is called the distribution function for the normal distribution.
Note 2. The probabilities P(z1 ≤ Z ≤ z2), P(z1 < Z ≤ z2), P(z1 ≤ Z < z2) and P(z1 < Z < z2) are all regarded to be
the same.
Note 3. F(– z1) = 1 – F(z1).

3.64 NORMAL DISTRIBUTION AS A LIMITING FORM OF BINOMIAL DISTRIBUTION
(when p = q) (U.P.T.U. 2007)

Let N (q + p)n be the binomial distribution. If p = q then p = q = 
1
2

 (since p + q = 1) and

consequently the binomial distribution is symmetrical. Let n be an even integer say 2k, k being
an integer. Since n → ∞, the frequencies of r and r + 1 successes can be written in following
forms:

f (r) = N. 2kCr 
1
2

2F
HG
I
KJ

k

 f (r + 1) = N C. 2
1

21
2

k
r

k

+
F
HG
I
KJ

∴ f r
f r

k r
r

k
r

k
r

( )
( )
+ = = −

+
+1 2

1

2
1

2

C

C

The frequency of r successes will be greater than the frequency of (r + 1) successes if

f (r) > f (r + 1)

⇒
f r

f r
( )

( )
+ 1

 < 1

⇒ 2k – r < r + 1

⇒   r > k − 1
2

...(1)

In a similar way, the frequency of r successes will be greater than the frequencies of

(r – 1) successes if r < k + 
1
2

...(2)

In view of (1) and (2), we observe that if k r k− < < +1
2

1
2

 the frequency corresponding to

r successes will be the greatest. Clearly, r = k is the value of the success corresponding to which
the frequency is maximum. Suppose it is y0. Then, we have

y0 = N C. 2
21

2
k

k

kF
HG
I
KJ  = N .

!
! !

2 1
2

2k
k k

kF
HG
I
KJ
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Let yx be the frequency of k + x successes then, we have

yx = N C. 2
21

2
k

k x

k

+
F
HG
I
KJ  = N . .

!
( ) ! ( ) !

1
2

22F
HG
I
KJ + −

k k
k x k x

Now,
y
y

k k
k x k x

x

0
=

+ −
! !

( ) ! ( ) !
 = 

k k k k x
k x k x k
( ) ( ) ... ( )

( ) ( ) ... ( )
− − − +

+ + − +
1 2 1

1 1

= 
1

1
1

2
1

1

1
1

1
2

1

−FHG
I
KJ −FHG

I
KJ − −RST

UVW
+FHG
I
KJ +FHG

I
KJ +FHG

I
KJ

k k
x

k

k k
x
k

...

...

Taking log on both sides,

 log
y
y

x

0

 = log log ... log1
1

1
2

1
1−FHG

I
KJ + −FHG

I
KJ + + − −F

HG
I
KJ

L
NM

O
QPk k

x
k

− +FHG
I
KJ + +FHG

I
KJ + + +FHG

I
KJ

L
NM

O
QPlog log ... log1

1
1

2
1

k k
x
k

...(3)

Now, writing expression for each term and neglecting higher powers of 
x
k

 (very small

quantity), we get from (3),

 log
y
y

x

0
 = − + + + + −1

1 2 3 1
k

x... ( )l q − + + + + − +1
1 2 3 1

k
x x... ( )l q

= − + + + + − −2
1 2 3 1

k
x

x
k

{ ... ( )}

= − − − = −2 1
2

2

k
x x x

k
x
k

( )

∴ yx = y e x k
0

2− /

⇒ yx = y e x
0

22 2− / σ |∵ σ2 = npq = 
n k
4 2

=

which is normal distribution.

3.65 MEAN AND VARIANCE OF NORMAL DISTRIBUTION (U.P.T.U. 2015)

1. The A.M. of a continuous distribution f(x) is given by

 A.M. (x ) = −∞

∞

−∞

∞
z
z

x f x dx

f x dx

( )

( )
| By definition
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Consider the normal distribution with μ, σ as the parameters then

 x  = 
−∞

∞ − −F
HG
I
KJz x e dx

x

.
1

2

1
2

2

σ π

μ
σ Since

area under normal curve
−∞

∞z
= =

f x dx( )

1

Put x − μ
σ

 = z so that x = μ + σz ∴ dx = σdz

so, x z e dz
z

= +
−∞

∞ −z ( ) ( )μ σ
σ π

σ1
2

1
2

2

= μ
π

σ
π−∞

∞ −

−∞

∞ −z z+1

2 2

2
2

2
1
2e dz z e dzz z/

= μ
σ

π
+

F
HG
I
KJ−∞

∞ −z2 2

2 2
2

e d
zz / ∵

−∞

∞ −z =1

2
1

2 2

π
e dzz /

= μ
σ

π
+

−

F
HG
I
KJ

−

−∞

∞

2 1

2 2e z /

 x  = μ
2. By definition,

 Variance = 
−∞

∞z −( ) ( )x x f x dx2

= 
−∞

∞

−∞

∞

−∞

∞z z z+ −x f x dx x f x dx x xf x dx2 2 2( ) ( ) ( )

= 
−∞

∞z + −x f x dx x x x2 2 2( )
∵

−∞

∞

−∞

∞
z
z

=

=

f x dx

x f x dx x

( )

( )

1and

= 
−∞

∞z −x f x dx x2 2( ) ...(1)

Now,   Let I = 
−∞

∞z x f x dx2 ( )  = 
−∞

∞ − −F
HG
I
KJz x e dx

x x
2

1
2

2

1
2σ π

σ

Put 
x x−

σ
 = z so that x = x z+ σ ∴ dx = σ dz

Hence,  I = 
−∞

∞ −z +( ) /x z e dzzσ
σ π

σ2 21
2

2

= 1

2
22 2 2 2 2 22 2 2

π
σ σ

−∞

∞ −

−∞

∞ −

−∞

∞ −z z z+ +L
NM

O
QPz e dz x e dz x z e dzz z z/ / /
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= 
− + +

−∞

∞ −zσ
π

σ
2

2 2

2
1 2 0

2

z d e x xz( ) . ./

= − + +−

−∞

∞

−∞

∞ −zσ
π

σ
π

2
2

2
2 2

2 2

2 2

z e e dz xz z/ /e j
= 0 + σ2 . 1 + x2  = σ2 + x2

∴ From (1),  Variance = σ σ2 2 2 2+ − =x x

∴ The standard deviation of the normal distribution is σ.

3.66 AREA UNDER THE NORMAL CURVE

By taking z = 
x − μ

σ
, standard normal curve is formed.

The total area under this curve is 1.
The area under the curve is divided into two

equal  parts  by  z = 0. The area between the ordinate
z = 0 and any other ordinate can be noted from the
supplied table. It should be noted that mean for the
normal distribution is 0.

3.67 APPLICATIONS OF NORMAL DISTRIBUTION

De Moivre made the discovery of this distribution in 1733.
This distribution has an important application in the theory of errors made by chance in

experimental measurements. Its more applications are in computation of hit probability of a
shot and in statistical inference in almost every branch of science.

EXAMPLES

Example 1. A sample of 100 dry battery cells tested to find the length of life produced the
following results:

x  = 12 hours, σ = 3 hours.
Assuming the data to be normally distributed, what percentage of battery cells are expected

to have life
(i) more than 15 hours (ii) less than 6 hours (iii) between 10 and 14 hours?

Sol. Here x denotes the length of life of dry battery cells.

Also z = 
x x x− = −

σ
12

3
.

(i) When x = 15, z = 1
∴ P(x > 15) = P(z > 1)

 = P(0 < z < ∞) – P(0 < z < 1)
 = .5 – 0.3413 = 0.1587 = 15.87%.

f(z)

O z

Area = 0.5 Area = 0.5

0 1
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(ii) When x = 6,  z = – 2
∴ P(x < 6) = P(z < – 2)

 = P(z > 2) = P(0 < z < ∞) – P(0 < z < 2)
 = 0.5 – 0.4772 = 0.0228 = 2.28%.

(iii) When x = 10, z = – 
2
3

 = – 0.67

When x = 14, z = 
2
3

 = 0.67

 P(10 < x < 14)
 = P(– 0.67 < z < 0.67)
= 2P(0 < z < 0.67) = 2 × 0.2485
= 0.4970 = 49.70%.

Example 2. In a sample of 1000 cases, the mean of a certain test is 14 and S.D. is 2.5.
Assuming the distribution to be normal, find

(i) how many students score between 12 and 15?
(ii) how many score above 18?

(iii) how many score below 8?
(iv) how many score 16?

Sol. (i)  z1 = 
x1 12 14−

= −μ
σ 2.5

 = – 0.8

 z2 = 
x2 15 14−

= −μ
σ 2.5

 = 0.4

Area lying between – 0.8 and 0.4
= Area between 0 to 0.8 + Area between 0 to 0.4
= 0.2881 + 0.1554 = 0.4435

Reqd. no. of students = 1000 × 0.4435 = 444 (app.)

(ii) z = 
18 14−

2.5
 = 1.6

Area right to 1.6 = 0.5 – (Area between 0 and 1.6) = 0.5 – 0.4452 = 0.0548
Reqd. no. of students = 1000 × 0.0548 = 54.8 ≈ 55 (app.)

(iii) z = 
8 14−

2.5
 = – 2.4

Area left to – 2.4 = 0.5 – (Area between 0 and 2.4) = 0.5 – 0.4918 = 0.0082
∴ Reqd. no. of students = 1000 × 0.0082 = 8.2 ≈ 8 (app.).

(iv)  z1 = 
15 5 14.

2.5
−

 = 0.6

 z2 = 
16 5 14.

2.5
−

 = 1

Area between 0.6 and 1 = 0.3413 – 0.2257 = 0.1156
∴ Reqd. no. of students = 1000 × 0.1156 = 115.6 ≈ 116 (app.).

0 2–2

0–.67 .67
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Example 3. Assume mean height of soldiers to be 68.22 inches with a variance of 10.8
inches square. How many soldiers in a regiment of 1,000 would you expect to be over 6 feet tall,
given that the area under the standard normal curve between z = 0 and z = 0.35 is 0.1368 and
between z = 0 and z = 1.15 is 0.3746. [G.B.T.U. (C.O.) 2011]

Sol. x = 6 feets = 72 inches

∴ z = 
x − = −μ

σ
72 68 22

10 8

.

.
 = 1.15

P(x > 72) = P(z > 1.15) = 0.5 – P(0 ≤ z ≤ 1.15)
= 0.5 – 0.3746 = 0.1254

∴ Expected no. of soldiers = 1000 × 0.1254 = 125.4 ≈ 125 (app.).
Example 4. A large number of measurement is normally distributed with a mean 65.5″

and S.D. of 6.2″. Find the percentage of measurements that fall between 54.8″ and 68.8″.
Sol. Mean μ = 65.5 inches, S.D. σ = 6.2 inches

x1 = 54.8 inches, x2 = 68.8 inches

∴ z1 = 
x1 54 8 65 5

6 2
−

= −μ
σ

. .
.

 = – 1.73

and z2 = 
x2 68 8 65 5

6 2
−

= −μ
σ

. .
.

 = 0.53

Now, P(– 1.73 ≤ z ≤ 0.53) = P(– 1.73 ≤ z ≤ 0) + P(0 ≤ z ≤ 0.53)
= P(0 ≤ z ≤ 1.73) + P(0 ≤ z ≤ 0.53)
= 0.4582 + 0.2019 = 0.6601 | By table

∴ Reqd. percentage of measurements = 66.01%.
Example 5. A manufacturer knows from experience that the resistance of resistors he

produces is normal with mean μ = 100 ohms and standard deviation σ = 2 ohms. What percentage
of resistors will have resistance between 98 ohms and 102 ohms?

Sol.  μ = 100 Ω,    σ = 2 Ω, x1 = 98 Ω, x2 = 102 Ω

∴ z1 = 
x1 98 100

2
−

= −μ
σ

 = – 1

and z2 = 
x2 102 100

2
−

= −μ
σ

 = 1.

Now, P(98 < x < 102) = P(– 1 < z < 1)
    = P(– 1 ≤ z ≤ 0) + P(0 ≤ z ≤ 1)
    = P(0 ≤ z ≤ 1) + P(0 ≤ z ≤ 1)
    = 0.3413 + 0.3413 = 0.6826.

∴ Percentage of resistors having resistance be-
tween 98 Ω and 102 Ω = 68.26%.

Example 6. In a normal distribution, 31% of the items are under 45 and 8% are over 64.

Find the mean and standard deviation of the distribution. It is given that if f(t) = 
1

2
e dx

0

t 1
2

x2

π z −

then f(0.5) = 0.19 and f(1.4) = 0.42. (M.T.U. 2013)
Sol. Let μ and σ be the mean and S.D. respectively.
31% of the items are under 45.

0– 1.73 .53 z

f(z)

– 1 1 z

f(z)

O
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⇒ Area to the left of the ordinate x = 45 is 0.31
When x = 45, let  z = z1

P(z1 < z < 0) = 0.5 – 0.31 = 0.19
From the tables, the value of z corresponding to this

area is 0.5
∴ z1 = – 0.5[z1 < 0]
When x = 64, let z = z2

P(0 < z < z2) = 0.5 – 0.08 = 0.42
From the tables, the value of z corresponding to this

area is 1.4.
∴ z2 = 1.4

Since z = 
x − μ

σ

∴ – 0.5 = 
45 − μ

σ
and 1.4 = 

64 − μ
σ

⇒   45 – μ = – 0.5σ ...(1)
and   64 – μ = 1.4σ ...(2)

Subtracting  – 19 = – 1.9σ ∴ σ = 10
From (1), 45 – μ = – 0.5 × 10 = – 5 ∴ μ = 50.
Example 7. The life of army shoes is normally distributed with mean 8 months and

standard deviation 2 months. If 5000 pairs are insured, how many pairs would be expected to

need replacement after 12 months? Given that P(z 2) 0.0228 and z
x≥ = = −L

NM
O
QP

μ
σ

.

Sol. Mean (μ) = 8, Standard Deviation (σ) = 2
Number of pairs of shoes = 5000, Total months (x) = 12

when x = 12,  z = 
x − = −μ

σ
12 8

2
 = 2

Area (z ≥ 2) = 0.0228
Number of pairs whose life is more than 12 months = 5000 × 0.0228 = 114
Pair of shoes needing replacement after 12 months = 5000 – 114 = 4886.
Example 8. The mean inside diameter of a sample of 200 washers produced by a machine

is 0.502 cm and the standard deviation is 0.005 cm. The purpose for which these washers are
intended allows a minimum tolerance in the diameter of 0.496 to 0.508 cm, otherwise the washers
are considered defective. Determine the percentage of defective washers produced by the machine.
Assume the diameters are normally distributed.

Sol. Given: Mean μ = 0.502 cm, S.D. σ = 0.005 cm, x1 = 0.496 cm, x2 = 0.508 cm.

Now,  z1 = 
x1 0 496 0 502

0 005
−

= −μ
σ

. .
.

 = – 1.2

z2 = 
x2 0 508 0 502

0 005
−

= −μ
σ

. .
.

 = 1.2

x = 45
z = z1

x = 64
z = z2

x =
z = 0

μ

31% 8%

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com


338 A TEXTBOOK OF ENGINEERING MATHEMATICS

– 1.2 1.2 z

f(z)

O

Area for non-defective washers
= P(– 1.2 ≤ z ≤ 1.2)
= P(– 1.2 ≤ z ≤ 0) + P(0 ≤ z ≤ 1.2)
= P(0 ≤ z ≤ 1.2) + P(0 ≤ z ≤ 1.2)
= 0.3849 + 0.3849 = 0.7698
= 76.98%.

∴ Percentage of defective washers = 100 – 76.98
  = 23.02%.
Example 9. Assuming that the diameters of 1000 brass plugs taken consecutively from a

machine, form a normal distribution with mean 0.7515 cm and standard deviation 0.002 cm,
how many of the plugs are likely to be rejected if the approved diameter is 0.752 ± 0.004 cm.

Sol. Tolerance limits of the diameter of non-defective plugs are
0.752 – 0.004 = 0.748 cm. and 0.752 + 0.004 = 0.756 cm.

Standard normal variable, z = 
x − μ

σ

If x1 = 0.748, z1 = 
0 748 0 7515

0 002
. .

.
−

 = – 1.75

If   x2 = 0.756, z2 = 
0 756 0 7515

0 02
. .

.
−

 = 2.25

Area from (z1 = – 1.75) to (z2 = 2.25)
= P(– 1.75 ≤ z ≤ 2.25) = P(– 1.75 ≤ z ≤ 0) + P(0 ≤ z ≤ 2.25)
= P(0 ≤ z ≤ 1.75) + P(0 ≤ z ≤ 2.25) = 0.4599 + 0.4878 = 0.9477

Number of plugs which are likely to be rejected = 1000 × (1 – 0.9477) = 1000 × .0523 = 52.3
Hence approximately 52 plugs are likely to be rejected.

Example 10. If the heights of 300 students are normally distributed with mean 64.5 inches
and standard deviation 3.3 inches, find the height below which 99% of the students lie.

Sol. Mean μ = 64.5 inches, S.D. σ = 3.3 inches

Area between 0 and 
x − 64.5

3 3.
 = 0.99 – 0.5 = 0.49

From the table, for the area 0.49, z = 2.327
The corresponding value of x is given by

x − 64 5
3 3

.
.

 = 2.327

⇒ x – 64.5 = 7.68
⇒ x = 7.68 + 64.5 = 72.18 inches.
Hence 99% students are of height less than 6 ft. 0.18 inches.

Example 11. The income of a group of 10,000 persons was found to be normally distributed
with mean ` 750 p.m. and standard deviation of ` 50. Show that, of this group, about 95% had
income exceeding ` 668 and only 5% had income exceeding ` 832. Also find the lowest income
among the richest 100.

Sol. Given:  μ = 750, σ = 50
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Standard normal variable, z = 
x − μ

σ

(i) If x1 = 668,  z1 = 
x1 668 750

50
−

= −μ
σ

 = – 1.64

   P(x1 > 668) = P(z1 > – 1.64)
= 0.5 + P(– 1.64 ≤ z ≤ 0)
= 0.5 + P(0 ≤ z ≤ 1.64)
= 0.5 + 0.4495
= 0.9495

∴ Required percentage of persons having income
exceeding ` 668 = 94.95% ≈ 95% (approx.)

(ii) If x2 = 832, z2 = 
x2 832 750

50
−

= −μ
σ

 = 1.64

 P(x2 > 832) = P(z2 > 1.64)
= 0.5 – P(0 ≤ z ≤ 1.64)
= 0.5 – 0.4495 = 0.0505

∴  Required percentage of persons having in-
come exceeding ` 832 = 5.05% ≈ 5% (approx.)

(iii) Let x be the lowest income among the richest 100 persons i.e., 1% of 10,000.
Thus, area between O and z = 0.49 (see figure) by Normal distribution table,

 z = 2.33

Thus,  
x − μ

σ
 = 2.33

⇒
x − 750

50
 = 2.33

⇒ x = 866.5
Hence ` 866.5 is the minimum income among the richest 100 persons.
Example 12. 255 metal rods were cut roughly 6 inches over size. Finally the lengths of

the over size amount, were measured exactly and grouped with 1 inch intervals, there being in

all 12 groups 
1
2

″
 – 1

1
2

″
, 1

1
2

″
 – 2

1
2

″
, ...... , 11

1
2

″
 – 12

1
2

″
.

The frequency distribution for the 255 lengths was as follows:

Length (inches) 1 2 3 4 5 6 7 8 9 10 11 12
Central value

Frequency 2 10 19 25 40 44 41 28 25 15 5 1

Fit  a normal curve to this data.
Sol. The equation of the normal curve for N observations is

y = N

σ π

μ
σ

2

1
2

2

e
x− −F
HG
I
KJ ...(1)

z = – 1.641 z

f(z)

O

zO

f(z)

z = 1.642

zO

f(z)

0.01

z
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x f u = x – 6 fu fu2

1 2 – 5 – 10 50
2 10 – 4 – 40 160
3 19 – 3 – 57 171
4 25 – 2 – 50 100
5 40 – 1 – 40 40
6 44 0 0 0
7 41 1 41 41
8 28 2 56 112
9 25 3 75 225

10 15 4 60 240
11 5 5 25 125
12 1 6 6 36

Total 255 66 1300

Mean, μ = a + 
Σ
Σ
fu
f

= +6
66
255

 = 6.259

Variance,    σ2 = Σ
Σ

Σ
Σ

fu
f

fu
f

2 2

−
F
HG
I
KJ  = 

1300
225

66
255

2

− FHG
I
KJ   = 5.031

∴ σ = 2.243
Thus, we have N = 255, Mean, μ = 6.259″, S.D. σ = 2.243″
Hence the fitted curve is

 y = 255

2 243 2

1
2

6.259
2

2

.
.243

π
e

x− −F
HG

I
KJ | From (1)

= 
113 68

2
0.099 6.259 2. ( )

π
e x− − .

Example 13. Show that the area under the normal curve is unity.
Sol. Area under the normal curve is given by

A = 
−∞

∞ − −z 1

2

2

22

σ π

μ
σe dx

x( )

Put 
x − μ

σ
 = z so dx = σ dz

∴ A = 
−∞

∞ −z 1

2

2 2

σ π
σe dzz / ( )  = 2

0

22

π

∞ −z e dzz /

Now, A . A = A2 = 
2 2

0

2

0

22 2

π π

∞ − ∞ −z zF
HG

I
KJ
F
HG

I
KJe dx e dyx y/ /

= 
2

0 0

2

2 2

π

∞ ∞ − +F
HG

I
KJz z e dx dy

x y

| where x and y are dummy variables
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Put x = r cos θ, y = r sin θ so that J = r changing to polar coordinates,

A2 = 2
0

2

0

22

π
θ

π /
/z z∞ −e r dr dr  = 

0

2
2

2

2

∞ −z F
HG
I
KJe d

rr /  = 1

∴  A = Area under the normal curve = 1
Example 14. Prove that for normal distribution, the mean deviation from the mean

equals to 
4
5

 of the standard deviation approximately. (U.P.T.U. 2009)

Sol. Let μ and σ be the mean and standard deviation of the normal distribution. Then by
definition,

Mean deviation from the mean

= 
−∞

∞z −| | ( )x f x dxμ

= 
1

2

2

22

σ π
μ

μ
σ

−∞

∞ − −z −| |
( )

x e dx
x

= 
1
2

1
2

2

σ π
σ σ

−∞

∞ −z | |z e dz
z when

x
z

dx dz

− =

⇒ =

μ
σ
σ

= σ
π
2

0

22∞ −z z e dzz /

= σ
π π

σ2 22 2

0
− =−

∞
e z /  = 0.7979 σ ≈ 0.8σ ≈ 

4
5

σ

ASSIGNMENT

1. In a test on 2000 electric bulbs, it was found that the life of a particular make, was normally
distributed with an average life of 2040 hours and S.D. of 60 hours, estimate the number of bulbs
likely to burn for
(i) more than 2150 hours (ii) less than 1950 hours

(iii) more than 1920 hours but less than 2160 hours. (U.P.T.U. 2008)
2. An aptitude test for selecting officers in a bank is conducted on 1000 candidates. The average

score is 42 and the standard deviation of score is 24. Assuming normal distribution for the scores,
find
(i) the number of candidates whose scores exceed 60

(ii) the number of candidates whose scores lie between 30 and 60.
3. (i) In a normal distribution exactly normal, 7% of the items are under 35 and 89% are under 63.

What are the mean and standard deviation of the distribution? (G.B.T.U. 2010)
(ii) In a normal distribution, 0.0107 of the items lie below 42 and 0.0446 of the items lie above 82.

What is the mean and standard deviation of the normal distribution?
[U.P.T.U. (MBA) 2009]

4. If Z is a standard normal variable, find the following probabilities: [G.B.T.U. (MBA) 2010]
(i) P(Z < 1.2) (ii) P(Z > – 1.2) (iii) P(– 1.2 < Z < 1.3).
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5. An aptitude test was conducted on 900 employees of the Metro Tyres Limited in which the mean
score was found to be 50 units and standard deviation was 20. On the basis of this information,
you are required to answer the following questions:
(i) What was the number of employees whose mean score was less than 30?

(ii) What was the number of employees whose mean score exceeded 70?
(iii) What was the number of employees whose mean score were between 30 and 70?

x − μ
σ 0.25 0.50 0.70 1.00 1.25 1.50

Area 0.0987 0.1915 0.2734 0.3413 0.3944 0.4332 [U.P.T.U. (MBA) 2009]
6. (a) Students of a class were given a mechanical aptitude test. Their marks were found to be

normally distributed with mean 60 and standard deviation 5. What percent of students
scored?

(i) more than 60 marks? (ii) less than 56 marks? (iii) between 45 and 65 marks?
(b) 2000 students appeared in an examination. Distribution of marks is assumed to be normal

with mean μ = 30 and σ = 6.25. How many students are expected to get marks?
(i) between 20 and 40 (ii) less than 35 and (iii) above 50.

[U.P.T.U. (MBA) 2012]
(c) Suppose the weight W of 600 male students are normally distributed with mean μ = 70 kg and

standard deviation σ = 5 kg. Find number of students with weight
(i) between 69 and 74 kg (ii) more than 76 kg. (G.B.T.U. 2013)

7. (a) In an intelligence test administered to 1000 students, the average score was 42 and standard
deviation 24. Find:

(i) the expected number of students scoring more than 50.
(ii) the number of students scoring between 30 and 54.

(iii) the value of score exceeded by top 100 students. [G.B.T.U. (MBA) 2010]
(b) The average monthly sales of 5000 firms are normally distributed. Its mean and standard

deviation are ` 36000 and ` 10000 respectively. Find:
(i) the no. of firms having sales over ` 40000.

(ii) the no. of firms having sales between ` 30000 and ` 40000.
[Given area under normal curve from 0 to z for Z (0.4) = 0.1554 and Z (0.6) = 0.2257]

[G.B.T.U. (MBA) 2010]
(c) The daily wages of 1000 workers are distributed around a mean of ` 140 and with a standard

deviation of ` 10. Estimate the number of workers whose daily wages will be
(i) between ` 140 and ` 144 (ii) less than ` 126

(iii) more than ` 160. (G.B.T.U. 2012)
8. (a) Records kept by the goods inwards department of a large factory show that the average no. of

lorries arriving each week is 248. It is known that the distribution approximates to be normal
with a standard deviation of 26.
If this pattern of arrival continues, what percentage of weeks can be expected to have number
of arrivals of:

(i) less than 229 per week? (ii) more than 280 per week?
(b) Pipes for tobacco are being packed in fancy plastic boxes. The length of the pipe is normally

distributed with μ = 5″ and σ = 0.1″. The internal length of the boxes is 5.2″. What is the
probability that the box would be small for the pipe?
[Given that : φ(1.8) = 0.9641, φ(2) = 0.9772, φ(2.5) = 0.9938]

(c) A manufacturer of envelopes knows that the weight of the envelopes is normally distributed
with mean 1.9 gm and variance 0.01 square gm. Find how many envelopes weighing

(i) 2 gm or more
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(ii) 2.1 gm or more, can be expected in a given packet of 1000 envelopes? (U.P.T.U. 2015)
[Given: if t is the normal variable, then φ(0 ≤ t ≤ 1) = 0.3413 and φ (0 ≤ t ≤ 2) = 0.4772]

9. (a) East-East Airlines has the policy of employing only Indian woman whose height is between
62 inches and 69 inches. If the height of Indian women is approximately normally distributed
with a mean of 64 inches and a standard deviation of 3 inches, Out of the 1000 applications
received find the number of applicants that would be

(i) too tall (ii) too short (iii) of acceptable height.
(b) The mean height of 500 students is 151 cm and the standard deviation is 15 cm. Assuming

that the heights are normally distributed, find how many students have heights between 120
and 155 cm?

(c) The monthly mess bill of a student who is staying in the hostel follows a normal distribution
with a mean of ` 2000 and a standard deviation of ` 185. What is the probability that in the
next month, his bill will go above ` 2400? [U.P.T.U. (MBA) 2009]

10. In an examination taken by 500 candidates, the average and the standard deviation of marks
obtained (normally distributed) are 40% and 10%. Find approximately
(i) how many will pass, if 50% is fixed as a minimum?

(ii) what should be the minimum if 350 candidates are to pass?
(iii) how many have scored marks above 60%?

11. The income distribution of workers in a certain factory was found to be normal with mean
` 500 and standard deviation equal to ` 50. There were 228 persons getting above ` 600. How
many workers were there in all?
(Area under the standard normal curve between height at 0 and 2 is 0.4772).

12. In a certain examination, the percentage of passes and distinction were 46 and 9 respectively.
Estimate the average marks obtained by the candidates, the minimum pass and distinction
marks being 40 and 75 respectively. Assume the distribution of marks to be normal.

Hint.
40

0 1
75

134
− = − =L

NM
O
QP

μ
σ

μ
σ

. . .and

13. The marks obtained by a no. of students for a certain subject are assumed to be approximately
normally distributed with mean value 65 and S.D. of 5. If 3 students are taken at random from
this set, what is the probability that exactly 2 of them will have marks over 70?

14. In an examination, it is laid down that a student passes if he secures 30% or more marks. He is
placed in the first, second or third division according as he secures 60% or more marks, between
45% and 60% marks and marks between 30% and 45% respectively. He gets distinction incase he
secures 80% or more marks. It is noticed from the result that 10% of the students failed in the
examination, whereas 5% of them obtained distinction.
Calculate the percentage of students placed in the second division. (Assume normal distribution
of marks).
[Hint. P( X < 30) = 0.10, P(X ≥ 80) = 0.05]

15. Determine the minimum marks a student must get in order to receive an A grade if the top 10%
of the students are awarded A grades in an examination where the mean mark is 72 and standard
deviation is 9.

16. (i) When the mean of marks was 50% and S.D. 5% then 60% of the students failed in an
examination. Determine the ‘grace’ marks to be awarded in order to show that 70% of the
students passed. Assume that the marks are normally distributed.

Hint.
x x1 20 5

0 05
0 25

0 5
0 05

0 52
− = − = −L

NM
O
QP

.
.

. ,
.

.
.

(ii) In a university examination of a particular year, 60% of the students failed when mean of the
marks was 50% and S.D. 5%. University decided to relax the conditions of passing by lowering
the pass marks to show its result 70%. Find the minimum marks for a student to pass
supposing the marks to be normally distributed and no change in the performance of students
takes place.
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17. How does a normal distribution differ from a binomial distribution? What are the important
properties of normal distribution? [M.T.U. (MBA) 2012]

18. If the skulls are classified as A, B and C according as the length-breadth index is under 75,
between 75 and 80 or over 80, find approximately (assuming that the distribution is normal) the
mean and standard deviation of a series in which A are 58%, B are 38% and C are 4%, being given

that if f(t) = 1
2 0

2)2

π

t
xe dxz − ( /  then f(0.20) = 0.08 and f(1.75) = 0.46.

[Hint: P(X < 75) = 0.58, P(X > 80) = 0.04]
19. The following table gives frequencies of occurrence of a variable X between certain limits:

Variable X Frequency
Less than 40 30
40 or more but less than 50 33
50 and more 37

The distribution is exactly normal. Find the distribution and also obtain the fequency between
X = 50 and X = 60.

20. The marks X obtained in Mathematics by 1000 students are normally distributed with mean
78% and standard deviation 11%.
Determine:
(i) how many students got marks above 90%?

(ii) What was the highest marks obtained by the lowest 10% of students?
(iii) Within what limits did the middle 90% of the students lie?

Answers
1. (i) 67 (ii) 134 (iii) 1909 2. (i) 227 (ii) 465
3. (i) x  = 50.3, σ = 10.33 (ii) μ = 65, σ = 10
4. (i) 0.8849 (ii) 0.8849 (iii) 0.7881
5. (i) 143 (ii) 143 (iii) 614
6. (a) (i) 50%, (ii) 21.2%, (iii) 84% (b) (i) 1781, (ii) 1576, (iii) 1 (c) (i) 220, (ii) 69
7. (a) (i) 371, (ii) 383, (iii) 72.72 (b) (i) 1723 (ii) 1906 (c) (i) 155, (ii) 81, (iii) 23
8. (a) (i) 23% (ii) 11% (b) 0.0228 (c) (i) 159  (ii) 23
9. (a) (i) 48 (ii) 251 (iii) 701 (b) 294 (c) 0.0154

10. (i) 79 (ii) 35% (iii) 11 11. 10,000 12. 37.2
13. 0.06357 14. 34% 15. 84 marks
16. (i) 3.85 (ii) 47.4. 18. μ = 74.35, σ = 3.23 19. μ = 46.12, σ = 11.76, 25
20. (i) 138 (ii) 63.92% (iii) between 60 and 96.

3.68 POPULATION OR UNIVERSE

An aggregate of objects (animate or inanimate) under study is called population or universe.
It is thus a collection of individuals or of their attributes (qualities) or of results of operations
which can be numerically specified.

A universe containing a finite number of individuals or members is called a finite inverse.
For example, the universe of the weights of students in a particular class.

A universe with infinite number of members is known as an infinite universe. For
example, the universe of pressures at various points in the atmosphere.

In some cases, we may be even ignorant whether or not a particular universe is infinite,
e.g., the universe of stars.
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The universe of concrete objects is an existent universe. The collection of all possible
ways in which a specified event  can happen is called a hypothetical universe. The universe
of heads and tails obtained by tossing a coin an infinite number of times (provided that it does
not wear out) is a hypothetical one.

3.69 SAMPLING

The statistician is often confronted with the problem of discussing universe of which he cannot
examine every member i.e., of which complete enumeration is impracticable. For example, if
we want to have an idea of the average per capita income of the people of India, enumeration of
every earning individual in the country is a very difficult task. Naturally, the question arises :
What can be said about a universe of which we can examine only a limited number of members
? This question is the origin of the Theory of Sampling.

A finite subset of a universe is called a sample. A sample is thus a small portion of the
universe. The number of individuals in a sample is called the sample size. The process of
selecting a sample from a universe is called sampling.

The theory of sampling is a study of relationship existing between a population and
samples drawn from the population. The fundamental object of sampling is to get as much
information as possible of the whole universe by examining only a part of it. An attempt is thus
made through sampling to give the maximum information about the parent universe with the
minimum effort.

Sampling is quite often used in our day-to-day practical life. For example, in a shop we
assess the quality of sugar, rice or any other commodity by taking only a handful of it from the
bag and then decide whether to purchase it or not. A housewife normally tests the cooked
products to find if they are properly cooked and contain the proper quantity of salt or sugar, by
taking a spoonful of it.

3.70 SAMPLING METHODOLOGIES

Sampling methodologies are classified under two general categories:
1. Probability sampling and 2. Non-probability sampling

In the former, the researcher knows the exact possibility of selecting each member of
the population while in the latter, the chance of being included in the sample is not known. A
probability sample tends to be more difficult and costly to conduct. However, probability samples
are the only type of samples where the results can be generalized from the sample to the
population. In addition, probability samples allow the researcher to calculate the precision of
the estimates obtained from the sample and to specify the sampling error.

Non-probability samples, incontrast, donot allow the study’s findings to be generalized
from the sample to the population. When discussing the results of a non-probability sample,
the researchers must limit his/her findings to the persons or elements sampled.

This procedure also does not allow the researcher to calculate sampling statistics that
provide information about the precision of the results. The advantage of non-probability sam-
pling is the case in which it can be administered.

Non-probability samples tend to be less complicated and less time consuming than prob-
ability samples. If the researcher has no intention of generalizing beyond the sample, one of
the non-probability sampling  methodologies will provide the desired information.
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3.71 NON-PROBABILITY SAMPLING

The three common types of non-probability samples are:
(i) Convenience Sampling. As the name implies, convenience sampling involves choosing
respondents at the convenience of the researcher. Examples of convenience sampling include
people-in-the street interviews—the sampling of people to which the researcher has easy access,
such as a class of students and studies that use people who have volunteered to be questioned
as a result of an advertisement or another type of promotion. A drawback to this methodology
is the lack of sampling accuracy. Because the probability of inclusion in the sample is unknown
for each respondent, none of the reliability or sampling precision statistics can be calculated.
Convenience samples, however, are employed by researchers because the time and cost of
collecting information can be reduced.
(ii) Quota Sampling [G.B.T.U. (B. Pharm.) 2010]
Quota sampling is often confused with stratified and cluster sampling—two probability
sampling methodologies. All of these methodologies sample a population that has been
subdivided into classes or categories.

The primary differences between the methodologies is that with stratified and cluster
sampling, the classes are mutually exclusive and are isolated prior to sampling. Thus, the
probability of being selected is known and members of the population selected to be sampled
are not arbitrarily disqualified from being included in the results. In quota sampling, the
classes cannot be isolated prior to sampling and respondents are categorized into the classes
as the survey proceeds. As each class fills or reaches its quota, additional respondents that
would have fallen into these classes are rejected or excluded from the results.

An example of a quota sample would be a survey in which the researcher desires to
obtain a certain number of respondents from various income categories. Generally, researchers
donot know the income of the persons they are sampling until they ask about income. Therefore,
the researcher is unable to subdivide the population from which the sample is drawn into
mutually exclusive income categories prior to drawing the sample.
(iii) Judgemental Sampling. In judgemental or purposive sampling, the researcher em-
ploys his or her own expert judgement about who to include in the sample frame. Prior knowl-
edge and research skill are used in selecting the respondents or elements to be sampled.

An example of this type of sample would be a study of potential users of a new recreational
facility that is limited to those persons who live within two miles of the new facility. Expert
judgement based on past experience indicates that most of the use of this type of facility comes
from persons living within two miles. However, by limiting the sample to only this group,
usage projections may not be reliable if the usage characteristics of the new facility vary from
those previously experienced. As with all non-probability sampling methods, the degree and
direction of error introduced by the researcher cannot be measured and statistics that measure
the precision of the estimates cannot be calculated.

3.72 PROBABILITY SAMPLING

Five methodologies are most commonly used for conducting probability sampling.
(i) Simple Random Sampling. Simple random sampling provides the base from which the
other more complex sampling methodologies are derived.

To conduct a simple random sampling, the researcher must first prepare an exhaustive
list (sampling frame) of all members of the population of interest. From this list, the sample is
drawn so that each person or item has an equal chance of being drawn during each selection

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com


STATISTICAL TECHNIQUES 347

round. Samples may be drawn with or without replacement. In practice, however, most simple
random sampling for survey research is done without replacement ; that is, a person or item
selected for sampling is removed from the population for all subsequent selections. At any
draw, the process for a simple random sample without replacement must provide an equal
chance of inclusion to any member of the population not already drawn. To draw a simple
random sample without introducing researcher bias, computerized sampling programs and
random numbers tables are used to impartially select the members of the population to be
sampled.

An example of a simple random sample would be a survey of County employees. An
exhaustive list of all County employees as of a certain date could be obtained from the
Department of Human Resources. If 100 names were selected from this list using a random
number table or a computerized sampling program, then a simple random sample would be
created. Such a random sampling procedure has the advantage of reducing bias and enables
the researcher to estimate sampling errors and the precision of the estimates derived through
statistical calculations.
(ii) Stratified Random Sampling [G.B.T.U. (B. Pharm.) 2010]
Stratified random sampling involves categorizing the members of the population into mutually
exclusive and collectively exhaustive groups. An independent simple random sample is then
drawn from each group. Stratified sampling techniques can provide more precise estimates if
the population being surveyed is more heterogeneous than the categorized groups, can enable
the researcher to determine desired levels of sampling precision for each group, and can provide
administrative efficiency.

An example of a stratified sample would be a sample conducted to determine the average
income earned by families in the United States. To obtain more precise estimates of income,
the researcher may want to stratify the sample by geographic region (northeast, mid-Atlantic,
etc.) and/or stratify the sample by urban, suburban, and rural groupings. If the differences in
income among the regions or groupings are greater than the income differences within the
regions or groupings, precision of the estimates is improved. In addition, if the resarch
organization has branch offices located in these regions, the administration of the survey can
be decentralized and perhaps conducted in a more cost-efficient manner.
(iii) Cluster Sampling. Cluster sampling is similar to stratified sampling because the
population to be sampled is subdivided into mutually exclusive groups. However, in cluster
sampling, the groups are defined so as to maintain the heterogeneity of the population. It is
the researcher’s goal to establish clusters that are representative of the population as a whole,
although in practice this may be difficult to achieve. After the clusters are established, a
simple random sample of the clusters is drawn and the members of the chosen clusters are
sampled. If all of the elements (members) of the clusters selected are sampled, then the sampling
procedure is defined as one-stage cluster sampling. If a random sample of the elements of
each selected cluster is drawn, then the sampling procedure is defined as two-stage cluster
sampling.

Cluster sampling is frequently employed when the researcher is unable to compile a
comprehensive list of all the elements in the population of interest. A cluster sample might be
used by a researcher attempting to measure the age distribution of persons residing in Mumbai.
It would be much more difficult for the researcher to compile a list of every person residing in
Mumbai than to compile a list of residential addresses. In this example, each address would
represent a cluster of elements (persons) to be sampled. If the elements contained in the clusters
are as heterogeneous as the population, then estimates derived from cluster sampling are as
precise as those from simple random sampling. However, if the heterogeneity of the clusters is
less than that of the population, the estimates will be less precise.
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(iv) Systematic Sampling. Systematic sampling, a form of one-stage cluster sampling, is
often used in place of simple random sampling. In systematic sampling, the researcher selects
every nth member after randomly selecting the first through nth element as the starting point.
For example, if the researcher decides to sample every 20th member of the population, a 5
percent sample, the starting point for the sample is randomly selected from the first 20 members.
A systematic sample is a type of cluster sample because each of the first 20 members of the
sampling frame defines a cluster that contains 5 percent of the population.

A researcher may choose to conduct a systematic sample instead of a simple random
sample for several reasons. Systematic samples tend to be easier to draw and execute. The
researcher does not have to jump backward and forward through the sampling frame to draw
the members to be sampled. A systematic sample may spread the members selected for
measurement more evenly across the entire population than simple random sampling.
Therefore, in some cases, systematic sampling may be more representative of the population
and more precise.

One of the most attractive aspects of systematic sampling is that this method can allow
the researcher to draw a probability sample without complete prior knowledge of the sampling
frame. For example, a survey of visitors to the County’s publications desk could be conducted
by sampling every 10th visitor after randomly selecting the first through 10th visitor as the
starting point. By conducting the sample in this manner, it would not be necessary for the
researcher to obtain a comprehensive list of visitors prior to drawing the sample.

As with other types of cluster sampling, systematic sampling is as precise as simple
random sampling if the members contained in the clusters are as heterogeneous as the
population. If this assumption is not valid, then systematic sampling will be less precise than
simple random sampling. In conducting systematic sampling, it is also essential that the
researcher does not introduce bias into the sample by selecting an inappropriate sampling
interval. For instance, when conducting a sample of financial records, or other items that
follow a calendar schedule, the researcher would not want to select “7” as the sampling interval
because the sample would then be comprised of observations that were all on the same day of
the week. Day-of-the-week influences may cause contamination of the sample, giving the
researcher biased results.
(v) Multi-Stage Sampling. Multi-stage sampling is like cluster sampling, but involves se-
lecting a sample within each chosen cluster, rather than including all units in the cluster.
Thus, multi-stage sampling involves selecting a sample in at least two stages. In the first
stage, large groups or clusters are selected. These clusters are designed to contain more popu-
lation units than are required for the final sample.

In the second stage, population units are chosen from selected clusters to derive a final
sample. If more than two stages are used, the process of choosing population units within
clusters continues until the final sample is achieved.

An example of multi-stage sampling is where, firstly, electoral sub-divisions (clusters)
are sampled from a city or state. Secondly, blocks of houses are selected from within the
electoral sub-divisions and, thirdly, individual houses are selected from within the selected
blocks of houses.

The advantages of multi-stage sampling are convenience, economy and efficiency. Multi-
stage sampling does not require a complete list of members in the target population, which
greatly reduces sample preparation cost. The list of members is required only for those clusters
used in the final stage. The main disadvantage of multi-stage sampling is the same as for
cluster sampling : lower accuracy due to higher sampling error.
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3.73 PARAMETERS OF STATISTICS

The statistical constants of the population such as mean, the variance etc. are known as the
parameters. The statistical concepts of the sample from the members of the sample to estimate
the parameters of the population from which the sample has been drawn is known as statistic.

Population mean and variance are denoted by μ and σ2, while those of the samples are
given by x , s2.

3.74 STANDARD ERROR

The standard deviation of the sampling distribution of a statistic is known as the standard
error (S.E.). It plays an important role in the theory of large samples and it forms a basis of

the testing of hypothesis. If t is any statistic, for large sample. z = 
t t

t
− E

S E.
( )

. ( )
 is normally distrib-

uted with mean 0 and variance unity.

3.75 TEST OF SIGNIFICANCE

An important aspect of the sampling theory is to study the test of significance which will
enable us to decide, on the basis of the results of the sample, whether

(i) the deviation between the observed sample statistic and the hypothetical parameter
value or

(ii) the deviation between two sample statistics
is significant or might be attributed due to chance or the fluctuations of the sampling.

3.76 TESTING OF STATISTICAL HYPOTHESIS

Step 1. Null hypothesis: [U.P.T.U. (MCA) 2007]
For applying the tests of significance, we first set up a hypothesis which is a definite

statement about the population parameter called Null Hypothesis. It is denoted by H0.
Null hypothesis is the hypothesis which is tested for possible rejection under the as-

sumption that it is true. First, we set up H0 in clear terms.
Step 2. Alternative hypothesis:
Any hypothesis which is complementary to the null hypothesis (H0) is called an alterna-

tive hypothesis. It is denoted by H1.
For example, if we want to test the null hypothesis that the population has a specified

mean μ0 then we have
H0 : μ = μ0

then the alternative hypothesis will be
(i) H1 : μ ≠ μ0 (Two tailed alternative hypothesis)

(ii) H1 : μ > μ0 (right tailed alternative hypothesis (or) single tailed)
(iii) H1 : μ < μ0 (left tailed alternative hypothesis (or) single tailed)
Hence alternative hypothesis helps to know whether the test is two tailed or one tailed.

Therefore, we set up H1 for this decision.
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Step 3. Level of significance: [U.P.T.U. (MCA) 2008, 2007]
The probability of the value of the variate falling in the critical region is known as level

of significance. A region corresponding to a statistic t in the sample space  S which amounts to
rejection of the null hypothesis H0 is called as critical region or region of rejection while
which amounts to acceptance of H0 is called acceptance region. The probability α that a
random value of the statistic t belongs to the critical region is known as the level of
significance.

P (t ∈ w/H0) = α
i.e., the level of significance is the size of the type I error (refer art. 3.77) or the maximum
producer’s risk.

We select the appropriate level of significance in advance depending on the reliability of
the estimates.

Step 4. Test statistic (or test criterion): We compute the test statistic z under the

null hypothesis. For larger samples corresponding to the statistic t, the variable z = 
t t

t
− E

S.E.(
( )

)
 is

normally distributed with mean 0 and variance 1. The value of z given above under the null
hypothesis is known as test statistic.

Step 5. Conclusion: We compare the computed value of z with the critical value zα at
level of significance (α). The critical value of zα of the test statistic at level of significance α for
a two tailed test is given by

 p(|z| > zα) = α …(1)
i.e., zα is the value of z so that the total area of the critical region on both tails is α. Since
the normal curve is symmetrical, from equation (1), we get

p(z > zα) + p(z < – zα) = α ; i.e., 2p(z > zα) = α ; i.e., p(z > zα) = α/2
i.e., the area of each tail is α/2.

The critical value zα is that value such that the area to the right of zα is α/2 and the area
to the left of – zα is α/2.

In the case of one tailed test,
p(z > zα) = α if it is right tailed ; p(z < – zα) = α if it is left tailed.
The critical value of z for a single tailed test (right or left) at level of significance α is

same as the critical value of z for two tailed test at level of significance 2α.
Using the equation, also using the normal tables, the critical value of z at different

levels of significance (α) for both single tailed and two tailed test are calculated and listed
below. The equations are

p(| z | > zα ) = α ; p(z > zα ) = α ; p(z < – zα ) = α

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com


STATISTICAL TECHNIQUES 351

Level of significance

1% (0.01) 5% (0.05) 10% (0.1)

Two tailed test | zα | = 2.58 | zα | = 1.96 | zα | = 1.645

Right tailed test zα = 2.33 zα = 1.645 zα = 1.28

Left tailed test zα = – 2.33 zα = – 1.645 zα = – 1.28

If |z| > zα, we reject H0 and conclude that there is significant difference. If |z| < zα, we
accept H0 and conclude that there is no significant difference.

3.77 ERRORS IN SAMPLING

The main aim of the sampling theory is to draw a valid conclusion about the population
parameters on the basis of the sample results. In doing this we may commit the following two
types of errors:

Type I. Error. [U.P.T.U. (MCA) 2008, 2007]
When H0 is true, we may reject it.
P(Reject H0 when it is true) = P(Reject H0/H0) = α
α is called the size of the type I error also referred to as producer’s risk.
Type II. Error. When H0 is wrong, we may accept it P(Accept H0 when it is wrong) =

P(Accept H0/H1) = β . β is called the size of the type II error, also referred to as consumer’s
risk.
Note.  The values of the test statistic which separates the critical region and acceptance region are
called the critical values or significant values. This value is dependent on (i) the level of significance
used and (ii) the alternative hypothesis, whether it is one tailed or two tailed.

3.78 TEST OF SIGNIFICANCE OF SMALL SAMPLES

When the size of the sample is less than 30, then the sample is called small sample. For such
sample it will not be possible for us to assume that the random sampling distribution of a
statistic is approximately normal and the values given by the sample data are sufficiently
close to the population values and can be used in their place for the calculation of the standard
error of the estimate.

3.79 STUDENT’S t-DISTRIBUTION (t-Test)
[G.B.T.U. (MBA) 2011 ; G.B.T.U. (MCA) 2010]

This t-distribution is used when sample size is ≤ 30 and the population standard deviation is
unknown.

t-statistic is defined as

t = 
x

n

− μ
S/

where, S = 
Σ( )x x

n
−
−

2

1

x  is the mean of sample, μ is population mean. S is the standard deviation of population
and n is sample size.
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If the standard deviation of the sample ‘s’ is given then t-statistic is defined as

t = 
x

s n

−
−
μ

/ 1

Note. The relation between s and S is ns2 = (n – 1)S2.

3.79.1. The t-Table
The t-table given at the end is the probability integral of t-distribution. The t-distribution has
different values for each degrees of freedom and when the degrees of freedom are infinitely
large, the t-distribution is equivalent to normal distribution and the probabilities shown in
the normal distribution tables are applicable.

3.79.2. Applications of t-Distribution [G.B.T.U. (MBA) 2011]
Some of the applications of t-distribution are given below:

1. To test if the sample mean ( )x  differs significantly from the hypothetical value μ of
the population mean.

2. To test the significance between two sample means.
3. To test the significance of observed partial and multiple correlation coefficients.

3.79.3. Critical Value of t
The critical value or significant value of t at level of significance α, degrees of freedom γ for two
tailed test is given by

P[| t | > tγ (α)] = α
 P[| t | ≤ tγ (α)] = 1 – α

The significant value of t at level of significance α, for a single tailed test can be got from
those of two tailed test by referring to the values at 2α.

3.80 TEST I : t-TEST OF SIGNIFICANCE OF THE MEAN OF A RANDOM SAMPLE

To test whether the mean of a sample drawn from a normal population deviates significantly
from a stated value when variance of the population is unknown.

H0 : There is no significant difference between the sample mean x  and the population
mean μ i.e., we use the statistic

t = 
x

n

− μ
S/

where S = Σ( )x x
n

−
−

2

1

with degree of freedom n – 1.

At given level of significance α and degrees of freedom (n – 1), we refer to t-table tα (two
tailed or one tailed). If calculated t value is such that | t | < tα, the null hypothesis is accepted.
If | t | > tα, H0 is rejected.

3.80.1. Fiducial Limits of Population Mean
If tα is the value of t at level of significance α at (n – 1) degrees of freedom then,

x

n

− μ
S/

 < tα for acceptance of H0.
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 x  – tα S/ n  < μ < x  + tα S/ n

95% confidence limits (level of significance 5%) are x  ± t0.05S/ n .

99% confidence limits (level of significance 1%) are x  ± t0.01S/ n .

EXAMPLES

Example 1. A random sample of size 16 has 53 as mean. The sum of squares of the
deviation from mean is 135. Can this sample be regarded as taken from the population having
56 as mean? Obtain 95% and 99% confidence limits of the mean of the population.

Sol. Null hypothesis, H0 :  There is no significant difference between the sample mean
and hypothetical population mean i.e., μ = 56.

Alternative hypothesis, H1 : μ ≠ 56     (Two tailed test)

Test statistic. Under H0, test statistic is t = 
x

n

− μ
S/

Given: x  = 53, μ = 56, n = 16, Σ( )x x− 2 = 135

S = 
Σ( )x x

n
−
−

=
2

1
135
15

 = 3

t = 
x

n

− μ
S/  = 

53 56

3 16

−
/

 = – 4

    | t | = 4
d.fv. = 16 – 1 = 15.

Conclusion. Since | t | = 4 > t0.05 = 2.13 i.e., the calculated value of t is more than the
tabulated value, the null hypothesis is rejected. Hence, the sample mean has not come from a
population having 56 as mean.

95% confidence limits of the population mean

= x
n

t± = ±S
0.05 53

3

16
 (2.13) = 51.4025, 54.5975

99% confidence limits of the population mean

= x
n

t± = ±S
0.01 53

3

16
,  (2.95) = 50.7875, 55.2125.

Example 2. The lifetime of electric bulbs for a random sample of 10 from a large con-
signment gave the following data:

Item 1 2 3 4 5 6 7 8 9 10

Life in ’000 hrs. 4.2 4.6 3.9 4.1 5.2 3.8 3.9 4.3 4.4 5.6

Can we accept the hypothesis that the average lifetime of bulb is 4000 hrs?
Sol. Null hypothesis: H0: There is no significant difference in the sample mean and

population mean. i.e., μ = 4000 hrs.
Alternative hypothesis: μ ≠ 4000 hrs (Two tailed test)

Test statistic: Under H0, the test statistic is t = 
x

n

− μ
S/
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x 4.2 4.6 3.9 4.1 5.2 3.8 3.9 4.3 4.4 5.6

x – x – 0.2 0.2 – 0.5 – 0.3 0.8 – 0.6 – 0.5 – 0.1 0 1.2

(x x)2− 0.04 0.04 0.25 0.09 0.64 0.36 0.25 0.01 0 1.44

x  = 
Σx
n

= 44
10

 = 4.4, Σ( )2x x−  = 3.12

S = 
Σ( )2x x

n
−
− 1

 = 0.589

t = 
x

n

− μ
S/

 = 
4 4 4
0 589

10

.
.

−
F
HG
I
KJ

 = 2.123

For γ = 9, t0.05 = 2.26.
Conclusion. Since the calculated value of t is less than the tabulated value of t at 5%

level of significance. ∴ The null hypothesis μ = 4000 hrs is accepted i.e., the average lifetime
of bulbs could be 4000 hrs.

Example 3. A sample of 20 items has mean 42 units and S.D. 5 units. Test the hypothesis
that it is a random sample from a normal population with mean 45 units.

Sol. Null hypothesis: H0 : There is no significant difference between the sample mean
and the population mean. i.e.,  μ = 45 units

Alternative hypothesis, H1: μ ≠ 45 (Two tailed test)
Given: n = 20, x  = 42, s = 5 ; γ = 19 d.f.
Test statistic: Under H0, the test statistic is

 t = x

s n

−
−
μ

/ 1
 = 

42 45

5 19

−
/

 = – 2.615

∴ | t | = 2.615
The tabulated value of t at 5% level for 19 d.f. is t0.05 = 2.09.
Conclusion. Since the calculated value | t | is greater than the tabulated value of t at

5% level of significance, the null hypothesis H0 is rejected. i.e., there is significant difference
between the sample mean and population mean.
i.e., the sample could not have come from this population.

Example 4. The 9 items of a sample have the following values
45, 47, 50, 52, 48, 47, 49, 53, 51.

Does the mean of these values differ significantly from the assumed mean 47.5?

Sol. Here, n = 9, μ = 47.5, x
x

n
= Σ

 = 49.1

x 45 47 50 52 48 47 49 53 51

x – x – 4.1 – 2.1 0.9 2.9 – 1.1 – 2.1 – .1 3.9 1.9

(x – x )2 16.81 4.41 .81 8.41 1.21 4.41 .01 15.21 3.61

    Σ(x – x )2 = 54.89,

  S2 = 
Σ ( )x x

n
−
−

2

1
 = 6.86

∴ S = 2.619
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Null hypothesis:
H0 : μ = 47.5

i.e., there is no significant difference between the sample and population means.
Alternative hypothesis:

H1 : μ ≠ 47.5
Hence we apply two-tailed test.
Test statistic: Under H0, the test statistic is

 t = 
x

n

− = −μ
S/

. .

( . / )

49 1 47 5

2 619 9
 = 1.8327

 t0.05 = 2.31 for γ = 8
Conclusion: Since |t|calculated < ttabulated at 5% level of significance, the null hypothesis

H0 is accepted i.e., there is no significant difference between their means.

ASSIGNMENT

1. Ten individuals are chosen at random from a normal population of students and their marks are
found to be 63, 63, 66, 67, 68, 69, 70, 70, 71, 71. In the light of these data, discuss the suggestion
that mean mark of the population of students is 66.

2. The following values gives the lengths of 12 samples of Egyptian cotton taken from a consign-
ment : 48, 46, 49, 46, 52, 45, 43, 47, 47, 46, 45, 50. Test if the mean length of the consignment can
be taken as 46.

3. A sample of 18 items has a mean 24 units and standard deviation 3 units. Test the hypothesis
that it is a random sample from a normal population with mean 27 units.

4. A random sample of 10 boys had the I.Q.’s 70, 120, 110, 101, 88, 83, 95, 98, 107 and 100. Do these
data support the assumption of a population mean I.Q. of 160?

3.81 TEST II : t-TEST FOR DIFFERENCE OF MEANS OF TWO SMALL SAMPLES
(from a Normal Population)

This test is used to test whether the two samples x1, x2, ......, xn1
, y1, y2, ......, yn2

of sizes n1, n2

have been drawn from two normal populations with mean μ1 and μ2 respectively under the
assumption that the population variance are equal. (σ1 = σ2 = σ).

H0 : The samples have been drawn from the normal population with means μ1 and μ2
i.e., H0 : μ1 ≠ μ2.

Let x , y  be their means of the two samples.

Under this H0 the test statistic t is given by t = ( )

S

x y

n n

−

+1 1

1 2

Degree of freedom is n1 + n2 – 2.

Note 1. If the two sample’s standard deviations s1, s2 are given then we have S2 = 
n s n s
n n
1 1

2
2 2

2

1 2 2
+

+ −
.

Note 2. If s1, s2 are not given then S2 = 
Σ Σ( ) ( )x x x x

n n
1 1

2
2 2

2

1 2 2
− + −

+ −
 .
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EXAMPLES

Example 1. Two samples of sodium vapour bulbs were tested for length of life and the
following results were got:

Size Sample mean Sample S.D.

Type I 8 1234 hrs 36 hrs

Type II 7 1036 hrs 40 hrs

Is the difference in the means significant to generalise that Type I is superior to Type II
regarding length of life?

Sol. Null hypothesis,
H0 : μ1 = μ2 i.e., two types of bulbs have same lifetime.

Alternative hypothesis,
H1 : μ1 > μ2 i.e., type I is superior to Type II.

Hence we use right tailed test.

S2 = 
n s n s
n n
1 1

2
2 2

2

1 2

2 2

2
8 36 7 40

8 7 2
+

+ −
= +

+ −
( ) ( )

 = 1659.076

∴  S = 40.7317
Test statistic: Under H0, the test statistic t is given by

t = 
x x

n n

1 2

1 2

1 1

−

+S
 = 1234 1036

40 7317
1
8

1
7

−

+.

 = 18.1480

t0.05 at d.f. γ = n1 + n2 – 2 = 13 is 1.77.

Conclusion. Since calculated | t | > ttabulated at 5% level of significance, H0 is rejected.

∴ Type I is definitely superior to Type II.

Example 2. Samples of sizes 10 and 14 were taken from two normal populations with
S.D. 3.5 and 5.2. The sample means were found to be 20.3 and 18.6. Test whether the means of
the two populations are the same at 5% level.

Sol. We have, x1 = 20.3, x2 = 18.6, n1 = 10, n2 = 14, s1 = 3.5, s2 = 5.2

 S2 = 
n s n s
n n

1 1
2

2 2
2

1 2 2
+

+ −
 = 22.775

∴ S = 4.772
Null hypothesis:
H0 : μ1 = μ2 i.e., the means of the two populations are the same.
Alternative hypothesis:
H1 : μ1 ≠ μ2
Test statistic: Under H0, the test statistic is

 t = 
x x

n n

1 2

1 2

1 1

−

+S
 = 20 3 18 6

4 772
1

10
1

14

. .

.

−

+
 = 0.8604

The tabulated value of t at 5% level of significance for 22 d.f. is t0.05 = 2.0739
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Conclusion:
Since t = 0.8604 < t0.05, the null hypothesis H0 is accepted; i.e., there is no significant

difference between their means.
Example 3. The height of 6 randomly chosen sailors in inches are 63, 65, 68, 69, 71 and

72. Those of 9 randomly chosen soldiers are 61, 62, 65, 66, 69, 70, 71, 72 and 73. Test whether
the sailors are on the average taller than soldiers.

Sol. Let X1 and X2 be the two samples denoting the heights of sailors and soldiers.

n1 = 6, n2 = 9

Null hypothesis, H0 : μ1 = μ2.

i.e., the mean of both the population are the same.

Alternative hypothesis, H1 : μ1 > μ2 (one tailed test)

Calculation of two sample means:

X1 63 65 68 69 71 72

X1 – X1 – 5 – 3 0 1 3 4

(X X )1 1
2− 25 9 0 1 9 16

X1 = 
ΣX1

n1
 = 68 ; Σ(X X )1 1

2−  = 60

X2 61 62 65 66 69 70 71 72 73

X2 – X2 – 6.66 – 5.66 – 2.66 1.66 1.34 2.34 3.34 4.34 5.34

(X X )2 2
2− 44.36 32.035 7.0756 2.7556 1.7956 5.4756 11.1556 18.8356 28.5156

    X2  = 
ΣX2

n2
 = 67.66 ; Σ(X X )2 2

2−  = 152.0002

S2 = 
1

21 2
1 1

2 2

n n+ −
− + −[ ( ) ( ) ]Σ ΣX X X X2 2  = 16.3077

∴  S = 4.038

Test statistic:

Under H0,          t = 
X X

S

1 2

1 2

1 1

68 67 666

4 038
1
6

1
9

−

+
= −

+
n n

.

.
 = 0.1569

The value of t at 5% level of significance for 13 d.f. is 1.77. (d.f. = n1 + n2 – 2)

Conclusion. Since tcalculated < t0.05 = 1.77, the null hypothesis H0 is accepted.

i.e., there is no significant difference between their average.

i.e., the sailors are not on the average taller than the soldiers.
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ASSIGNMENT

1. The mean life of 10 electric motors was found to be 1450 hrs with S.D. of 423 hrs. A second
sample of 17 motors chosen from a different batch showed a mean life of 1280 hrs with a S.D. of
398 hrs. Is there a significant difference between means of the two samples?

2. The marks obtained by a group of 9 regular course students and another group of 11 part time
course students in a test are given below:

Regular: 56 62 63 54 60 51  67 69 58

Part time: 62 70 71 62 60  56 75 64 72 68 66

Examine whether the marks obtained by regular students and part time students differ signifi-
cantly at 5% and 1% level of significance.

3. A group of 5 patients treated with the medicine A weigh 42, 39, 48, 60 and 41 kgs. A second group
of 7 patients from the same hospital treated with medicine B weigh 38, 42, 56, 64, 68, 69 and
62 kgs. Do you agree with the claim that medicine B increases the weight significantly? It is
given that the value of t at 10% level of significance for 10 degree of freedom is 1.81.

[G.B.T.U. (B. Pharm.) 2010]
4. Two independent samples of sizes 7 and 9 have the following values:

Sample A: 10 12 10 13 14 11 10
Sample B: 10 13 15 12 10 14 11 12 11
Test whether the difference between the mean is significant.

5. The average no. of articles produced by two machines per day are 200 and 250 with standard
deviations 20 and 25 respectively on the basis of records of 25 days production. Can you regard
both the machines equally efficient at 5% level of significance?

3.82 CHI-SQUARE (χ2) TEST [G.B.T.U. 2010 ; G.B.T.U. MCA (SUM) 2010]

When a coin is tossed 200 times, the theoretical considerations lead us to expect 100 heads
and  100  tails.  But  in  practice,  these  results  are  rarely  achieved.  The quantity χ2 (a Greek
letter, pronounced as chi-square) describes the magnitude of discrepancy between theory and
observation. If χ2 = 0, the observed and expected frequencies completely coincide. The greater
the discrepancy between the observed and expected frequencies, the greater is the value of χ2.
Thus χ2 affords a measure of the correspondence between theory and observation.

If Oi (i = 1, 2, ......, n) is a set of observed (experimental) frequencies and Ei (i = 1, 2, ......, n)
is the corresponding set of expected (theoretical or hypothetical) frequencies, then, χ2 is de-
fined as

χ2 = 
i

n
i i

i=
∑ −L
NMM

O
QPP1

2( )O E
E

where ΣOi = ΣEi = N (total frequency) and degrees of freedom (d.f.) = (n – 1).
Note.  (i) If χ2 = 0, the observed and theoretical frequencies agree exactly.

  (ii) If χ2 > 0 they do not agree exactly.

3.83 DEGREES OF FREEDOM

While comparing the calculated value of χ2 with the tabular value, we have to determine the
degrees of freedom.
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If we have to choose any four numbers whose sum is 50, we can exercise our independ-
ent choice for any three numbers only, the fourth being 50 minus the total of the three num-
bers selected. Thus, though we were to choose any four numbers, our choice was reduced to
three because of one condition imposed. There was only one restraint on our freedom and our
degrees of freedom were 4 – 1 = 3. If two restrictions are imposed, our freedom to choose will
be further curtailed and degrees of freedom will be 4 – 2 = 2.

In general, the number of degrees of freedom is the total number of observations less
the number of independent constraints imposed on the observations. Degrees of freedom (d.f.)
are usually denoted by ν.

Thus, ν = n – k, where k is the number of independent constraints in a set of data of n
observations.
Note. (i) For a p × q contingency table (p columns and q rows), ν = (p – 1) (q – 1)

(ii) In the case of a contingency table, the expected frequency of any class

= Total of rows in which it occurs Total of columns in which it occurs
Total number of observations

×

3.84 APPLICATIONS OF CHI-SQUARE TEST

χ2 test is one of the simplest and the most general test known. It is applicable to a very large
number of problems in practice which can be summed up under the following heads:

(i) as a test of goodness of fit.
(ii) as a test of independence of attributes.

(iii) as a test of homogeneity of independent estimates of the population variance.
(iv) as a test of the hypothetical value of the population variance σ2.
(v) as a list to the homogeneity of independent estimates of the population correlation

coefficient.

3.85 CONDITIONS FOR APPLYING χ2 TEST

χ2-test is an approximate test for large values of n. For the validity of chi-square test of goodness
of fit between theory and experiment, the following conditions must be satisfied.

(a) The sample observations should be independent.
(b) The constraints on the cell frequencies, if any, should be linear e.g., Σni = Σλi

or ΣOi = ΣEi.
(c) N, the total number of frequencies should be reasonably large. It is difficult to say

what constitutes largeness, but as an arbitrary figure, we may say that N should be atleast
50, however, few the cells.

(d) No theoretical cell-frequency should be small. Here again, it is difficult to say what
constitutes smallness, but 5 should be regarded as the very minimum and 10 is better. If
small theoretical frequencies occur (i.e., < 10), the difficulty is overcome by grouping two or
more classes together before calculating (O – E). It is important to remember that the
number of degrees of freedom is determined with the number of classes after
regrouping.
Note 1. If any one of the theoretical frequency is less than 5, then we apply a corrected given by F Yates,
which is usually known as ‘Yates correction for continuity’, we add 0.5 to the cell frequency which is less
than 5 and adjust the remaining cell frequency suitably so that the marginal total is not changed.
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Note 2. It may be noted that the χ2-test depends only on the set of observed and expected frequencies
and on degrees of freedom (d.f.). It does not make any assumption regarding the parent population from
which the observations are taken. Since χ2 does not involve any population parameters, it is termed as
a statistic and the test is known as Non-parametric test or Distribution-free test.

3.86 THE χ2 DISTRIBUTION

For large sample sizes, the sampling distribution of χ2 can be closely approximated by a
continuous curve known as the chi-square distribution. The probability function of χ2

distribution is given by

f(χ2) = c(χ2)(ν/2–1) e x− 2 2/

where e = 2.71828, ν = number of degrees of freedom ; c = a constant depending only on ν.
Symbolically, the degrees of freedom are denoted by the symbol ν or by d.f. and are

obtained by the rule ν = n – k, where k refers to the number of independent constraints.
In general, when we fit a binomial distribution the number of degrees of freedom is one

less than the number of classes ; when we fit a Poisson distribution the degrees of freedom are
2 less than the number of classes, because we use the total frequency and the arithmetic mean
to get the parameter of the Poisson distribution. When we fit a normal curve the number of
degrees of freedom are 3 less than the number of classes, because in this fitting we use the
total frequency, mean and standard deviation.

If the data is given in a series of “n” numbers then degrees of freedom = n – 1.
In the case of Binomial distribution d.f. = n – 1
In the case of Poisson distribution d.f. = n – 2
In the case of Normal distribution d.f. = n – 3.

3.87 χ2 TEST AS A TEST OF GOODNESS OF FIT

χ2 test enables us to ascertain how well the theoretical distributions such as Binomial, Poisson
or Normal etc. fit empirical distributions, i.e., distributions obtained from sample data. If the
calculated value of χ2 is less than the tabular value at a specified level (generally 5%) of
significance, the fit is considered to be good i.e., the divergence between actual and expected
frequencies is attributed to fluctuations of simple sampling. If the calculated value of χ2 is
greater than the tabular value, the fit is considered to be poor.

EXAMPLES

Example 1. In experiments on pea breeding, the following frequencies of seeds were
obtained:

Round and Wrinkled and Round and Wrinkled and Total
yellow yellow green green

315 101 108 32 556

Theory predicts that the frequencies should be in proportions 9 : 3 : 3 : 1. Examine the
correspondence between theory and experiment.

Sol. Null hypothesis:

H0 : The experimental result support the theory i.e., there is no significant difference
between the observed and theoretical frequency.
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Under H0, The theoretical (expected) frequencies can be calculated as follows:

 E1 = 556 9
16

×  = 312.75 E2 = 556 3
16

×  = 104.25

 E3 = 
556 3

16
×

 = 104.25 E4 = 
556 1

16
×

 = 34.75

To calculate the value of χ2:

Observed frequency Oi 315 101 108 32

Expected Frequency Ei 312.75 104.25 104.25 34.75

(O E )
E

i i
2

i

−
0.016187 0.101319 0.134892 0.217626

 χ2 =  ∑ −L
N
MM

O
Q
PP

( )O E
E

i i

i

2
 = 0.470024

Tabular value of χ2 at 5% level of significance for n – 1 = 3 d.f. is 7.815 i.e., χ2
0.05 = 7.815.

Conclusion: Since the calculated value of χ2 is less than that of the tabulated value,
hence H0 is accepted. Therefore, the experimental results support the theory.

Example 2. The following table gives the number of accidents that took place in an
industry during various days of the week. Test if accidents are uniformly distributed over the
week.

Day Mon Tue Wed Thu Fri Sat

No. of accidents 14 18 12 11 15 14

Sol. Null hypothesis H0: The accidents are uniformly distributed over the week.

Under this H0, the expected frequencies of the accidents on each of these days = 
84
6

 = 14

Observed frequency Oi 14 18 12 11 15 14

Expected frequency Ei 14 14 14 14 14 14

(Oi – Ei)
2 0 16 4 9 1 0

 χ2 = ∑ −L
NMM

O
QPP

=
−

=
( ) ( )O E

E
O E

E
i i

i

i i

i

2 2 30
14

Σ
 = 2.1428.

Tabular value of χ2 at 5% level for (6 – 1 = 5 d.f.) is 11.09.
Conclusion: Since the calculated value of χ2 is less than the tabulated value, H0 is

accepted i.e., the accidents are uniformly distributed over the week.
Example 3. A die is thrown 276 times and the results of these throws are given below:

No. appeared on the die 1 2 3 4 5 6

Frequency 40 32 29 59 57 59

Test whether the die is biased or not.
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Sol. Null hypothesis H0: Die is unbiased.

Under this H0, the expected frequencies for each digit is 
276

6
 = 46.

To find the value of χ2

Oi 40 32 29 59 57 59

Ei 46 46 46 46 46 46

(Oi – Ei)
2 36 196 289 169 121 169

 χ2 = ∑ −L
NMM

O
QPP

( )O E
E

i i

i

2

 = 
Σ( )O E

E
i i

i

− 2

 = 
980
46

 = 21.30.

Tabulated value of χ2 at 5% level of significance for (6 – 1 = 5) d.f. is 11.09.
Conclusion. Since the calculated value of χ2 = 21.30 > 11.07 the tabulated value, H0 is

rejected. i.e., die is not unbiased or die is biased.
Example 4. Records taken of the number of male and female births in 800 families

having four children are as follows: [U.P.T.U. (MCA) 2009]

No. of male births 0 1 2 3 4

No. of female births 4 3 2 1 0

No. of families 32 178 290 236 64

Test whether the data are consistent with the hypothesis that the Binomial law holds
and the chance of male birth is equal to that of female birth, namely p = q = 1/2.

Sol. Null hypothesis H0: The data are consistent with the hypothesis of equal
probability for male and female births. i.e., p = q = 1/2.

We use Binomial distribution to calculate theoretical frequency given by:
 N(r) = N × P(X = r) = N × nCr p

rqn–r

where N is the total frequency, N(r) is the number of families with r male children,
p and q are probabilities of male and female births respectively, n is the number of

children.

N(0) = 800 × 4C0 
1
2

4F
HG
I
KJ  = 50, N(1) = 200, N(2) = 300, N(3) = 200 and N(4) = 50

Observed frequency Oi 32 178 290 236 64

Expected frequency Ei 50 200 300 200 50

(Oi – Ei)
2 324 484 100 1296 196

(O E )
E

i i
2

i

−
6.48 2.42 0.333 6.48 3.92

χ2 = ∑ −L
NMM

O
QPP

( )O E
E

i i

i

2

 = 19.633.

Tabulated value of χ2 at 5% level of significance for 5 – 1 = 4 d.f. is 9.49.
Conclusion. Since the calculated value of χ2 is greater than the tabulated value, H0 is

rejected. i.e., the data are not consistent with the hypothesis that the Binomial law holds and
that the chance of a male birth is not equal to that of a female birth.
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Example 5. The theory predicts the proportion of beans in the four groups, G1, G2, G3,
G4 should be in the ratio 9 : 3 : 3 : 1. In an experiment with 1600 beans the numbers in the four
groups were 882, 313, 287 and 118. Does the experimental result support the theory?

Sol. Null hypothesis H0: The experimental result support the theory. i.e., there is no
significant difference between the observed and theoretical frequency.

Under H0, the theoretical frequency can be calculated as follows:

 E(G1) = 
1600 9

16
×

 = 900; E(G2) = 
1600 3

16
×

 = 300;

 E(G3) = 
1600 3

16
×

 = 300; E(G4) = 
1600 1

16
×

 = 100

To calculate the value of χ2.

Observed frequency Oi 882 313 287 118

Expected frequency Ei 900 300 300 100

(O E )
E

i i
2

i

−
0.36 0.5633 0.5633 3.24

χ2 = 
( )O E

E
i i

i

−L
NMM

O
QPP∑

2

 = 4.7266.

Tablular value of χ2 at 5% level of significance for 3 d.f. is 7.815.

Conclusion: Since the calculated value of χ2 is less than that of the tabulated value,
hence H0 is accepted. i.e., the experimental results support the theory.

Example 6. The following table shows the distribution of digits in numbers chosen at
random from a telephone directory:

Digits 0 1 2 3 4 5 6 7 8 9

Frequency 1026 1107 997 966 1075 933 1107 972 964 853

Test whether the digits may be taken to occur equally frequently in the directory.

[G.B.T.U. (MCA) 2011]

Sol. Null hypothesis:

H0 : The digits taken in the directory occur equally frequently i.e., there is no signifi-
cant difference between the observed and expected frequency.

Under H0, the expected frequency = 
10000

10
 = 1000

Calculation of χχχχχ2

Oi 1026 1107 997 966 1075 933 1107 972 964 853

Ei 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

(Oi – Ei)
2 676 11449 9 1156 5625 4489 11449 784 1296 21609
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 χ2 = ∑ −L
NMM

O
QPP

=
( )O E

E
i i

i

2 58542
1000

 = 58.542

The tabulated value of χ2 at 5% level of significance for 9 d.f. is 16.919.

Conclusion: Since χ2
calculated > χ2

tabulated, H0 is rejected i.e., there is significant difference
between the observed and theoretical frequencies. Therefore, the digits taken in the directory
donot occur equally frequently.

Example 7. When the first proof of 392 pages of a book of 1200 pages were read, the
distribution of printing mistakes were found to be as follows:

No. of mistakes in a page (x): 0 1 2 3 4 5 6

No. of pages (f): 275 72 30 7 5 2 1

Fit a poisson distribution to the above data and test the goodness of fit.

Sol. Null Hypothesis, H0 : Poisson distribution is a good fit to the data.

 Mean (λ) = ∑
∑

=
fx

f

189
392

 = 0.4821

The frequency of x mistakes per page is given by the poisson law as follows:

N(x) = N . P(x)

= 392 e
x

x−L
NM

O
QP

0.4821 0 4821( . )
!

 = 
242 05 0 4821. ( . )

!

x

x
 ; 0 ≤ x ≤ 6

Under H0, expected frequencies are,

N(0) = 242.05, N(1) = 116.69, N(2) = 28.13, N(3) = 4.52

N(4) = 0.54, N(5) = 0.052, N(6) = 0.0042

The χ2-table is as follows:

Mistakes Observed frequency Expected frequency (Oi – Ei)
2

per page (Oi) (Ei)
(O E )

E

2
i i

i

−

(x) (correct to one
place of decimal)

0 275 242.1 1082.41 4.471
1 72 116.7 1998.09 17.121
2 30 28.1 3.61 0.128
3 7 4.5
4 5 0.5
5  2 0.1 98.01 19.217
6 1 0

Total 392 392 40.937

U
V|

W|
15

U
V|

W|
5.1
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χcal.
O E

E
2

2

=
−L

NMM
O
QPP∑ ( )i i

i
 = 40.937

d.f. = 7 – 1 – 1 – 3 = 2
One d.f. is lost because of linear constraint ΣOi = ΣEi. One d.f. is lost because the

parameter λ has been estimated from the given data and is then used for computing the
expected frequencies. 3 d.f. are lost because of grouping the last four expected cell frequencies
which were less than 5.

Tabulated value of χ2 for 2 d.f. at 5% level of significance is 5.991.

Conclusion : Since χ χcal. tab.
22 > , the null hypothesis is rejected at 5% level of significance.

Hence, we conclude that poisson distribution is not a good fit to the given data.
Example 8. Fit a Poisson distribution to the following data and best the goodness of fit :
x : 0 1 2 3 4
f : 109 65 22 3 1
Sol. Null hypothesis, H0: Poisson distribution is a good fit to the data.

Mean (λ) = Σ
Σ

fx
f

= 122
200

 = 0.61

N(x) = N . P(x) = (200) 
e

x x

x x−
=

. (. )
!

( . ) ( . )
!

61 61 108 67 0 61

Under H0, expected frequencies are

N(0) = 108.67 ≈ 109, N(1) = 66.29 ≈ 66, N(2) = 20.22 ≈ 20

N(3) = 4.11 ≈ 4, N(4) = 0.63 ≈ 1

The χ2-table is as follows:

x Oi Ei (Oi – Ei)
2 (O E )

E
i i

2

i

−

0 109 109 0 0
1 65 66 1 0.01515
2 22 20 4 0.2
3 3 4
4 1 1

1 0.2

Total 200 200 0.41515

χcal

2(O E )
E.

2 =
−L

NMM
O
QPP∑ i i

i
 = 0.41515

d.f. = 5 – 1 – 1 – 1 = 2
Tabulated value of χ2 for 2 d.f. at 5% level of significance is 5.991.

Conclusion: Since χ χcal. tab.
22 < , the null hypothesis H0 is accepted at 5% level of

significance. Hence we conclude that Poisson distribution is a good fit to the given data.

UVW 4
UVW 5
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ASSIGNMENT

1. A sample analysis of examination results of 500 students, it was found that 220 students have
failed, 170 have secured a third class, 90 have secured a second class and the rest, a first class.
Do these figures support the general belief that above categories are in the ratio 4 : 3 : 2 : 1
respectively ? (The tabular value of χ2 for d.f. 3 at 5% level of significance is 7.81).

[U.P.T.U. (MBA) 2009]
2. What is χ2–test? [G.B.T.U. 2010 ; G.B.T.U. MCA (C.O.) 2010]

A die is thrown 90 times with the following results:
Face: 1 2 3 4 5 6 Total
Frequency: 10 12 16 14 18 20 90
Use χ2-test to test whether these data are consistent with the hypothesis that die is unbiased.
Given χ2

0.05 = 11.07 for 5 degrees of freedom. [U.P.T.U. (MCA) 2007]
3. A survey of 320 families with 5 children shows the following distribution:

No. of boys 5 boys 4 boys 3 boys 2 boys 1 boy 0 boy Total
& girls: & 0 girl & 1 girl & 2 girls & 3 girls & 4 girls & 5 girls
No. of
families: 18 56 110 88 40 8 320
Given that values of χ2 for 5 degrees of freedom are 11.1 and 15.1 at 0.05 and 0.01 significance
level respectively, test the hypothesis that male and female births are equally probable.

(G.B.T.U. 2010)
4. A chemical extraction plant processes sea water to collect sodium chloride and magnesium. It is

known that sea water contains sodium chloride, magnesium and other elements in the ratio
62 : 4 : 34. A sample of 200 tonnes of sea water has resulted in 130 tonnes of sodium chloride and
6 tonnes of magnesium. Are these data consistent with the known composition of sea water at 5%
level of significance? (Given that the tabular value of χ2 is 5.991 for 2 degree of freedom).

[U.P.T.U. MCA (C.O.) 2008]
5. The demand for a particular spare part in a factory was found to vary from day-to-day. In a

sample study, the following information was obtained:
Days: Mon Tue Wed Thurs Fri Sat
No. of parts demanded: 1124 1125 1110 1120 1126 1115
Test the hypothesis that the number of parts demanded does not depend on the day of the week.
[Given. The values of chi-square significance at 5, 6, 7 d.f. are respectively 11.07, 12.59, 14.07 at
5% level of significance] (G.B.T.U. 2011)

6. The sales in a supermarket during a week are given below. Test the hypothesis that the sales
donot depend on the day of the week using a significant level of 0.05.

Days Mon Tue Wed Thurs Fri Sat

Sales 65 54 60 56 71 84
(in 1000 `)

7. 4 coins were tossed at a time and this operation is repeated 160 times. It is found that 4 heads
occur 6 times, 3 heads occur 43 times, 2 heads occur 69 times, one head occur 34 times. Discuss
whether the coin may be regarded as unbiased?

8. 200 digits are chosen at random from a set of tables. The frequencies of the digits were :
Digits: 0 1 2 3 4 5 6 7 8 9
Frequency: 18 19 23 21 16 25 22 20 21 15
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Use χ2-test to assess the correctness of the hypothesis that the digits were distributed in equal
numbers in the table, given that the value of χ2 are respectively 16.9, 18.3 and 19.7 for 9, 10 and
11 degrees of freedom at 5% level of significance.

9. A genetical law says that children having one parent of blood group M and the other parent of
blood group N will always be one of the three blood groups M, MN, N and that the average no. of
children in these groups will be in the ratio 1 : 2 : 1. The report on an experiment states as
follows:

“Of 162 children having one M parent and one N parent, 28.4%  were found to be of group M, 42%
of group MN and the rest of the group N.” Do the data in the report conform to the expected
genetic ratio 1 : 2 : 1?

10. Every clinical thermometer is classified into one of the four categories A, B, C and D on the basis
of inspection and test. From past experience, it is knwon that thermometers produced by a certain
manufacturer are distributed among the four categories in the following proportions:

Category: A B C D

Proportion: 0.87 0.09 0.03 0.01

A new lot of 1336 thermometers is submitted by the manufacturer for inspection and test and the
following distribution into four categories results :

Category: A B C D

No. of the rmometers reported: 1188 91 47 10

Does this new lot of thermometers differ from the previous experience with regards to proportion
of thermometers in each category?

11. Test for goodness of fit of a poisson distribution at 5% level of significance to the following frequency
distribution:

(i) x: 0 1 2 3 4 5 6 7 8

f: 52 151 130 102 45 12 5 1 2

[Hint. Group the last three frequencies]

(ii) x: 0 1 2 3 4 5 6 7 8 9 10 11 12 13

f: 3 15 47 76 68 74 46 39 15 9 5 2 0 1

[Hint. Group the first two and last four frequencies]

(iii) x: 0 1 2 3 4 5

f: 275 138 75 7 4 1

[Hint. Club the last three frequencies]

(iv) x: 0 1 2 3 4

f: 419 352 154 56 19

12. (i) Fit a binomial distribution to the data and test for goodness of fit at 5% level of significance.

x: 0 1 2 3 4 5

y: 38 144 342 287 164 25

(ii) A random number table of 250 digits showed the following distribution of digits 0, 1, 2, ..., 9.

Digit: 0 1 2 3 4 5 6 7 8 9

Observed: 17 31 29 18 14 20 35 30 20 36

Frequency

Expected: 25 25 25 25 25 25 25 25 25 25

Frequency

Does the observed distribution differ significantly from expected distributions using a significance
level of 0.01? Given that χ2

0.99 for 9 degrees of freedom is 21.7. [G.B.T.U. MCA (SUM) 2010]
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Answers
1. No 2. Yes

3. H0 accepted at 1% level of significance and rejected at 5% level of significance

4. χ2 = 1.025, Yes 5. H0 accepted at 5% level 6. H0 accepted

7. Coin is unbiased 8. H0 accepted at 5% level 9. H0 accepted at 5% level

10. H0 rejected at 5% level

11. (i) H0 accepted at 5% level, (ii) H0 accepted at 5% level, (iii) H0 rejected at 5% level, not a good fit.

(iv) H0 accepted at 5% level

12. (i) H0 accepted at 5% level, provides a good fit (ii) Yes.

3.88 χ2 TEST AS A TEST OF INDEPENDENCE

With the help of χ2 test, we can find whether or not, two attributes are associated. We take the
null hypothesis that there is no association between the attributes under study, i.e., we assume
that the two attributes are independent. If the calculated value of χ2 is less than the
table value at a specified level (generally 5%) of significance, the hypothesis holds good, i.e.,
the attributes are independent and do not bear any association. On the other hand, if the
calculated value of χ2 is greater than the table value at a specified level of significance, we say
that the results of the experiment do not support the hypothesis. In other words, the attributes
are associated. Thus a very useful application of χ2 test is to investigate the relationship
between trials or attributes which can be classified into two or more categories.

The sample data set out into two-way table, called contingency table.
Let us consider two attributes A and B divided into r classes A1, A2, A3, ......, Ar and B

divided into s classes B1, B2, B3, ......, Bs. If (Ai), (Bj) represents the number of persons possess-
ing the attributes Ai, Bj respectively, (i = 1, 2, ......, r, j = 1, 2, ......, s) and (Ai Bj) represent the

number of persons possessing attributes Ai and Bj. Also we have 
i

r

i
j

s

j
= =
∑ ∑=

1 1

A B  = N where N

is the total frequency. The contingency table for r × s is given as follows:

A A1 A2 A3 ...Ar Total

B

B1 (A1B1) (A2B1) (A3B1) ......(ArB1) B1

B2 (A1B2) (A2B2) (A3B2) ......(ArB2) B2

B3 (A1B3) (A2B3) (A3B3) ......(ArB3) B3

...... ...... ...... ...... ...... ......

...... ...... ...... ...... ...... ......

Bs (A1Bs) (A2Bs) (A3Bs) ......(ArBs) (Bs)

Total (A1) (A2) (A3) ......(Ar) N

H0 : Both the attributes are independent. i.e., A and B are independent under the null
hypothesis, we calculate the expected frequency as follows:

P(Ai) = Probability that a person possesses the attribute Ai = 
( )A
N

i  i = 1, 2, ......, r
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P(Bj) = Probability that a person possesses the attribute Bj = 
( )B

N
j

P(AiBj) = Probability that a person possesses both attributes Ai and Bj = 
( )A B

N
i j

If (AiBj)0 is the expected number of persons possessing both the attributes Ai and Bj

(AiBj)0 = NP(AiBj) = NP(Ai)(Bj)

= N 
( ) ( ) ( )( )A

N

B

N

A B

N
i j i j=        (∵ A and B are independent)

Hence  χ2 = 
i

r

j

s
i j i j

i j= =
∑ ∑

−L
N
MM

O
Q
PP1 1

0
2

0

[( ) ( ) ]

( )

A B A B

A B

which is distributed as a χ2 variate with (r – 1)(s – 1) degrees of freedom.

Note 1. For a 2 × 2 contingency table where the frequencies are 
a b
c d
/
/

, χ2 can be calculated from independent

frequencies as χ2 = 
( )( )

( )( )( )( )
a b c d ad bc

a b c d b d a c
+ + + −

+ + + +

2
.

Note 2. If the contingency table is not 2 × 2, then the above formula for calculating χ2 can’t be used.

Hence, we have another formula for calculating the expected frequency (AiBj)0 = 
( )( )A B

N
i j

i.e., expected frequency in each cell is = 
Product of column total and row total

whole total
.

Note 3. If   
a b
c d
|
|  is the 2 × 2 contingency table with two attributes, Q = 

ad bc
ad bc

−
+

 is called the coefficient

of association. If the attributes are independent then 
a
b

c
d

= .

Note 4. Yates’s Correction. In a 2 × 2 table, if the frequencies of a cell is small, we make Yates’s

correction to make χ2 continuous. Decrease by 
1
2

 those cell frequencies which are greater than expected

frequencies, and increase by 
1
2

 those which are less than expectation. This will not affect the marginal

columns. This correction is known as Yates’s correction to continuity. After Yates’s correction

 χ2 = 
N Nbc ad

a c b d c d a b

− −F
HG

I
KJ

+ + + +

1
2

2

( )( )( )( )
when ad – bc < 0

and      χ2 = 
N Nad bc

a c b d c d a b

− −F
HG

I
KJ

+ + + +

1
2

2

( )( )( )( )
when ad – bc > 0.
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EXAMPLES

Example 1. What are the expected frequencies of 2 × 2 contingency tables given below:

a b 2 10
(i) (ii)

c d 6 6

Sol. Observed frequencies Expected frequencies

(i) a b a + b ( )( )a c a b
a b c d

+ +
+ + +

( )( )b d a b
a b c d

+ +
+ + +

c d c + d

a + c b + d a + b + c + d = N
( )( )a c c d
a b c d

+ +
+ + +

( )( )b d c d
a b c d

+ +
+ + +

Observed frequencies Expected frequencies

(ii) 2 10 12
8 12

24
×

 = 4
16 12

24
×

 = 8

6 6 12

8 16 24
8 12

24
×

 = 4
16 12

24
×

 = 8

Example 2. From the following table regarding the colour of eyes of father and son, test
if the colour of son’s eye is associated with that of the father.

Eye colour of son

Light Not light

Eye colour of father Light 471 51

Not light 148 230

Sol. Null hypothesis H0: The colour of son’s eye is not associated with that of the
father. i.e., they are independent.

Under H0, we calculate

the expected frequency in each cell = 
Product of column total and row total

whole total

→

→
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Expected frequencies are:

Eye colour
of son Light Not light Total

Eye colour
of father

Light
619 522

900
×

 = 359.02
289 522

900
×

 = 167.62 522

Not light
619 378

900
×

 = 259.98
289 378

900
×

 = 121.38 378

Total 619 289 900

χ2 = 
(471 359.02)

359.02
(51 167.62)

167.62
(148 259.98)

259.98
(230 121.38)

121.38

2 2 2 2− + − + − + −
 = 261.498.

Tabulated value of χ2 at 5% level for 1 d.f. is 3.841.
Conclusion. Since the calculated value of χ2 > tabulated value of χ2, H0 is rejected.

They are dependent i.e., the colour of son’s eye is associated with that of the father.
Example 3. The following table gives the number of good and bad parts produced by

each of the three shifts in a factory:

Good parts Bad parts Total

Day shift 960 40 1000

Evening shift 940 50 990

Night shift 950 45 995

Total 2850 135 2985

Test whether or not the production of bad parts is independent of the shift on which they
were produced.

Sol. Null hypothesis H0. The production of bad parts is independent of the shift on
which they were produced. i.e., the two attributes, production and shifts are independent.

Under H0, χ2 = 
i j

i j i j

i j= =
∑ ∑

−L
N
MM

O
Q
PP1

2

1

3
0

2

0

[( ) ( )]

( )

A B A B

A B

Calculation of expected frequencies
Let A and B be the two attributes namely production and shifts. A is divided into two

classes A1, A2 and B is divided into three classes B1, B2, B3.

 (A1B1)0 = 
( )( ) ( ) ( )A B

N
1 1 2850 1000

2985
= ×

 = 954.77

 (A1B2)0 = 
( )( ) ( ) ( )A B

N
1 2 2850 990

2985
= ×

 = 945.226

 (A1B3)0 = 
( )( ) ( ) ( )A B

N
1 3 2850 995

2985
= ×

 = 950

 (A2B1)0 = 
( )( ) ( ) ( )A B

N
2 1 135 1000

2985
= ×

 = 45.27
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 (A2B2)0 = 
( )( ) ( ) ( )A B

N
2 2 135 990

2985
= ×

 = 44.773

 (A2B3)0 = 
( )( ) ( ) ( )A B

N
2 3 135 995

2985
= ×

 = 45.

To calculate the value of χ2

Class Oi Ei (Oi – Ei)
2 (Oi – Ei)

2/Ei

(A1B1) 960 954.77 27.3529 0.02864

(A1B2) 940 945.226 27.3110 0.02889

(A1B3) 950 950 0 0

(A2B1) 40 45.27 27.7729 0.61349

(A2B2) 50 44.773 27.3215 0.61022

(A2B3) 45 45 0 0

1.28126

The tabulated value of χ2 at 5% level of significance for 2 degrees of freedom (r – 1)
(s – 1) is 5.991.

Conclusion: Since the calculated value of χ2 is less than the tabulated value, we accept
H0. i.e., the production of bad parts is independent of the shift on which they were produced.

Example 4. From the following data, find whether hair colour and sex are associated.

Colour Fair Red Medium Dark Black Total
Sex

Boys 592 849 504 119 36 2100

Girls 544 677 451 97 14 1783

Total 1136 1526 955 216 50 3883

Sol. Null hypothesis H0. The two attributes hair colour and sex are not associated.

i.e., they are independent.

Let A and B be the attributes hair colour and sex respectively. A is divides into 5 classes
(r = 5). B is divided into 2 classes (s = 2).

∴ Degrees of freedom = (r – 1)(s – 1) = (5 – 1)(2 – 1) = 4

Under H0, we calculate χ2 = 
i j

i j i j

i j= =
∑ ∑

−

1

5

1

2
0

2

0

[( ) ( )]

( )

A B A B

A B

To calculate the expected frequency (Ai Bj)0 as follows:

(A1B1)0 = 
(A )(B )

N
1 1 = ×1136 2100

3883
 = 614.37
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(A1B2)0 = 
(A )(B )

N
1 2 = ×1136 1783

3883
= 521.629

(A2B1)0 = 
(A )(B )

N
2 1 = ×1526 2100

3883
 = 852.289

(A2B2)0 = 
(A )(B )

N
2 2 = ×1526 1783

3883
 = 700.71

(A3B1)0 = 
(A )(B )

N
3 1 = ×955 2100

3883
 = 516.482

(A3B2)0 = 
(A )(B )

N
3 2 = ×955 1783

3883
 = 483.517

(A4B1)0 = 
(A )(B )

N
4 1 = ×216 2100

3883
 = 116.816

(A4B2)0 = 
(A )(B )

N
4 2 = ×216 1783

3883
 = 99.183

(A5B1)0 = 
(A )(B )

N
5 1 = ×50 2100

3883
 = 27.04

(A5B2)0 = 
(A )(B )

N
5 2 = ×50 1783

3883
 = 22.959

Calculation of χχχχχ2

Class Oi Ei (Oi – Ei)
2

(O E )
E

i i
2

i

−

A1B1 592 614.37 500.416 0.8145

A1B2 544 521.629 500.462 0.959

A2B1 849 852.289 10.8175 0.0127

A2B2 677 700.71 562.1641 0.8023

A3B1 504 516.482 155.800 0.3016

A3B2 451 438.517 155.825 0.3553

A4B1 119 116.816 4.7698 0.0408

A4B2 97 99.183 4.7654 0.0480

A5B1 36 27.04 80.2816 2.9689

A5B2 14 22.959 80.2636 3.495

9.79975
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χcal.
2  = 9.799.

Tabular value of χ2 at 5% level of significance for 4 d.f. is 9.488.

Conclusion: Since the calculated value of χ2 < tabulated value, H0 is rejected. i.e., the
two attributes are not independent. i.e., the hair colour and sex are associated.

Example 5. Can vaccination be regarded as preventive measure of small pox as evi-
denced by the following data of 1482 persons exposed to small pox in a locality. 368 in all were
attacked of these 1482 persons and 343 were vaccinated and of these only 35 were attacked.

Sol. For the given data we form the contingency table. Let the two attributes be vacci-
nation and exposed to small pox. Each attributes is divided into two classes.

Vaccination A
Disease small Vaccinated Not Total
pox B

Attacked 35 333 368

Not 308 806 1114

Total 343 1139 1482

Null  hypothesis  H0.  The  two  attributes  are  independent  i.e.,  vaccination  can’t  be
regarded as preventive measure of small pox.

Degrees of freedom ν = (r – 1)(s – 1) = (2 – 1)(2 – 1) = 1

Under H0, χ2 = 
i j

i j i j

i j= =
∑ ∑

−

1

2

1

2
0

2

0

[( ) ( )]

( )

A B A B

A B

Calculation of expected frequency

(A1B1)0 = 
(A )(B )

N
1 1 = ×343 368

1482
 = 85.1713

(A1B2)0 = 
(A )(B )

N
1 2 = ×343 1114

1482
 = 257.828

(A2B1)0 = 
(A )(B )

N
2 1 = ×1139 368

1482
 = 282.828

(A2B2)0 = 
(A )(B )

N
2 2 = ×1139 1114

1482
 = 856.171

Calculation of χχχχχ2

Class Oi Ei (Oi – Ei)
2 (O E )

E
i i

2

i

−

(A1B1) 35 85.1713 2517.159 29.554

(A1B2) 308 257.828 2517.229 8.1728

(A2B1) 333 282.828 2517.2295 7.5592

(A2B2) 806 856.171 2517.1292 2.9399

48.2261
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Calculated value of χ2 = 48.2261.
Tabulated value of χ2 at 5% level of significance for 1 d.f. is 3.841.
Conclusion. Since the calculated value of χ2 > tabulated value, H0 is rejected.
i.e., the two attributes are not independent. i.e., the vaccination can be regarded as

preventive measure of small pox.
Example 6. To test the effectiveness of inoculation against cholera, the following table

was obtained:

Attacked Not attacked Total

Inoculated 30 160 190

Not inoculated 140 460 600

Total 170 620 790

(The figures represent the number of persons.)
Use χ2-test to defend or refute the statement that the inoculation prevents attack from

cholera. (U.P.T.U. 2009)
Sol. Null hypothesis H0: The inoculation does not prevent attack from cholera.
Under H0, we calculate the expected frequencies as:

Attacked Not attacked

Inoculated
190 170

790
×

 = 40.886
190 620

790
×

 = 149.11

Not inoculated
600 170

790
×

 = 129.11
600 620

790
×

 = 470.89

Calculation  of χ2

Oi 30 160 140 460

Ei 40.886 149.11 129.11 470.89

(O E )
E

i i
2

i

−
2.898 0.795 0.918 0.252

χcal.
2

2(O E )
E

=
−∑ i i

i
 = 4.863

Tabulated value of χ2 at 5% level of significance for 1 d.f. is 3.841.

Conclusion: Since χ χcal.
2

tab.
2>  at 5% level of significance, null hypothesis H0 is rejected.

Hence we defend the statement that inoculation prevents attack from cholera.
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ASSIGNMENT

1. In a locality 100 persons were randomly selected and asked about their educational achieve-
ments. The results are given below:

Education

Middle High school College

Sex Male 10 15 25

Female 25 10 15

Based on this information can you say that the education depends on sex.
2. The following data is collected on two characters:

Smokers Non smokers

Literate 83 57

Illiterate 45 68

Based on this information can you say that there is no relation between habit of smoking and
literacy.

3. 500 students at school were graded according to their intelligences and economic conditions of
their homes. Examine whether there is any association between economic condition and intelli-
gence, from the following data:

Economic conditions Intelligence

Good Bad

Rich 85 75

Poor 165 175

4. In  an  experiment  on  the  immunisation  of  goats  from  anthrox,  the  following  results  were
obtained. Derive your inferences on the efficiency of the vaccine.

Died anthrox Survived

Inoculated with vaccine 2 10

Not inoculated 6 6

5. By using χ2-test, find out whether there is any association between income level and type of
schooling:

Income Public School Govt. School

Low 200 400

High 1000 400

(Given for degree of freedom 1, χ0.05
2  = 3.84) [U.P.T.U. 2008, G.B.T.U. (MBA) 2011]

6. Examine by any suitable method, whether the nature of area is related to voting preference in
the election for which the data are tabulated below:
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Votes for Area A B Total

Rural 620 480 1100

Urban 380 520 900

Total 1000 1000 2000

(U.P.T.U. 2006)
7. The groups of 100 people each were taken for testing the use of a vaccine. 15 persons contracted

the disease out of the inoculated persons, while 25 contracted the disease in the other group. Test
the efficiency of the vaccine using Chi-square test. (The value of χ2 for one degree of freedom at
5% level of significance is 3.84).

Answers
1. Yes 2. No 3. No 4. Not effective
5. Yes 6. Yes 7. Not associated.

TEST YOUR KNOWLEDGE

1. The fourth moment about the mean of a frequency distribution is 24. What must be the value of
standard deviation in order that the distribution be platykurtic? (M.T.U. 2012)

2. Two events A and B have probabilities 0.25 and 0.50 respectively. The probability that both
events  A and B occurs in 0.14. Find the probability that neither A nor B occurs. (M.T.U. 2013)

Hint. P(A B) = P(A B P A B)∩ ∪ = − ∪) (1

3. (i) Define the coefficients of skewness and kurtosis. (U.P.T.U. 2014)
(ii) Define skewness, coefficient of skewness, kurtosis and coefficient of kurtosis. (M.T.U. 2013)

(iii) Write a short note on skewness. [(M.T.U. (B.Pharma) 2011]
(iv) What is meant by skewness? How is it measured?  [(M.T.U. (MBA) 2012]

4. What is the total probability theorem? (U.P.T.U. 2014)
5. The first four central moments of a distribution are 0, 2.5, 0.7 and 18.75. Comment on the kurtosis

of the distribution. (M.T.U. 2013)
6. Find the moment generating function of Poisson distribution. (M.T.U. 2013)

7. Find the parameters p and q of the binomial distribution whose mean is 9 and variance is 9
4

.

(M.T.U. 2012)

8. If the sum of the mean and variance of a binomial distribution of 5 trials is 9
5

, find P(X  ≥ 1).

(M.T.U. 2013)
9. It has been found that 2% of the tools produced by a certain machine are defective. What is the

probability that in a shipment of 400 such tools, 3 or more will be defective? (M.T.U. 2013)
10. If P(X = 0) = P(X = 1) = k in a Poisson distribution, then what is k?
11. For a Poisson variate X if P(X = 1) = P(X = 2), then find P(X = 4).
12. Find the total area under the curve of p.d.f. of a normal curve.
13. If for a Poisson distribution, P(2) = P(3), then what is its probability function?
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378 A TEXTBOOK OF ENGINEERING MATHEMATICS

14. Find the parameters of a binomial distribution with mean = 8 and variance = 4.
15. If X is a normal variate with mean 30 and S.D. 5, find the probabilities that

(i) 26 ≤ X ≤ 40 (ii) X ≥ 45 and (iii) |X – 30 | > 5

Answers

2. 0.39 5. β2 = 3, Mesokurtic 6. Mx (t) = e etλ( )− 1 7. q = 
1
4

, p = 
3
4

8. 0.67232 9. 0.9862 10. 1
e

11. 2
3 2e

12. 1 13. e
x

x−3 3( )
!

14. n = 16, p = 
1
2

15. (i) 0.7653 (ii) 0.00135 (iii) 0.3174.
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UNIT 4
Numerical Techniques–I

4.1 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

Consider the equation of the form f(x) = 0

If f(x) is a quadratic, cubic or biquadratic expression then algebraic formulae are available
for expressing the roots. But when f(x) is a polynomial of higher degree or an expression involving
transcendental functions e.g., 1 + cos x – 5x, x tan x – cosh x, e–x – sin x etc., algebraic methods
are not available.

Here, we shall describe some numerical methods for the solution of f(x) = 0, where f(x) is
algebraic or transcendental.

4.2 ORDER OF CONVERGENCE OF ITERATIVE METHODS

Convergence of an iterative method is judged by the order at which the error between succes-
sive approximations to the root decreases.

An iterative method is said to be kth order convergent if k is the largest positive real
number such that

lim
i

i

i
k

e

e→∞

+ 1  ≤ A

where A is a non-zero finite number called asymptotic error constant and it depends on
derivative of f(x) at an approximate root x. ei and ei+1 are the errors in successive approxima-
tions. kth order convergence gives us idea in each iteration, the no. of significant digits in each
approximation increases k times.

The error in any step is proportional to the kth power of the error in the previous step.

4.3 CONVERGENCE OF A SEQUENCE

A sequence < xn > of successive approximations of a root x = α of the equation f(x) = 0 is said to
converge to x = α with order p ≥ 1 iff

| xn + 1 – α | ≤ c | xn – α |p, n ≥ 0
c being some constant greater than zero.

Particularly, if | xn + 1 – α | = c | xn – α |, n ≥ 0, 0 < c < 1 then convergence is called
geometric. Also, if p = 1 and 0 < c < 1 then convergence is called linear or of first order.
Constant c is called the rate of linear convergence. Convergence is rapid or slow according
as c is near 0 or 1.
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380 A TEXTBOOK OF ENGINEERING MATHEMATICS

Using induction, condition for linear convergence can be simplified to the form
 | xn – α | ≤ cn | x0 – α |, n ≥ 0, 0 < c < 1.

4.4 BISECTION METHOD

This method is based on the repeated application
of intermediate value property.

Let the function f(x) be continuous between
a and b. For definiteness, let f(a) be (–)ve and f (b)
be (+)ve. Then the first approximation to the root is

x1 = 
1
2

 (a + b).

If f(x1) = 0, then x1 is a root of f(x) = 0 other-
wise, the root lies between a and x1 or x1 and b
according as f(x1) is (+) ve or (–) ve. Then, we bisect
the interval as before and continue the process until
the root is found to desired accuracy.

In the above figure, f(x1) is (+)ve so that the root lies between a  and  x1.  Then  second

approximation  to  the  root  is x2  = 
1
2

 (a + x1). If f (x2) is (–)ve ; the root lies between x1 and x2.

Then the third approximation to the root is x3 = 
1
2

 (x1 + x2) and so on.

We observe that this method uses only the end points of the interval [an, bn] for which
f(an) · f(bn) < 0 and not the values of f(x) at these end points to obtain the next approximation
to the root.

The number of iterations required may be determined from the relation

| |b a
n

−
2

 ≤ ε

or n ≥ 
log | | log

log
e e

e

b a− − ε
2

where ε is the permissible error.
This method requires a large number of iterations to achieve a reasonable degree of

accuracy for the root. It requires one function evaluation for each iteration. This method is
also called as Bolzano method or Interval halving method.

4.5 PROVE THAT BISECTION METHOD ALWAYS CONVERGES

Let [ pn, qn] be the interval at nth step of bisection, having a root of the equation f(x) = 0. Let xn
be the nth approximation for the root. Then initially p1 = a and q1 = b.

⇒  x1 = first approximation = 
p q1 1

2
+F

HG
I
KJ

⇒ p1 < x1 < q1
Now either the root lies in [a, x1] or in [x1, b].
∴ either [p2, q2] = [p1, x1] or [p2, q2] = [x1, q1]

Y

XbO

a x2

x1

f(b)

y
=

f(x
)

f(a)
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NUMERICAL TECHNIQUES–I 381

⇒ either p2 = p1, q2 = x1 or p2 = x1, q2 = q1
⇒   p1 ≤ p2, q2 ≤ q1

Also, x2 = 
p q2 2

2
+

 so that p2 < x2 < q2

Continuing this way, we obtain that at nth step,

  xn = 
p qn n+

2
, pn < xn < qn

and p1 ≤ p2 ≤ ...... ≤ pn and q1 ≥ q2 ≥ ...... ≥ qn
∴ < p1,  p2, ......,  pn, ...... >  is  bounded  non-decreasing  sequence  bounded  by  b  and

< q1, q2, ......, qn,  ...... > is a bounded non-increasing sequence of numbers bounded by a.
Hence, both these sequences converge.

Let, lim
n → ∞

 pn = p and lim
n → ∞

 qn = q.

Now since length of the interval is decreasing at every step, we get that

lim
n → ∞

 (qn – pn) = 0 ⇒ q = p

Also, pn < xn < qn

⇒ lim  pn ≤ lim xn ≤ lim qn

⇒ p ≤ lim xn ≤ q
⇒ lim xn = p = q …(1)
Further since a root lies in [pn, qn], we shall have

f( pn) · f(qn) < 0

⇒ 0 ≥ lim
n → ∞

 [f(pn)] . f(qn)]

⇒ 0 ≥ f(p) . f(q)
⇒ 0 ≥ [f(p)]2

But [ f( p)]2 ≥ 0 being a square
∴ we get  f( p) = 0
∴ p is a root of  f( x) = 0 …(2)
From (1) and (2), we see that <xn> converges necessarily to a root of equation f(x) = 0
The method is not rapidly converging but it is useful in the sense that it converges

surely.

EXAMPLES

Example 1. Find the real root of the equation x log10 x = 1.2 by bisection method correct
to four decimal places.

Sol. f(x) = x log10 x – 1.2 ...(1)
Since, f(2.74) = – .000563 i.e., (–)ve

and f(2.75) = .0081649 i.e., (+)ve
Hence, a root lies between 2.74 and 2.75.
∴ First approximation to the root is

x1 = 
2 74 2 75

2
. .+

 = 2.745
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382 A TEXTBOOK OF ENGINEERING MATHEMATICS

Now, f(x1) = f(2.745) = .003798 i.e., (+)ve
Hence, root lies between 2.74 and 2.745.
∴ Second approximation to the root is

x2 = 
2 74 2 745

2
. .+

 = 2.7425

Now, f(x2) = f(2.7425) = .001617 i.e., (+)ve
Hence, root lies between 2.74 and 2.7425.
∴ Third approximation to the root is

x3 = 
2 74 2 7425

2
. .+

 = 2.74125

Now, f(x3) = f(2.74125) = .0005267 i.e., (+)ve
Hence, root lies between 2.74 and 2.74125.
∴ Fourth approximation to the root is

x4 = 
2 74 2 74125

2
. .+

 = 2.740625

Now, f(x4) = f(2.740625) = – .00001839 i.e., (–)ve.
Hence, root lies between 2.740625 and 2.74125.
∴ Fifth approximation to the root is

x5 = 
2 740625 2 74125

2
. .+

 = 2.7409375

Now, f(x5) = f(2.7409375) = .000254 i.e., (+)ve
Hence, root lies between 2.740625 and 2.7409375.
∴ Sixth approximation to the root is

x6 = 
2 740625 2 7409375

2
. .+

 = 2.74078125

Now, f(x6) = f(2.74078125) = .0001178 i.e., (+)ve
Hence, root lies between 2.740625 and 2.74078125.
∴ Seventh approximation to the root is

x7 = 
2 740625 2 74078125

2
. .+

 = 2.740703125

Since, x6 and x7 are same up to four decimal places hence the approximate real root is
2.7407.

Example 2. Find  a  positive  real  root of x – cos x = 0 by bisection method, correct up to
4 decimal places between 0 and 1.

Sol. Let f(x) = x – cos x
f(0.73) = (–)ve and f(0.74) = (+)ve

Hence, the root lies between 0.73 and 0.74.
First approximation to the root is

 x1 = 
0.73 0.74

2
+

 = 0.735

Now,  f(0.735) = (–)ve
Hence, the root lies between 0.735 and 0.74.
Second approximation to the root is

  x2 = 
0.73 0.74

2
+

 = 0.7375
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Now, f(0.7375) = (–)ve
Hence, the root lies between 0.7375 and 0.74.
Third approximation to the root is

x3 = 
0.7375 0.74

2
+

 = 0.73875

Now, f(0.73875) = (–)ve
Hence, the root lies between 0.73875 and 0.74.
Fourth approximation to the root is

  x4 = 
1
2

 (0.73875 + 0.74) = 0.739375

Now, f(x4) = f(0.739375) = (+)ve
Hence, the root lies between 0.73875 and 0.739375.
Fifth approximation to the root is

x5 = 
1
2

 (0.73875 + 0.739375) = 0.7390625

Now, f(0.7390625) = (–)ve
Hence, the root lies between 0.7390625 and 0.739375
Sixth approximation to the root is

x6 = 
1
2

 (0.7390625 + 0.739375) = 0.73921875

Now,  f(0.73921875) = (+)ve
Hence, the root lies between 0.7390625 and 0.73921875
Seventh approximation to the root is

x7 = 
1
2

 (0.7390625 + 0.73921875) = 0.73914

Now, f(0.73914) = (+)ve
Hence, the root lies between 0.7390625 and 0.73914
Eighth approximate to the root is

x8 = 
1
2

 (0.7390625 + 0.73914) = 0.73910

Since x7 and x8 are same up to four decimal places hence the approximate real root is
0.7391.

Example 3. Perform five iterations of bisection method to obtain the smallest positive
root of equation f(x) ≡ x3 – 5x + 1 = 0. [G.B.T.U 2011; G.B.T.U. (C.O.) 2011]

Sol.  f(x) = x3 – 5x + 1 ...(1)
Since, f(0.2016) = 0.0001935 i.e., (+)ve

and f(0.2017) = – 0.0002943 i.e., (–)ve
Hence, root lies between 0.2016 and 0.2017.
First approximation to the root is

 x1 = 0 2016 2017
2

. .+  = 0.20165
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Now, f(x1) = – 0.00005036 i.e., (–)ve
Hence, root lies between 0.2016 and 0.20165.
Second approximation to the root is

 x2 = 0 2016 0 20165
2

. .+  = 0.201625

Now, f(x2) = 0.00007159 i.e., (+)ve
Hence, root lies between 0.201625 and .20165.
Third approximation to the root is

x3 = 
0 201625 0 20165

2
. .+

 = 0.2016375

Now, f(x3) = 0.00001061 i.e., (+)ve
Hence, root lies between 0.2016375 and 0.20165.
Fourth approximation to the root is

x4 = 
0 2016375 0 20165

2
. .+

 = 0.20164375

Now, f(x4) = – 0.00001987 i.e., (–)ve
Hence, root lies between 0.2016375 and 0.20164375.
∴ Fifth approximation to the root is

x5 = 
0 2016375 0 20164375

2
. .+

 = 0.201640625

Hence, after performing five iterations, the smallest positive root of the given equation
is 0.20164 correct to five decimal places.

Example 4. Find a real root of x3 – x = 1 between 1 and 2 by bisection method. Compute
five iterations.

Sol. Here, f(x) = x3 – x – 1 ...(1)
Since, f(1.324) = – 0.00306 i.e., (–)ve

and f(1.325) = 0.00120 i.e., (+)ve
Hence, root lies between 1.324 and 1.325.
∴ First approximation to the root is

x1 = 
1.324 1.325

2
+

 = 1.3245

Now, f(x1) = – 0.000929 i.e., (–)ve
Hence, root lies between 1.3245 and 1.325
∴ Second approximation to the root is

x2 = 
1.3245 1.325

2
+

 = 1.32475

Now, f(x2) = 0.000136 i.e., (+)ve
Hence, root lies between 1.3245 and 1.32475.
Third approximation to the root is

x3 = 
1.3245 1.32475

2
+

 = 1.324625
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Now, f(x3) = – 0.000396 i.e., (–)ve
Hence, root lies between 1.324625 and 1.32475.
∴ Fourth approximation to the root is

x4 = 
1.324625 1.32475

2
+

 = 1.3246875

Now, f(x4) = – .0001298 i.e., (–)ve
Hence, root lies between 1.3246875 and 1.32475
∴ Fifth approximation to the root is

x5 = 
1.3246875 1.32475

2
+

 = 1.32471875

Hence, the real root of the given equation is 1.324 correct to three decimal places after
computing five iterations.

Example 5. Use  bisection  method  to  find  out  the positive square root of 30 correct to
four decimal places.

Sol. Let f(x) = x2 – 30 ...(1)
Since, f(5.477) = – .00247 i.e., (–)ve

and f(5.478) = .00848 i.e., (+)ve
Hence, root lies between 5.477 and 5.478
∴ First approximation to the root is

 x1 = 
5 477 5 478

2
. .+

 = 5.4775

Now, f(x1) = .003 i.e., (+)ve
Hence, root lies between 5.477 and 5.4775
∴ Second approximation to the root is

x2 = 
5 477 5 4775

2
. .+

 = 5.47725

Now,  f(x2) = .00026 i.e., (+)ve
Hence, root lies between 5.477 and 5.47725
∴ Third approximation to the root is

x3 = 
5 477 5 47725

2
. .+

 = 5.477125

Now,  f(x3) = – .0011 i.e., (–)ve
Hence, root lies between 5.477125 and 5.47725
∴ Fourth approximation to the root is

x4 = 
5 477125 5 47725

2
. .+

 =  5.4771875

Since, x3 and x4 are same up to four decimal places hence the positive square root of 30
correct to 4 decimal places is 5.4771.
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ASSIGNMENT

1. (i) Transcendental equation is given as
f(x) = 2x – x – 3

Calculate f(x) for x = – 4, – 3, – 2, – 1, 0, 1, 2, 3, 4 and compute, between which integers values
roots are lying.

(ii) The equation x2 – 2x – 3cos x = 0 is given. Locate the smallest root in magnitude in an interval
of length one unit.

2. Find a real root of ex = 3x by Bisection method.
3. The smallest positive root of the equation  f(x) = x4 – 3x2 + x – 10 = 0 is to be obtained.

(i) Find an interval of unit length which contains this root.
(ii) Perform two iterations of the Bisection method.

4. Find real root lying in interval (1, 2) up to four decimal places for the equation x6 – x4 – x3 – 1 = 0 by
Bisection method.

5. Find a real root of cos x – xex = 0 correct to three decimal places by Bisection method.
(U.P.T.U. 2008)

6. The negative root of the smallest magnitude of the equation f(x) = 3x3 + 10x2 + 10x + 7 = 0 is to be
obtained.
(i) Find an interval of unit length which contains this root.

(ii) Perform two iterations of Bisection method.
7. Compute the root of f(x) = sin 10x + cos 3x using Bisection method. The initial approximations are

4 and 5.
8. Find the real root correct to three decimal places for the following equations:

(i) x3 – x – 4 = 0 (ii) x3 – x2 – 1 = 0
(iii) x3 + x2 – 1 = 0 (iv) x3 – 3x – 5 = 0.

9. Solve x3 – 9x + 1 = 0 for the root between x = 2 and x = 4 by the method of Bisection. Also find the
smallest positive root.

10.  (i) Find a real root of the equation x3 – 2x – 5 = 0 using Bisection method.
(ii) Find a positive root of the equation xex = 1 which lies between 0 and 1.

11. If a root of f(x) = 0 lies in the interval (a, b), then find the minimum number of iterations required
when the permissible error is E.

12. Apply Bisection method to find a root of the equation x4 + 2x3 – x – 1 = 0 in the interval [0, 1].

13. Find the approximate value of the root of the equation 3 1x x− + sin  = 0 by Bisection method.

(five iterations) [U.P.T.U. (MCA) 2008]
14. Find a real root of x3 – 2x – 1 = 0 which lies between 1 and 2 by using Bisection method correct to

two places of decimals.
15. Find a positive root of the equation x3 + 3x – 1 = 0 by Bisection method.

Answers
1. (i) x: – 4 – 3 – 2 – 1 0 1 2 3 4

f(x): 1.0625 .125 – .75 – 1.5 – 2 – 2 – 1 2 9
 Roots lie in (– 3, – 2) and (2, 3).

(ii) 1.7281 in interval (1, 2).
2. 1.5121375 3. (i) (2, 3) (ii) Root lies in the interval (2, 2.25).
4. 1.4036 5. 0.517
6. (i) (– 3, – 2) (ii) Root lies in the interval (– 2.5, – 2.25) 7. 4.712389
8. (i) 1.796 (ii) 1.466 (iii) 0.755 (iv) 2.279
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9. 2.94282, 0.111 10. (i) 2.094551482 (ii) 0.56714333

11. n

b a
Ee

e
≥

−F
HG

I
KJlog

| |

log 2
12. 0.8667605 13. 0.39188 14. 1.618 15. 0.322

4.6 METHOD OF FALSE POSITION OR REGULA-FALSI METHOD

This is the oldest method for finding the real roots of a numerical equation.
It is sometimes known as method of linear interpolation.
In this method, we choose two points x0 and

x1 such that f(x0) and f(x1) are of opposite signs. Since
the graph of y = f(x) crosses the X-axis between these
two points, a root must lie in between these points.

Consequently, f(x0) f(x1) < 0
Equation of the chord joining points {x0, f(x0)}

and {x1, f(x1)} is

  y – f(x0) = 
f x f x

x x
x x

( ) ( )
( )1 0

1 0
0

−
−

−

The method consists in replacing the curve
AB by means of the chord AB and taking the point
of intersection of the chord with X-axis as an ap-
proximation to the root.

So the abscissa of the point where chord cuts
y = 0 is given by

x2 = x0 – 
x x

f x f x
f x1 0

1 0
0

−
−

L
NM

O
QP( ) ( )

( ) …(1)

which is an approximation to the root.
If now f(x0) and f(x2) are of opposite signs, then the root lies between x0 and x2.

So, replacing x1 by x2 in (1), we obtain the next approximation x3. However, the root could as
well lie between x1 and x2 then we find x3 accordingly.

This procedure is repeated till the root is found to the desired accuracy.

EXAMPLES

Example 1. Find a real root of the equation 3x + sin x – ex = 0 by the method of false
position correct to four decimal places. Choose suitable initial approximations.

[U.P.T.U. 2010 , U.P.T.U. (MCA) 2009]
Sol. Let   f(x) ≡ 3x + sin x – ex = 0

 f(0.3) = – 0.154 i.e., (–)ve
and  f(0.4) = 0.0975 i.e., (+)ve

∴ The root lies between 0.3 and 0.4.
Using Regula-Falsi method,

x2 = x0 – 
x x

f x f x
f x1 0

1 0
0

−
−( ) ( )

( )

= − −
− −

−( )
( . ) ( )

( . ) ( )
( )0

0 4 0
0 0975 0

0.3
.3

.154
.154  | ∵ x0 = 0.3 and x1 = 0.4 (let)

B[x , f(x )]11
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= + ×F
HG

I
KJ =( )0

0 0
0

0.3
.1 .154

.2515
.3612

Now,  f(x2) = f (0.3612) = 0.0019 = (+)ve
Hence, the root lies between 0.3 and 0.3612.

Now,  again, x3 = x0 – 
( )

( ) ( )
( )

x x
f x f x

f x2 0

2 0
0

−
−

Replacing by1 2x x

= (0.3)
.154

.154− −
− −

RST
UVW −( . ) ( . )

( . ) ( )
( )

0 3612 0 3
0 0019 0

0

= (0.3)
.1559

.154+ FHG
I
KJ =0 0612

0
0 0 3604

.
( ) .

Now, f(x3) = f(0.3604) = – 0.00005 = (–)ve
∴ The root lies between 0.3604 and 0.3612.

Now, again,   x4 = x
x x

f x f x
f x3

2 3

2 3
3−

−
−

RST
UVW( ) ( )

( ) Replacing by0 3x x

  = − −
− −

L
NM

O
QP −( . )

( . . )
( . ) ( . )

( . )0 3604
0 3612 0 3604

0 0019 0 00005
0 00005

 = + FHG
I
KJ0 3604

0 0008
0 00195

.
.
.

 (0.00005) = 0.36042

Since, x3 and x4 are approximately the same, hence, the required real root is 0.3604
correct to four decimal places.

Example 2. Find the root of the equation xex = cos x in the interval (0, 1) using Regula-
Falsi method correct to four decimal places. [U.P.T.U. (MCA) 2006]

Sol. Let f(x) = xex – cos x
Since  f(0.51) = – 0.02344 and f(0.52) = 0.00683
∴ The root lies between 0.51 and 0.52.
Let   x0 = 0.51 and x1 = 0.52
By Regula-Falsi method, first approximation to the root is

x2 = x0 – 
x x

f x f x
1 0

1 0

−
−

L
NM

O
QP( ) ( )

 f(x0)

= 0.51 – 
0 52 0 51

0 00683 0 02344
. .

. ( . )
−

− −
L
NM

O
QP  (– 0.02344) = 0.517744

f(x2) = – 0.000041
Hence, the root lies between x2 and x1.
Second approximation to the root is

x3 = x2 – 
x x

f x f x
1 2

1 2

−
−

L
NM

O
QP( ) ( )

 f(x2) | Replacing x0 by x2

= 0.517744 – 
0 52 0 517744

0 00683 0 000041
. .

. ( . )
−
− −

L
NM

O
QP  (– 0.000041) = 0.517757

Since x2 and x3 are same up to four decimal places hence the approximate real root is
0.5177.
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Example 3. Find the root of the equation tan x + tanh x = 0 which lies in the interval
(1.6, 3.0) correct to four significant digits using method of false position.

[G.B.T.U. 2013, M.T.U. (MCA) 2012]
Sol. Let f(x) ≡ tan x + tanh x = 0
Since,   f(2.35) = – 0.03 and f(2.37) = 0.009
Hence, the root lies between 2.35 and 2.37. Let x0 = 2.35 and x1 = 2.37
Using Regula-Falsi method, first approximation to the root is

x2 = x
x x

f x f x
f x0

1 0

1 0
0−

−
−

RST
UVW( ) ( )

( )

= − −
+

F
HG

I
KJ −2 35

2 37 2 35
0 009 0 03

0 03.
. .

. .
( . )  = 2.36538

Now, f(x2) = .000719 (+)ve
Hence, the root lies between 2.35 and 2.36538.
Second approximation to the root is

x3 = x0 – 
x x

f x f x
f x2 0

2 0
0

−
−

RST
UVW( ) ( )

( ) | Replacing x1 by x2

= −
−

+
F
HG

I
KJ −2 35

2 36538 2 35
0 000719 03

03.
. .
. .

( . )

= 2.36502
Since x2 and x3 are same up to four significant digits, hence the required root is 2.365.
Example 4. Using the method of false position, find the root of equation x6 – x4 – x3 – 1 = 0

upto four decimal places.
Sol. Let f(x) = x6 – x4 – x3 – 1
Since, f(1.4) = – 0.056 and f(1.41) = 0.102
Hence, the root lies between 1.4 and 1.41. Let x0 = 1.4 and x1 = 1.41.
Using method of false position, first approximation to the root is

x2 = x0 – 
x x

f x f x
f x1 0

1 0
0

−
−

RST
UVW( ) ( )

( )

= − −
+

F
HG

I
KJ −1.

1. 1.
.102

4
41 4

0 0 056
0 056

.
( . )  = 1.4035

Now, f(x2) = – 0.0016 (–)ve

Hence, the root lies between x2 and x1.

Second approximation to the root is

x3 = x
x x

f x f x
f x2

1 2

1 2
2−

−
−

RST
UVW( ) ( )

( ) Replacing byx x0 2

= − −
+

F
HG

I
KJ −1.

1. 1.
4035

41 4035
0 102 0 0016

0 0016
. .

( . )
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= + FHG
I
KJ =1.

.1036
1.4035

0 0065
0

0 0016 4036
.

( . )

Now, f(x3) = – 0.00003 (–)ve

Hence, the root lies between x3 and x1.

Again, the third approximation to the root is

x4 = x3 – 
x x

f x f x
f x1 3

1 3
3

−
−

RST
UVW( ) ( )

( ) | Replacing x2 by x3

= + −
+

F
HG

I
KJ1.

1. 1.
.102

4036
41 4036

0 0 00003
0 00003

.
( . )

= + FHG
I
KJ =1.

.10203
1.4036

0 0064
0

0 00003 4036
.

( . )

Since, x3 and x4 are approximately the same up to four places of decimal, hence the
required root of the given equation is 1.4036. It is clear that –1 is also a root of the given
equation.

Example 5. Find a real root of the equation x log10 x = 1.2 by Regula-Falsi method
correct to four decimal places.

Sol. Let  f(x) = x log10 x – 1.2 ...(1)

Since,  f(2.74) = – .0005634 and f(2.741) = .0003087

Hence, the root lies between 2.74 and 2.741. Let x0 = 2.74 and x1 = 2.741.

Using method of False position, first approximation to the root is

x2 = x
x x

f x f x
f x0

1 0

1 0
0−

−
−

RST
UVW( ) ( )

( )

= 2 74
2 741 2 74

0003087 0005634
0005634.

. .
. ( . )

( . )− −
− −

RST
UVW −

= 2.74 + 
.

.
(. )

001
0008721

0005634F
HG

I
KJ  = 2.740646027

Now,  f(x2) = – .00000006016 i.e., (–)ve
Hence, the root lies between x2 and x1.
Second approximation to the root is

   x3 = x
x x

f x f x
f x2

1 2

1 2
2−

−
−

RST
UVW( ) ( )

( ) | Replacing x0 by x2

= 2.740646027 – 2 741 2 740646027
0003087 00000006016

00000006016
. .

. .
( . )

−
+

F
HG

I
KJ −

= 2.740646096
Since, x2 and x3 agree up to seven decimal places, the required root correct to four decimal

places is 2.7406.
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Example 6. (i) Apply False position method to find smallest positive root of the equation
x – e–x = 0, correct to three decimal places.

(ii) Using Regula-Falsi method, compute the smallest positive root of the equation xex – 2 = 0,
correct up to four decimal places. (U.P.T.U. 2006)

Sol. (i) Let f(x) = x – e–x

Since  f(.56) = – .01121 and f(.58) = .0201

Hence, root lies between .56 and .58. Let x0 = .56 and x1 = .58
Using method of False position, first approximation to the root is

 x2 = x
x x

f x f x
f x0

1 0

1 0
0−

−
−

RST
UVW( ) ( )

( )

= .
. .

. .
( . )56

58 56
0201 01121

01121− −
+

F
HG

I
KJ −  = .56716

Now, f(x2) = .00002619 i.e., (+)ve
Hence the root lies between x0 and x2.
Second approximation to the root is

x3 = x
x x

f x f x
f x0

2 0

2 0
0−

−
−

RST
UVW( ) ( )

( ) | Replacing x1 by x2

= .
. .

. .
( . )56

56716 56
00002619 01121

01121− −
+

F
HG

I
KJ −  = .567143

Since, x2 and x3 agree up to four decimal places, the required root correct to three decimal
places is 0.567.

(ii) Let f(x) = xex – 2
Since, f(.852) = – .00263 and f(.853) = .001715
Hence, root lies between .852 and .853. Let x0 = .852 and x1 = .853
Using method of False position, first approximation to the root is

x2 = x
x x

f x f x
f x0

1 0

1 0
0−

−
−

RST
UVW( ) ( )

( )

= .
. .

. ( . )
( . )852

853 852
001715 00263

00263− −
− −

RST
UVW −  = .852605293

Now f(x2) = – .00000090833
Hence, root lies between x2 and x1.
Second approximation to the root is

x3 = x
x x

f x f x
f x2

1 2

1 2
2−

−
−

RST
UVW( ) ( )

( ) | Replacing x0 by x2

=  (.852605293) – 
. .

. ( . )
( . )

853 852605293
001715 00000090833

00000090833
−

− −
RST

UVW −

= 0.852605501
Since, x2 and x3 agree upto 6 decimal places, hence the required root correct to 4 decimal

places is 0.8526.
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Example 7. (i) Solve x3 – 5x + 3 = 0 by using Regula-Falsi method.

(ii) Use the method of false position to solve x3 – x – 4 = 0.

Sol. (i) Let   f(x) = x3 – 5x + 3

Since, f(.65) = .024625 and f(.66) = – .012504

Hence, root lies between .65 and .66. Let x0 = .65 and x1 = .66

Using method of False position, first approximation to the root is

x2 = x0 – x x
f x f x

f x1 0

1 0
0

−
−

RST
UVW( ) ( )

( )

= .65 – 
. .

. .
(. )

66 65
012504 024625

024625
−

− −
F
HG

I
KJ  = .656632282

Now, f(x2) = – .00004392
Hence, root lies between x0 and x2.
Second approximation to the root is

    x3 = x0 – 
x x

f x f x
f x2 0

2 0
0

−
−

RST
UVW( ) ( )

( ) Replacing byx x1 2

= .
. .

. .
(. )65

656632282 65
00004392 024625

024625− −
− −
F
HG

I
KJ

= .656620474
Since, x2 and x3 agree up to four decimal places hence the required root is .6566 correct

up to four decimal places. Similarly the other roots of this equation are 1.8342 and – 2.4909.
(ii) Let  f(x) = x3 – x – 4
Since,  f(1.79) = – .054661 and f(1.80) = .032
Hence, root lies between 1.79 and 1.80. Let x0 = 1.79 and x1 = 1.80.
Using method of False position, first approximation to the root is

   x2 = x
x x

f x f x
f x0

1 0

1 0
0−

−
−

RST
UVW( ) ( )

( )

= 1.79
1.80 1.79− −

− −
RST

UVW −
. ( . )

( . )
032 054661

054661  = 1.796307

Now, f(x2) = – .00012936
Hence, root lies between x2 and x1.
Second approximation to the root is

 x3 = x
x x

f x f x
f x2

1 2

1 2
2−

−
−

RST
UVW( ) ( )

( ) | Replacing x0 by x2

= 1.796307 – 
1.8 1.796307

.032 ( .00012936)
( .00012936)

−
− −

RST
UVW −

= 1.796321.
Since, x2 and x3 are same up to four decimal places hence the required root is 1.7963

correct up to four decimal places.
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4.7 CONVERGENCE OF REGULA-FALSI METHOD (M.T.U. 2013)

If < xn > be the sequence of approximations obtained from

xn + 1 = xn – 
( )

( ) ( )
( )

x x

f x f x
f xn n

n n
n

−
−

−

−

1

1
...(1)

and α be the exact value of the root of equation f(x) = 0, then
Let xn = α + en and xn + 1 = α + en + 1

where en, en + 1 being errors involved in nth and (n + 1)th approximations respectively.
Clearly, f(α) = 0. Hence, (1) gives,

α + en + 1 = α + en – 
( )

( ) ( )
( )

e e

f e f e
f en n

n n
n

−
+ − +

⋅−

−

1

1α α
α +

or en + 1 = 
e f e e f e

f e f e
n n n n

n n

− −

−

+ − +
+ − +

1 1

1

( ) ( )

( ) ( )

α α
α α

=

+ ′ + ″ +
L
NMM

O
QPP

− + ′ + ″ +
L
N
MM

O
Q
PP

+ ′ + ″ +
L
NMM

O
QPP

− + ′ + ″ +
L
N
MM

O
Q
PP

− −
−

−
−

e f e f
e

f e f e f
e

f

f e f
e

f f e f
e

f

n n
n

n n
n

n
n

n
n

1

2

1
1

2

2

1
1

2

2 2

2 2

( ) ( )
!

( ) ...... ( ) ( )
!

( ) ......

( ) ( )
!

( ) ...... ( ) ( )
!

( ) ......

α α α α α α

α α α α α α

=
− + − ″ +

− ′ +
− +

″ +

−
−

−

−
− −

( ) ( )
!

( ) ( ) ......

( ) ( )
( ) ( )

!
( ) ......

e e f
e e

e e f

e e f
e e e e

f

n n
n n

n n

n n
n n n n

1
1

1

1
1 1

2

2

α α

α α

=
″ +

′ +
+F

HG
I
KJ ″ +

−

−

e e
f

f
e e

f

n n

n n

1

1

2

2

( ) ......

( ) ( ) ......

α

α α | ∵ f(α) = 0

or  en + 1 ≈ 
e e f

f
n n − ″

′
1

2 !
( )
( )
α
α

 ...(2) (neglecting high powers of en, en – 1)

or en+1 = c en en – 1 ...(3)

where c = 
1
2

f
f
″
′
( )
( )
α
α

. Relation of the form (3) is called the error equation.

If the function f(x) in the equation f(x) = 0 is convex in the interval (x0, x1) that contains
the root, then one of the points x0 or x1 is always  fixed and the other point varies with n. If the
point x0 is fixed then the function f(x) is approximated by the straight line passing through the
points (x0, f0) and (xn, fn), k = 1, 2,... . The error equation (3) becomes

en+1 = c e0 en

where e0 = x0 – α is independent of n. Therefore, we can write
 en+1 = c* en

where c* = c e0 is the asymptotic error constant. Hence, the Regula-Falsi method has
linear rate of convergence.
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ASSIGNMENT

1. (i) Solve cos x = 3x – 1 correct to three decimal places using the method of False position.
(G.B.T.U. 2011)

(ii) Solve x3 – 9x + 1 = 0 for the root lying between 2 and 4 by the method of False position.
2. (i) Find real cube root of 18 by Regula-Falsi method.

(ii) Find the root of the following equation in the interval [0, 1] by Regula-Falsi method:
2x(1 – x2 + x) ln x = x2 – 1 [U.P.T.U. 2014, M.T.U. (MCA) 2010]

3. (i) Find the smallest positive root correct to three decimal places of cosh x  cos x = – 1.

(ii) Use Regula-Falsi method to find the smallest positive root of the following equation correct
to four significant digits: x3 – 5x + 1 = 0. (M.T.U. 2012)

4. Find all the roots of cos x – x2 – x = 0 up to 5 decimal places.

5. Find the real root of the equations by using method of false position.
(i) x4 – x3 – 2x2 – 6x – 4 = 0 (ii) x6 – x4 – x3 – 3 = 0

(iii) xex = 3 (iv) x2 – log10 x – 12 = 0
6. Solve the following equations by Regula-Falsi method:

(i) (5 – x) ex = 5 near x = 5 (ii) x3 + x – 1 = 0 near x = 1

(iii) 2x – log10 x = 7 lying between 3.5 and 4 (iv) x3 + x2 – 3x – 3 = 0 lying between 1 and 2
(v) x3 – 3x + 4 = 0 between – 2 and – 3 (vi) x4 + x3 – 7x2 – x + 5 = 0 lying between 2 and 3.

7. Find the real root of the equations by using method of False position.
(i) x3 – 4x + 1 = 0 (ii) x3 – x2 – 2 = 0

(iii) x3 + x – 3 = 0 (iv) x4 – x – 10 = 0 (G.B.T.U. 2012)

8.  (i) Explain Regula-Falsi method by stating at least one advantage over Bisection method.
(ii) Discuss method of False position. [G.B.T.U. 2011; U.P.T.U. 2009]

(iii) Illustrate False position method by plotting the function on graph and discuss the speed of
convergence to the root.

(iv) Find the rate of convergence for Regula-Falsi method. (M.T.U. 2013)
(v) Determine the order of convergence of the iterative method

xk+1 = 
x f x x f x

f x f x
k k

k

0 0

0

( ) ( )
( ) ( )

−
−

for finding a simple root of the equation f(x) = 0.

Answers
1. (i) 0.607 (ii) 2.942821 2. (i) 2.620741394 (ii) 1, 0.3279
3. (i) 1.875 (ii) 0.2016 4. – 1.25115 and 0.55000
5. (i) 2.7320506 (ii) 1.501844 (iii) 1.04991 (iv) 3.5425
6. (i) 4.9651142 (ii) .682327803 (iii) 3.7892782 (iv) 1.73205

(v) – 2.195823345 (vi) 2.0608526
7. (i) 1.860, .2541 (ii) 1.69562 (iii) 1.2134 (iv) 1.855
8. (v) linear : ek+1 = ce0ek.
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4.8 NEWTON-RAPHSON METHOD (M.T.U. 2013, U.P.T.U. 2009, 2015)

This method is generally used to improve the result obtained by one of the previous methods.
Let x0 be an approximate root of f(x) = 0 and let x1 = x0 + h be the correct root so that f(x1) = 0.

Expanding f(x0  + h) by Taylor’s series, we get

f(x0) + hf ′(x0) + 
h2

2 !
 f″(x0) + ...... = 0

Since, h is small, neglecting h2 and higher powers of h, we get

f(x0) + hf ′(x0) = 0 or h = – 
f x
f x

( )
( )

0

0′
...(1)

A better approximation than x0 is therefore given by x1, where

 x1 = x0  – 
f x
f x

( )
( )

0

0′
Successive approximations are given by x2, x3, ....... , xn + 1, where

xn + 1 = xn – 
f x
f x

n

n

( )
( )′

...(2) (n = 0, 1, .......)

which is the Newton-Raphson formula.
Remarks. (1) This method is useful in cases of large values of f ′(x) i.e., when the graph of f(x) while
crossing the x-axis is nearly vertical.

(2) If f ′(x) is zero or nearly 0, the method fails.
(3) Newton’s formula converges provided the initial approximation x0 is chosen sufficiently close

to the root. This method is also called the method of tangents.

(4) This method is also used to obtain complex roots.

4.9 CONVERGENCE

Comparing equation (2) with xn + 1 = φ (xn) of the iteration method, we get

φ(xn) = xn + 1 = xn – 
f x
f x

n

n

( )
( )′

In general, φ(x) = x – 
f x
f x

( )
( )′

which gives φ′(x) = 
f x f x

f x

( ) ( )
[ ( )]

″
′ 2

Since, iteration method converges if  | φ′ (x) | < 1
∴ Newton’s method converges if

| f (x) f ″ (x) | < [ f ′ (x)]2

in the interval considered.
Assuming  f(x),  f ′(x) and f ″(x) to be continuous, we can select a small interval in the

vicinity of the root α in which above condition is satisfied.
The rate at which the iteration method converges if the initial approximation to the

root is sufficiently close to the desired root is called the rate of convergence.
[M.T.U. 2014, G.B.T.U. 2011, 2012, 2013]
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4.10 ORDER OF CONVERGENCE
[M.T.U. 2012, G.B.T.U. (MCA) 2011; U.P.T.U. 2014, 2015; G.B.T.U. (M.Tech.) 2011]

Suppose, xn  differs from the root α by a small quantity en so that

xn = α + en and xn + 1 = α + en + 1

Then equation (2) becomes,

en + 1 = en –  
f e
f e

n

n

( )
( )
α
α

+
′ +

= en – 
f e f

e
f

f e f

n
n

n

( ) ( )
!

( ) ......

( ) ( ) ......

α α α

α α

+ ′ + ″ +

′ + ″ +

2

2 (By Taylor’s expansion)

= en – 
e f

e
f

f e f

n
n

n

′ + ″ +

′ + ″ +

( ) ( ) .......

( ) ( ) ......

α α

α α

2

2 | ∵ f(α) = 0

= 
e f

f e f
n

n

2

2
″

′ + ″
( )

[ ( ) ( )]
α

α α
| Neglect higher powers of en

= 
en

2

2
 

f

f e
f
fn

″

′ + ″
′

RST
UVW

( )

( )
( )
( )

α

α α
α

1

= 
e f

f
e

f
f

n
n

2 1

2
1.

( )
( )

( )
( )

″
′

+ ″
′

RST
UVW

−
α
α

α
α

= 
e f

f
e

f
f

n
n

2

2
1

″
′

− ″
′

+
RST

UVW
( )
( )

( )
( )

.......
α
α

α
α

or
e

e
n

n

+1
2  = 

1
2 2

2
f
f

e f
f

n″
′

− ″
′
RST

UVW
( )
( )

( )
( )

α
α

α
α

 + .......

≈ f
f
″
′
( )
( )
α
α2

(Neglecting terms containing powers of en)

Hence, by definition, the order of convergence of Newton-Raphson method is 2
i.e., Newton-Raphson method is quadratic convergent.

This also shows that subsequent error at each step is proportional to the square of  the
previous error and as such the convergence is quadratic.

Hence, if at the first iteration, we have an answer correct to one decimal place then it
should be correct up to two places at the II iteration, up to four places at III iteration.

It means that the number of correct decimal places at each iteration is almost doubled.
∴ Method converges very rapidly.
Due to its quadratic convergence, the formula (2) is also termed as second order

formula.
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4.11 GEOMETRICAL INTERPRETATION

Let x0 be a point near the root α of equation f(x) = 0, then
tangent at A {x0 , f(x0)} is

y – f (x0) = f ′(x0) (x – x0)

It cuts x-axis at x1 = x0 – 
f x
f x

( )
( )

0

0′
which is I approximation to root α. If A1 corresponds to x1
on the curve, then tangent at A1 will cut x-axis at x2, nearer
to α and is therefore II approximation to root α.

Repeating this process, we approach the root α quite
rapidly. Hence, the method consists in replacing the part
of the curve between A and x-axis by the means of the
tangent to the curve at A0.

4.12 NEWTON’S ITERATIVE FORMULAE FOR FINDING INVERSE, SQUARE ROOT
ETC.

1. Inverse. The reciprocal or inverse of a number ‘a’ can be considered as a root of the equa-

tion 
1
x

 – a = 0, which can be solved by Newton’s method.

Since, f(x) = 
1
x

 – a, f ′(x) = – 
1
2x

∴ Newton’s formula gives,

 xn + 1 = xn + 

1

1
2

x
a

x

n

n

−
F
HG

I
KJ

F
HG
I
KJ

 xn + 1 = xn (2 – axn)

2. Square root. The square root of ‘a’ can be considered as a root of equation x2 – a = 0
solvable by Newton’s method.

Since,   f(x) = x2 – a, f ′(x) = 2x

xn + 1 = xn  – 
x a

x
n

n

2

2
−

xn + 1 = 
1
2

x
a
xn

n
+

F
HG

I
KJ

3. Inverse square root. Equation is 1
2x

 – a = 0

Iterative formula is

xn + 1 = 
1
2  xn (3 – a xn

2)

Y

O Xx2

A

x1 x0

{x , f(x )}0 0

A2

A1

y
=

f(x
)

�
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4. General   formula  for  pth root.  The  pth root of a can be considered as a root of  the
equation x p – a = 0. To solve this by Newton’s method, we have

 f(x) = x p – a and hence f ′(x) = px p – 1

∴ Iterative formula is, xn + 1 = xn – 
( )x a

px
n

p

n
p

−
− 1

xn + 1 = 
( )p x a

px
n

p

n
p

− +
−

1
1 [U.P.T.U. MCA (SUM) 2008]

Also, the general formula for reciprocal of pth root of a is

x n + 1 = xn 
p ax

p
n

p+ −F
HG

I
KJ

1
.

4.13 ORDER OF CONVERGENCE OF NEWTON’S SQUARE ROOT FORMULA

Let a  = α so that a = α2 . If we write

xn = α 
1
1

+
−
F
HG

I
KJ

e
e

n

n

then, xn + 1 = α 
1

1
1

1

+
−

F
HG

I
KJ

+

+

e

e
n

n
...(1)

Also, by formula, xn + 1 = 
1
2

x
a
xn

n
+

F
HG

I
KJ , we get

xn + 1 = 
1
2

1
1

1
1

α
α

+
−
F
HG
I
KJ +

−
+
F
HG
I
KJ

L
NMM

O
QPP

e
e

a e
e

n

n

n

n

= α
1
1

2

2
+
−

F
HG

I
KJ

e

e
n

n
...(2) (∵ a = α2)

Comparing (1) and (2), we get en + 1 = en
2  confirming quadratic convergence of Newton’s

method.

4.14 ORDER OF CONVERGENCE OF NEWTON’S INVERSE FORMULA

Let  α = 
1
a

i.e., a = 
1
α . If we write xn = α(1– en)

then,   xn + 1 = α (1 – en + 1)
By formula, xn + 1 = xn (2 – axn), we get

    xn + 1 = α(1– en) [2 – aα (1– en)] = α(1– en
2) | ∵ aα = 1

Comparing, we get  en+1 = en
2, hence, convergence is quadratic.
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EXAMPLES

Example 1. Using Newton-Raphson method, find the real root of the equation
3x = cos x + 1 correct to four decimal places. [G.B.T.U. (M. Tech.) 2010, 2011]

Sol. Let f(x) = 3x – cos x – 1
Since, f(0) = – 2 = (–)ve ;

f(1) = 1.4597 = (+)ve
∴ A root of f(x) = 0 lies between 0 and 1. It is nearer to 1. Let us take x0 = 0.6.
Also, f ′(x) = 3 + sin x
Newton’s iteration formula gives,

xn + 1 = xn – 
f x
f x

n

n

( )
( )′

= xn – 
3 1

3
x x

x
n n

n

− −
+

cos
sin

 = 
x x x

x
n n n

n

sin cos
sin
+ +

+
1

3
...(1)

Put n = 0, the first approximation x1 is given by,

x1 = 
x x x

x
0 0 0

0

1
3

sin cos
sin
+ +

+
 = 

0 6 0 6 0 6 1
3 0 6

. sin . cos .
sin .
+ +

+
 = .6071

Put  n = 1 then second approximation is

x2 = 
x x x

x
1 1 1

1

1
3

sin cos
sin
+ +

+

= 
. sin (. ) cos(. )

sin (. )
6071 6071 6071 1

3 6071
+ +

+
 = 0.6071

Clearly, x1 = x2. Hence, desired root is 0.6071 correct to 4 decimal places.
Example 2. Using Newton’s iterative method, find the real root of  x log10 x = 1.2 correct

to six decimal places.
Sol. f(x) = x log10 x – 1.2
∵ f(2.7) = – .0353 = (–)ve

f(2.8) = .05204 = (+)ve
Hence, a root of f(x) = 0 lies between 2.7 and 2.8.
Since | f(2.7) | < | f(2.8) |
Hence, root is nearer to 2.7.
Let us take x0 = 2.71
Also, f ′(x) = log10 x + log10 e = log10 x + 0.43429
Newton’s iteration formula gives,

xn + 1 = xn – 
f x
f x

n

n

( )
( )′

= xn  – 
x x

x
n n

n

log .
log .

10

10

1 2
43429

−
+

F
HG

I
KJ  = 

.43429 1.
.43429

x
x

n

n

+
+

2

10log
...(1)

Put n = 0, the first approximation is

x1 = 
.43429 1.

.43429
x

x
0

10 0

2+
+log

 = 2.74073 | Taking x0 = 2.71
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Similarly,   Putting n = 1, 2, in (1), we get
   x2 = 2.740646
   x3 = 2.740646

Since x2 and x3 are same up to 6 decimal places, hence the required root is 2.740646.

Example 3. Evaluate 12  to five decimal places by Newton’s iterative method.

Sol. Let  x = 12 so that x2 – 12 = 0 ...(1)
Take f(x) = x2 – 12, Newton’s iteration formula gives,

xn + 1 = xn – 
f x
f x

n

n

( )
( )′

 = xn – 
x

x
n

n

2 12
2

−
 = 

1
2

12
x

xn
n

+
F
HG

I
KJ ...(2)

Now since,  f(3) = – 3 (–)ve
 f(4) = 4 (+)ve

∴ The root of (1) lies between 3 and 4.
Since  | f(3) | < | f(4) |, hence, root is nearer to 3.
Take x0 = 3.4, equation (2) gives,

x1 = 
1
2

12
0

0
x

x
+

F
HG

I
KJ  = 

1
2

3
12
3

.4
.5

+F
HG

I
KJ  = 3.464706

x2 = 
1
2

12
1

1
x

x
+

F
HG

I
KJ  = 3.464102

x3 = 
1
2

12
2

2
x

x
+

F
HG

I
KJ  = 3.4641016

Since, x2 and x3 are same up to 5 decimal places,

 x = 12  = 3.46410.
Example 4. Using Newton’s iterative method, find the real root of  x sin x + cos x = 0

which is near x = π correct to 3 decimal places. [G.B.T.U. (C.O.) 2010]
Sol. We have f(x) = x sin x + cos x and f ′(x) = x cos x
The iteration formula is,

xn + 1 = xn – 
x x x

x x
n n n

n n

sin cos
cos

+

with x0 = π, x1 = x0 – 
x x x

x x
0 0 0

0 0

sin cos
cos

+
 = π – 

π π π
π π

sin cos
cos

+
 = 2.8233

Successive iteratives are,

x2 = 2.7986, x3 = 2.7984

Since, x2  and x3  are same up to three decimal places hence required root is 2.798.
Example 5. Find a real root of the equation x = e–x using the Newton-Raphson method.

[U.P.T.U. (MCA) 2008]

Sol. We have f(x) = x – e–x

∴ f ′(x) = 1 + e–x
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Since, f(.5) = – .1065 (–)ve

f(.6) = .05118 (+)ve

Hence, the root lies between .5 and .6.

Since, | f(.6) | < | f(.5) | ∴ Root is nearer to 0.6.

Let us take x0 = 0.58.
Newton’s iterative formula is

  xn+1 = xn – 
f x
f x

x
x e

e
n

n
n

n
x

x

n

n

( )
( )′

= −
−

+

F
HG

I
KJ

−

−1
Putting n = 0, we get

x1 = x0 – ( )

( )

x e

e

x

x
0

0

01

−
+

−

−
 = 0.567113

Putting n = 1, 2, we get successively
 x2 = 0.567143
 x3 = 0.56714329

Since x2 and x3 are same up to 6 decimal places, hence, the required real root is 0.567143.
Example 6. Find a positive value of (17)1/3 correct to six decimal places by Newton-

Raphson method. (M.T.U. 2013, U.P.T.U. 2007, 2014)

Sol. Let x = (17)1/3 so that x3 – 17 = 0 ...(1)

Let  f(x) = x3 – 17 ∴ f ′(x) = 3x2

Since f(2.5) = – 1.375 (–)ve
and f(2.6) = 0.576 (+)ve

∴ The root lies between 2.5 and 2.6.
Since, | f(2.6) | < | f(2.5) |
Therefore, root is nearer to 2.6. Let us take x0 = 2.58.
Newton-Raphson formula is

  xn + 1 = xn – f x
f x

n

n

( )
( )′

 = xn – x

x
n

n

3

2
17

3
−F

HG
I
KJ

Putting n = 0, 1, 2, ..., successively, we get

x1 = x0 – x

x
0
3

0
2
17

3
−F

HG
I
KJ  = 2.571311 | ∵ x0 = 2.58

 x2 = 2.571281
 x3 = 2.5712815

Since x2 and x3 are same up to 6 decimal places, hence, the required positive root is
2.571281.

Example 7. Show that the following two sequences, both have convergence of the second

order with the same limit a .

 xn + 1 = 
1
2

xn 1
a

xn
2+

F
HG

I
KJ  and, xn + 1 = 

1
2

xn 3
x
a
n

2

−
F
HG

I
KJ .

(U.P.T.U. 2006, 2009)
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Sol. Since,   xn + 1 = 
1
2

 xn
 1 2+
F
HG

I
KJ

a
xn

, we  have

xn + 1 –  a  = 
1
2

 xn 1 2+
F
HG

I
KJ

a
xn

 – a  = 
1
2

 x
a
x

an
n

+ −
F
HG

I
KJ2

= 
1
2

x
a

x
n

n

−
F
HG

I
KJ

2

= 
1

2xn
 (xn – a )2

Thus, en + 1 = 
1

2
2

x
e

n
n ...(1)

which shows the quadratic convergence. Similarly for the second,

xn + 1 – a  = 
1
2

xn 3
2

−
F
HG

I
KJ

x
a
n  – a  = 

1
2

 xn 1
2

−
F
HG

I
KJ

x
a
n + (xn  – a )

= 
x
a
n

2
 (a – xn

2) + (xn – a ) = (xn – a ) 1 − +L
NM

O
QP

x
a

x an
n2 e j

en + 1 = 
x a

a
n −

2
[2a – xn

2 – xn a ] = 
x a

a
n −

2
 [(a – xn

2) + (a – xn
a )]

= – 
x a

a
n −F
HG

I
KJ2

 (xn – a ) (xn + 2 a )

en + 1 = – 
( )x a

a
n − 2

2
 (xn + 2 a ) = – 

( )x a
a

n + 2
2

. en 
2 ...(2)

which shows the quadratic convergence.

Example 8. If xn is suitable close approximation to a , show that error in the formula

xn + 1 = 
1
2

 xn
1

a
xn

2+
F
HG

I
KJ  is about 

1
3 rd  that in the formula, xn + 1 = 

1
2

 xn 3
x
a
n

2

−
F
HG

I
KJ  and deduce that

the formula xn + 1 = 
x
8
n  6

3a
x

x
an

2
n

2

+ −
F
HG

I
KJ  gives a sequence with third order convergence.

Sol. Since xn is very close to a

en + 1 ~−  – x x

x
n n

n
2

+F
HG

I
KJ

2

2
 en

2 | From (2)

= 3 . 
1

2xn
 en

2 ...(3)

A simple observation shows that from (1) (see example 7) and (3), error in first formula

for en + 1 is about 
1
3

rd of that in second formula.

To find the rate of convergence of given formula, we have

xn + 1 – a  = 
xn

8
 6

3
2

2

+ −
F
HG

I
KJ

a
x

x
an

n  – a  = 
x x a a x

ax
n n n

n

( )6 3

8

2 2 4

2

+ −
 – a
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= 6 3 8
8

2 2 4x a a x x a a
x a

n n n

n

+ − −  = 
− + −( ) ( )x a x a

x a
n n

n

3
8

3

∴ en + 1 = – 
x a

x a
n

n

+F
HG

I
KJ

3
8

 en
3

It shows that above formula has a convergence of third order.
Example 9. Show that the square root of N = AB is given by

    N  ~−  S
4

N
S

+ , where  S = A + B.

Sol. Let    x = N ⇒ x2 – N = 0
Now, let  f(x) = x2 – N ∴ f ′(x) = 2x
By Newton-Raphson formula,

xn + 1 = xn – f x
f x

n

n

( )
( )′

 = x
x

x
x

xn
n

n

n

n
−

−
= +

2

2
N

2
N

2

Let xn = 
A + B

2

then, xn + 1 = 
A + B

4
N

A B
+

+
 ~− +S

4
N
S

| Since S = A + B

Example 10. Using the starting value 2(1 + i), solve x4 – 5x3 + 20x2 – 40x + 60 = 0 by
Newton-Raphson method given that all the roots of the given equation are complex.

Sol. Let  f(x) = x4 – 5x3 + 20x2 – 40x + 60
so that, f ′(x) = 4x3 – 15x2 + 40x – 40

∴ Newton-Raphson method gives,

xn + 1  = xn – 
f x
f x

n

n

( )
( )′

 = xn – 
x x x x

x x x
n n n n

n n n

4 3 2

3 2

5 20 40 60

4 15 40 40

− + − +
− + −

= 
3 10 20 60

4 15 40 40

4 3 2

3 2

x x x

x x x
n n n

n n n

− + −
− + −

Put n = 0, take x0 = 2(1 + i) by trial, we get

x1 = 1.92 (1 + i)

Again, x2 = 1.915 + 1.908 i

Since, imaginary roots occur in conjugate pairs, roots are 1.915 ± 1.908 i up to three
places of decimal. Assuming other pair of roots to be α ± iβ, then

Sum = 
α β α β+ + −
+ +
+ −

F

H
GG

I

K
JJ

i i

i
i

1915 1908
1915 1908
. .
. .

 = 2α + 3.83 = 5

⇒ α = 0.585

Also, product of roots = (α2 + β2)  [(1.915)2 + (1.908)2] = 60

⇒ β = 2.805

Hence, other two roots are 0.585 ± 2.805 i.
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Example 11. Determine the value of p and q so that rate of convergence of the iterative

method xn + 1 = pxn + q
N
xn

2  for computing N1/3 becomes as high as possible.

Sol. We have x3 = N

∴ f(x) = x3 – N ...(1)

Let α be the exact root, we have

 α3 = N ...(2)
Substituting xn = α + en, xn + 1 = α + en + 1, N = α3 in

 xn + 1 = pxn + q N
xn

2
, we get

  α + en + 1 = p(α + en) + q 
α

α

3

2( )+ en

= p e q
e

n
n

( )α α

α
α

+ +
+FHG
I
KJ

3

2
2

1

 = p(α + en) + qα 1
2

+FHG
I
KJ

−en

α

= p e q
e e

n
n n( ) .........α α

α α
+ + − + FHG

I
KJ −

R
S|
T|

U
V|
W|

1 2 3
2

= p e q qe q
e

n n
n( )α α

α
+ + − +2 3

2

 – ........

⇒ en + 1 = ( p + q – 1)α + ( p – 2q)en + 0(en
2) + .......

Now, for the method to become of order as high as possible i.e., of order 2, we must have
 p + q = 1 and p – 2q = 0

so that, p = 
2
3

and q = 
1
3

.

Example 12. The graph of y = 2 sin x and y = log x + c touch each other in the nbd. of
point x = 8. Find c and the coordinates of point of contact.

Sol. The graphs will touch each other if values of  dy/dx at their point of contact is
same.

For y = 2 sin x,
dy
dx

 = 2 cos x

For y = log x + c
dy
dx

 = 
1
x

∴ 2 cos x = 
1
x

⇒ x cos x – .5  = 0

Let f(x) = x cos x – .5
∴  f ′(x) = cos x – x sin x

∴ Newton’s iterative formula is xn + 1 = xn – 
x x

x x x
n n

n n n

cos .
cos sin

−
−

0 5
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For n = 0, x0 = 8, first app. x1 = 7.793

Second approximation, x2 = 7.789 ≈ 7.79

Now,  y = 2 sin 7.79 = 1.9960

∴ Point of contact → (7.79, 1.996)

Now, y = log x + c

⇒ 1.996 = log 7.79 + c ⇒ c = – 0.054.

Example 13. How should the constant α be chosen to ensure the fastest possible conver-

gence with the iteration formula xn + 1 = 
α

α
x x 1

1
n n

2+ +
+

−
?

Sol. Since, lim lim
n

n
n

nx x
→ ∞ → ∞ += 1 = ξ, we have

ξ = 

αξ
ξ

α

+ +

+

F

H
GG

I

K
JJ

1
1

1

2

⇒ (α + 1)ξ3 = αξ3 + ξ2 + 1

⇒ ξ3 – ξ2 – 1 = 0

ξ can be obtained by finding a root of the equation x3 – x2 – 1 = 0.

We have f(x) = x3 – x2 – 1

f ′(x) = 3x2 – 2x

Since, f(1.45) = (–)ve and f(1.47) = (+)ve

∴ Root lies between 1.45 and 1.47. Let x0 = 1.46.

By Newton-Raphson method,
First approximation is

x1 = x0 – 
f x
f x

( )
( )

0

0′
 = x0 – 

x x

x x
0

3
0

2

0
2

0

1

3 2

− −
−

F
HG

I
KJ  = 1.465601.

Second approximation is

x2 = x1 – 
f x
f x

( )
( )

1

1′
 = x1 – 

x x

x x
1
3

1
2

1
2

1

1
3 2

− −
−

F
HG

I
KJ  = 1.46557

Hence, ξ = 1.465 correct to three decimal places.
Now, we have

 xn + 1 = 
α

α
x xn n+ +

+

−2 1
1

...(1)

Putting xn = ξ + en and xn+1 = ξ + en + 1 in (1), we get

(α + 1)(ξ + en + 1) = α(ξ + en) + 
1

2( )ξ + en
 + 1 = α(ξ + en) + 1

12

2

ξ ξ
+
F
HG
I
KJ

−
en  + 1
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which gives,

 (1 + α)en+1 = α
ξ

−
F
HG

I
KJ

2
3  en + O(en

2)

For fastest convergence, we must have α = 
2
3ξ

 = 
2

(1.465)3  = 0.636.

Example 14. Use the  Newton-Raphson  method  to find a solution accurate to within
10–5 for the problem, e6x + 1.441 e2x – 2.079 e4x – 0.3330 = 0; – 1 ≤ x ≤ 0. Use the initial point as
x0 = – 0.5. [U.P.T.U. MCA (SUM) 2008]

Sol. f(x) = e6x + 1.441 e2x – 2.079 e4x – 0.3330
x0 = – 0.5 | Given

Also  f ′(x) = 6e6x + 2.882e2x – 8.316e4x

By Newton-Raphson formula,

xn+1 = xn – 
f x

f x
n

n

(
( )

)

′

= x
e e e

e e e
n

x x x

x x x

n n n

n n n
− + − −

+ −

L
NMM

O
QPP

6 2 4

6 2 4
1441 2 079 0 3330

6 2 882 8 316

. . .

. .
...(1)

Putting n = 0, the first approximation is, x1 = – 0.35241839
Putting n = 1, the second approximation is, x2 = – 0.284980263
Putting n = 2, the third approximation is, x3 = – 0.246813527
Putting n = 3, the fourth approximation is, x4 = – 0.223232852
Putting n = 4, the fifth approximation is, x5 = – 0.207509457
Putting n = 5, the sixth approximation is, x6 = – 0.195400823
Similarly, putting n = 6, 7, 8, 9, ...... in (1), we get at last,

x12 = – 0.169602323 and x13 = – 0.16960655
Since x12 and x13 are same up to five decimal places, hence, the root of the given equa-

tion is – 0.16960 correct up to five decimal places.

ASSIGNMENT

1. (i) By using Newton-Raphsons method, find the root of x4 – x – 10 = 0 which is near to x = 2
correct to three places of decimal. (U.P.T.U. 2014, G.B.T.U. 2012)

(ii) Find the root of 2 sin x – 2x + 1 = 0 correct to five significant digits with initial approximation
x0 = 1.0. (M.T.U. 2012)

2. (i) Compute one positive root of 2x – log10 x = 7 by Newton-Raphson method correct to four
decimal places. [G.B.T.U. (C.O.) 2011]

(ii) Find the real root of the equation log10 x – x + 3 = 0 correct to four demical places using
Newton-Raphson method. (G.B.T.U. 2011)

(iii) Use Newton-Raphson method to find the root of 3x – log10 x = 6 correct to four decimal places.
(G.B.T.U. 2012)

3.  (i) Use the Newton-Raphson method to find a root of the equation x3 – 2x – 5 = 0.
(ii) Use Newton-Raphson method to find a root of the equation x3 – 3x – 5 = 0.
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4. Find the real root of the equations:
(i) log x = cos x (ii) x2 + 4 sin x = 0 (iii) x3 – 4x + 1 = 0

(M.T.U. 2012)

by Newton-Raphson method correct to three decimal places.
5. Use Newton-Raphson method to obtain a root, correct to three decimal places of following

equations :
(i) sin x = 1 – x (ii) x3 – 5x + 3 = 0 (iii) x4 + x2 – 80 = 0

(iv) x3 + 3x2 – 3 = 0 (v) 4(x – sin x) = 1 (vi) x – cos x = 0

(vii) sin x = 
x
2

(viii) x log10 x = 4.77 (G.B.T.U. 2011)

6. (i) Explain the method of Newton-Raphson for computing roots.
[U.P.T.U. 2009, U.P.T.U. MCA (SUM) 2009, G.B.T.U. (MCA) 2010]

(ii) Explain the limitations of Newton-Raphson method for finding out the root of an equation.
(U.P.T.U. 2009)

(iii) Explain the order of convergence and prove that Newton-Raphson method is second order
convergent. (M.T.U.  2012, G.B.T.U. 2010, 2011)

7. If an approximate root of the equation x (1 – loge x) = 0.5 lies between 0.1 and 0.2, find the value
of the root correct to three decimal places by Newton-Raphson method. (U.P.T.U. 2015)

8. Find all the roots of cos x – x2 – x = 0 to five decimal places by Newton-Raphson method.
(U.P.T.U. 2006)

9. Find all positive roots of the equation 10 
0

2x
xe dtz −  – 1 = 0 with six correct decimals. Use

Newton-Raphson method. (U.P.T.U. 2008)
10. Use Newton-Raphson method to find the smallest positive root of the equation tan x = x.

Hint: x lies in ,
3
2

π πF
HG
I
KJ

L
NM

O
QP (G.B.T.U. 2011, U.P.T.U. 2007)

11. Find the positive root of the equation ex = 1 + x + 
x x2 3

2 6
+  e0.3x correct to 6 decimal places.

12. Show that the equation f(x) = cos 
π( )x +RST

UVW
1

8
 + 0.148x – 0.9062 = 0 has  one  root  in  the  interval

(– 1, 0)  and  one  in  (0, 1).  Calculate  the negative root correct to 4 decimals. (U.P.T.U. 2009)

13. (i) Use Newton’s formula to prove that square root of N can be obtained by the recursion formula,

xi + 1 = xi 1
2

−
F
HG

I
KJ

xi – N
2N

Hence, find the square root of
(a) 13 (U.P.T.U. 2008) (b) 21 [U.P.T.U. (MCA) 2009] (c) 35.
correct to 4 decimal places.

(ii) Find the positive value of 1
17

1/3F
HG
I
KJ  correct up to 4 decimal places using Newton-Raphson

method. (U.P.T.U. 2009)

14. Find the iterative method based on Newton-Raphson method to find cube root of N where N is a
positive real number. Apply the method for N = 18 and obtain result correct to two decimal
places. [G.B.T.U. MCA (SUM) 2010]
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15. (i) The equation 2e–x = 
1

2
1

1x x+
+

+
 has two roots greater than – 1. Calculate these roots correct

to five decimal places. (M.T.U. 2012, G.B.T.U. 2013)
(ii) Use Newton-Raphson method to find a root of non-linear equation

f (x) = x3 + 2x2 + 10x – 20 = 0 up to 10 iterations. (U.P.T.U. 2009)
16. Determine p, q and r so that the order of the iterative method

xn + 1 = px
qa

x

ra

x
n

n n
+ +2

2

5

for a1/3 becomes as high as possible. [U.P.T.U. (MCA) 2007]
[Hint: p + q + r = 1, p – 2q – 5r = 0, 3q + 15r = 0.]

Answers

1. (i) 1.855 (ii) 1.4973
2. (i) 3.7892 (ii) 3.5502 (iii) 2.1079
3. (i) 2.094568 (ii) 2.279
4. (i) 1.303 (ii) – 1.934 (iii) 1.860, 0.2541, – 2.1147
5. (i) 0.511 (ii) 0.657 (iii) 2.908 (iv) – 2.533

(v) 1.171 (vi) .739 (vii) 1.896 (viii) 6.083

7. 0.186 8. 0.55000 ; – 1.25115

9. Roots lie in (0, 1) and (1, 2) ; 0.100336, 1.679631 10. 4.4934 11. 2.363376
12. – 0.5081. 13. (i) (a) 3.6055 (b) 4.5825 (c) 5.9160 (ii) 0.3889
14. 2.62 15. (i) Roots lie in (– 0.8, 0) and (0, 1) ; – 0.689752, 0.770091 (ii) 1.3688

16. p = 
5
9

, q = 
5
9

, r = – 
1
9

; Third order.

4.15 DEFINITIONS

1. A number  α  is  a solution of f(x) = 0 if f(α) = 0. Such a solution α is a root or a zero of f(x) = 0.
Geometrically, a root of the equation f(x) = 0 is the value of x at which the graph of y = f(x)
intersects x-axis.
2. If we can write f(x) = 0 as

f (x) = (x – α)m g(x) = 0
where g(x) is bounded and g(α) ≠ 0 then α is called a multiple root of multiplicity m. In this
case,

f(α) = f ′(α) = .......... = f (m – 1) (α) = 0, f (m) (α) ≠ 0
For m = 1, the number α is said to be a simple root.

4.16 METHOD FOR MULTIPLE ROOTS

If α is a multiple root of multiplicity m of the eqn. f(x) = 0 then, we have

 f(α) = f ′(α) = ........ = f (m – 1)(α) = 0 and f (m)(α) ≠ 0

It can easily be verified that all the iteration methods discussed so far have only linear
rate of convergence when m > 1.
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For example, in Newton-Raphson method, we have

f(xk) = f(α + ek) = 
e
m

f
e
m

f
e
m

fk
m

m k
m

m k
m

m

!
( )

( ) !
( )

( ) !
( ) .......( ) ( ) ( )α α α+

+
+

+
+

+
+

+
+

1
1

2
2

1 2

 f ′(xk) = f e
e

m
f

e
m

fk
k
m

m k
m

m′ + =
−

+ +
−

+( )
( ) !

( )
!

( ) .......( ) ( )α α α
1

1

1

The error equation for N–R method becomes,

ek + 1 = 1
1 1

12

1
2 3−FHG

I
KJ +

+
+

+

m
e

m m

f

f
e ek

m

m k k( )

( )

( )
( )

( )

( )

α

α
O

If m ≠ 1, we obtain,

ek + 1 = 1
1 2−FHG
I
KJ +

m
e ek kO ( ) ...(1)

which shows that the method has only linear rate of convergence.
However, if the multiplicity of the root is known in advance, we can modify the methods

by introducing parameters dependent on the multiplicity of the root to increase their order of
convergence.

For example, consider Newton-Raphson method in the form

  xk + 1 = x
f
fk

k

k
−

′
β ...(2)

where β is an arbitrary parameter to be determined.
If α is a multiple root of multiplicity m, we obtain from (2), the error equation

ek + 1 = 1
12

1
2 3−FHG

I
KJ +

+
+

+
β β α

αm
e

m m

f

f
e ek

m

m k k( )

( )

( )
( )

( )

( ) O

If the method (2) is to have the quadratic rate of convergence then the coefficient of ek
must vanish which gives

1 − β
m

 = 0 or β = m

Thus, the method

xk + 1 = x m
f

fk
k

k

− ′

has quadratic rate of convergence for determining a multiple root of multiplicity m.
If the multiplicity of the root is not known in advance, then we use the following

procedure.
It is known that if f(x) = 0 has a root α of multiplicity m, then f ′(x) = 0 has the same root

α of multiplicity m – 1.

Hence, g(x) = 
f x
f x

( )
( )′

 has a simple root α, we can now use Newton-Raphson method

  xk + 1 = x
g x
g xk

k

k
−

′
( )
( )

to find the approximate value of the multiple root α.
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Simplifying, we have

 xk + 1 = xk – 
f f

f f f
k k

k k k

′
−′ ″2

which has quadratic rate of convergence for multiple roots.
Note. If initial approximation x0 is sufficiently close to the root, then the expressions,

x m
f x
f x

x m
f x
f x

x m
f x
f x0

0

0
0

0

0
0

0

0
1 2−

′
− − ′

″
− − ″

″′
( )
( )

, ( )
( )
( )

, ( )
( )
( )

 will have same value.

EXAMPLES

Example 1. Show that the modified Newton-Raphson method xn + 1 = xn – 
2f(x )
f (x )

n

n′
 gives a

quadratic convergence when f(x) = 0, has a pair of double roots in neighbourhood of x = xn.

Sol. en + 1 = en – 2f a e
f a e

n

n

( )
( )

+
′ +

, where a, en and en + 1 have their usual meanings. Expanding

in powers of en and using  f(a) = 0, f ′(a) = 0 since, x = a is a double root near x = xn, we get

e n + 1 = en – 

2
2

2

2

2

e
f a

e f a
e

f a

n

n
n

!
( ) .......

( )
!

( ) .......

″ +
L
NM

O
QP

″ + ″′ +
L
NM

O
QP

= en – 
2

1
2

1
3

2

2e f a f a

e f a
e

f a

n

n
n

!
( )

!
( ) .......

( )
!

( ) ......

″ + ″′ +L
NM

O
QP

″ + ″′ +
L
NM

O
QP

~−  en – 
2

1
2

1
3

2

e f a f a

f a
e

f a

n

n

!
( )

!
( )

( )
!

( )

″ + ″′L
NM

O
QP

″ + ″′

 en + 1 ~−  1
6

 en
2  . ′′′

″ + ′′′
L
NM

O
QP

f a

f a
e

f an

( )

( )
!

( )
2

∴ en + 1 ≈ 
1
6

2en  
′′′
″

f a
f a

( )
( )

⇒  en
 
+ 1 ∝ en

2

and hence convergence is quadratic.
Example 2. Find the double root of the equation x3 – x2 – x + 1 = 0.
Sol. Let f(x) = x3 – x2 – x + 1

so that f ′(x) = 3x2 – 2x – 1, f ″(x) = 6x – 2
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Starting with x0 = 0.9, we have

x0 – 2 
f x
f x

( )
( )

0

0′
 = .9 – 

2 019
37

×
−

.
( . )

 = 1.003

and x0 –  (2 – 1) 
f x
f x

′
″
( )
( )

0

0
 = .9 – 

( . )
.

− 37
3 4

 = 1.009

The closeness of these values implies that there is a double root near x = 1.
 Choosing x1 = 1.01 for next approximation, we get

x1 – 2 
f x
f x

( )
( )

1

1′
 = 1.01 – 2 × 

0 0002
0 0403
.
.

 = 1.0001

and x1 –  (2 – 1) 
f x
f x

′
″
( )
( )

1

1
 = 1.01 – 

.
.

0403
4 06

 = 1.0001

This shows  that there is a double root at x = 1.0001 which is quite near the actual root
x = 1.

4.17 NEARLY EQUAL ROOTS

So far, Newton’s method is applicable when  f ′(x) ≠ 0 in the neighbourhood of actual root x = a,
i.e., in the interval (a – h, a + h).

If the quantity h is very very small, it will not satisfy the above restriction. The application
of Newton’s  method will not be practical in that case. This condition arrives when roots are
very close to each other.

We know that in case of double root x = a, f(x) and f ′(x) both vanish at x = a. Thus, while
applying  Newton’s  method,  if  xi  is  simultaneously  near  zeros of f(x) and f ′(x) i.e., f(xi) and
f ′(xi) both are very small, then  it is usually practical to depart from the standard sequence
and proceed to obtain two new starting values for  the two nearly equal roots.

To obtain these values, we first apply Newton’s method to the equation f ′(x) = 0 i.e., we
use the iteration formula

 xi + 1
 = xi  – 

f x
f x

i

i

′
″
( )
( )

...(1)

with last available iterate as the initial value x0  for (1).

Suppose x = c is the solution obtained by (1).

Now by Taylor’s series, we have

f(x) = f(c) + (x – c) f ′(c) + 
1
2

 (x – c)2 f ″(c) + .......

= f(c) + 
1
2

 (x – c)2 f ″(c) + R | ∵ f ′(c) = 0

Assuming R to be small, we conclude that the zeros of f(x) near x = c are approximately
given by

f(c) + 
1
2

 (x – c)2 f ″(c) = 0 ⇒ x = c ± 
−

″  
2f c

f c
( )

( )
...(2)
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Using these values as starting values, we can use the original iteration formula to get
two close roots of f(x) = 0.

Example. Use synthetic division to solve f(x) ≡ x3 – x2 – 1.0001 x + 0.9999 = 0 in the
neighbourhood of x = 1.

Sol. To find f(1) and f ′(1),

1 –1 –1.0001 0.9999 1
1 0 – 1.0001

1 0 – 1.0001 – 0.0002 = f (1)
1 1

1 1 – .0001 = f ′(1)
1

1 2 = 
1
2

 f ″(1)

From the above synthetic division, we observe that f(1) and f ′(1) are small. Hence, there

exists two nearly  equal  roots. Taking x0 = 1, we will use xi + 1 = xi – 
f x
f x

i

i

′
″
( )
( )

 to modify the root.
For this, we require f ″(1).

From the above synthetic division, we have

1
2

 f ″(1) = 2 ⇒ f ″(1) = 4

∴ First approximation  x1 = 1 – 
f
f

′
″
( )
( )
1
1

 = 1 – 
( . )− 0001

4
 = 1.000025

Now, we again calculate f (x1) and f ″(x1) by synthetic division.

1 –1 – 1.000100 0.999900 1.000025
1.000025   0.000025 – 1.000075

1 0.000025 – 1.000075 – 0.000175 = f(x1)
1.000025    1.000050

1 1.000050 – 0.000025 = f ′(x1)
1.000025

1 2.000075 = 
1
2

 f ″(x1)

∴ f(1.000025) = – 0.000175 and  f ″(1.000025) = 4.000150
Now,  for nearly equal roots,

 x = c ± 
−

″
2 f c
f c

( )
( )

, where c = 1.000025

= 1.000025 ± 
− −2 000175

4 000150
( . )
.

 = 1.009378, 0.990671
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4.18 COMPARISON OF NEWTON’S METHOD WITH REGULA-FALSI METHOD

Regula-Falsi is surely convergent while Newton’s method is conditionally convergent. But
once, Newton’s method converges, it converges faster.

In Falsi method, we calculate only one more value of function at each step i.e., f(x(n))
while in Newton’s method, we require two calculations f(xn) and f ′(xn) at each step.

∴ Newton’s method generally requires less number of iterations but requires more
time for computation at each iteration.

When  f ′(x) is large near the root, correction to be applied is  smaller in case of Newton’s
method and then this method is preferred while if f ′(x) is small near the root, correction to be
applied is large and curve becomes parallel to x-axis. In this case Regula-Falsi method should
be applied.

Newton’s method has the fastest rate of convergence. This method is quite sensitive to
starting value. It may diverge if f ′(x) ≈ 0 during iterative cycle.

ASSIGNMENT

1. The equation f(x) = (x – 1)2 (x – 3)2 has roots at x = 1 and x = 3. Which of the following methods can
be applied to find all the roots?
(i) Bisection method (ii) False position method (iii) Newton-Raphson method

Justify your answer. (G.B.T.U. 2010)
2. A sphere of wood, 2 m in diameter, floating in water sinks to a depth d  given by

d3 – 3d2 + 2.5 = 0

Find d correct to two decimal places.

Answers
1. (iii) Newton-Raphson method since it deals with multiple roots as well.
2. 1.16

4.19 INTERPOLATION [G.B.T.U. (MCA) 2010, G.B.T.U. MCA (SUM) 2010]

According to Theile, ‘Interpolation is the art of reading between the lines of the table’.
It also means insertion or filling up intermediate terms of the series.
Suppose, we are given the following values of y = f(x) for a set of values of x:

x : x0 x1 x2 ...... xn

y : y0 y1 y2 ...... yn

Thus, the process of finding the value of y corresponding to any value of x = xi between
x0 and xn is called interpolation.

Hence, interpolation is the technique of estimating the value of a function for any
intermediate value of the independent variable while the process of computing the value of
the function outside the given range is called extrapolation.
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4.20 ASSUMPTIONS FOR INTERPOLATION

1. There are no sudden jumps or falls in the values during the period under consideration.
2. The rise and fall in the values should be uniform.
e.g., if we are given data regarding deaths in various years in a particular town and

some of the observations are for the years in which epidemic or war overtook the town then
interpolation methods are not applicable in such cases.

3. When we apply calculus of finite differences, we assume that the given set of observa-
tions are capable of being expressed in a polynomial form.

If the function f(x) is known explicitly, the value of y corresponding to any value of x can
easily be found.

If the function f(x) is not known, it is required to find a simpler function, say φ(x) such
that f(x) and φ(x) agree at the set of tabulated points. Such a process is called interpolation. If
φ(x) is a polynomial, then the process is called polynomial interpolation and φ(x) is called the
interpolating polynomial.

4.21 ERRORS IN POLYNOMIAL INTERPOLATION

Let the function y(x) defined by (n + 1) points (xi, yi) i = 0, 1, 2, ......, n be continuous and
differentiable (n + 1) times and let y(x) be approximated by a polynomial φn(x) of degree not
exceeding n such that

 φn(xi) = yi ; i = 0, 1, 2, ....., n ...(1)
Now problem lies in finding the accuracy of this approximation if we use φn(x) to obtain

approximate values of y(x) at some points other than those defined above.
Since the expression y(x) – φn(x) vanishes for x = x0, x1, ......, xn, we put

   y(x) – φn(x) = L Πn + 1 (x) ...(2)
where   Πn+1(x) = (x – x0) (x – x1) ...... (x – xn) ...(3)
and L is to be determined such that equation (2) holds for any intermediate value of x say x′
where x0 < x′ < xn.

Clearly, L = y x x
x
n

n

( ) ( )
( )

′ − ′
′+

φ
Π 1

...(4)

Construct a function, F(x) = y(x) – φn(x) – L Πn + 1(x) ...(5)
where L is given by (4).

It is clear that, F(x0) = F(x1) = ...... = F(xn) = F(x′) = 0
i.e., F(x) vanishes (n + 2) times in interval [x0, xn] consequently, by repeated application of
Rolle’s  theorem,  F′(x)  must  vanish  (n + 1) times, F″(x) must vanish n times in the interval
[x0, xn].

Particularly, F(n+1) (x) must vanish once in [x0, xn].
Let this point be x = ξ ; x0 < ξ < xn.
Differentiating (5) (n + 1) times w.r.t. x and put x = ξ, we get

0 = (y)(n + 1) (ξ) – L ( ) !n + 1
d
dx

x n
n

n
n

+

+
+ = +

1

1
1 1( ) ( ) !

so that, L = 
y

n

n( ) ( )
( ) !

+

+

1

1
ξ

...(6)
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Comparison of (4) and (6) gives

y(x′) – φn(x′) = 
y

n

n( ) ( )
( ) !

+

+

1

1
ξ

 Πn + 1(x′)

Hence, required expression for error is

y(x) – φn(x) = 
Πn x

n
+

+
1

1

( )

( ) !
 yn + 1(ξ), x0 < ξ < xn ...(7)

Since y(x) is generally unknown, hence we do not have any information concerning
y(n + 1) (x), equation (7) is useless in practical computations.

Particularly, we will use it to determine errors in Newton’s interpolating formulae.
The various methods of interpolation are as follows:
(1) The method of graph (2) The method of curve fitting
(3) Use of calculus of finite difference formulae.
The merits of last method over others are
(i) It does not assume the form of function to be known.

(ii) It is less approximate than method of graphs.
(iii) Calculations remain simple even if some additional observations are included in the

given data.
The demerit is that there is no definite way to verify whether the assumptions for the

application of finite difference calculus are valid for the given set of observations.

4.22 FINITE DIFFERENCES

The calculus of finite differences deals with the changes that take place in the value of the
function (dependent variable) due to finite changes in the independent variable.

Suppose, we are given a set of values (xi, yi) ; i = 1, 2, 3, ......, n of any function y = f(x).
A value of independent variable x is called argument  and the corresponding value of depend-
ent variable y is called entry.

Suppose  that  the  function  y = f(x)  is  tabulated  for  the equally spaced values x = x0,
x0 + h, x0 + 2h, ....., x0 + nh giving y = y0, y1, y2, ......, yn. To determine the values of f(x) or f ′(x)
for some intermediate values of x, given three types of differences are useful:

1. Forward differences. The differences y1 – y0, y2 – y1, y3 – y2, ......, yn – yn – 1 when denoted
by Δy0, Δy1, Δy2, ......, Δyn–1 respectively, are called the first forward differences where Δ is the
forward difference operator. (U.P.T.U. 2009)

Thus, the first forward differences are
 Δyr = yr+1 – yr

Similarly, the second forward differences are defined by

Δ2yr = Δyr+1 – Δyr

Particularly, Δ2y0 = Δy1 – Δy0 = y2 – y1 – (y1 – y0) = y2 – 2y1 + y0

Similarly, Δ3y0 = y3 – 3y2 + 3y1 – y0

Δ4y0 = y4 – 4y3 + 6y2 – 4y1 + y0.
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Clearly, any higher order difference can easily be expressed in terms of ordinates
since the  coefficients  occurring on R.H.S. are the binomial coefficients*. In general,
Δpyr = Δp – 1yr + 1

 – Δp – 1yr defines the pth forward differences.

Following table shows how the forward differences of all orders can be formed.

Forward difference table

x y Δy Δ2y Δ3y Δ4y Δ5y

x0 y0

Δy0

x1 y1 Δ2y0

(= x0 + h) Δy1 Δ3y0

x2 y2 Δ2y1 Δ4y0

(= x0 + 2h) Δy2 Δ3y1 Δ5y0

x3 y3 Δ2y2 Δ4y1

= (x0 + 3h) Δy3 Δ3y2

x4 y4 Δ2y3

= (x0 + 4h) Δy4

x5 y5

= (x0 + 5h)

Here, the first entry y0 is called leading term and Δy0, Δ2y0, ...... are called leading
differences.

Remark. Δ obeys distributive, commutative and index laws :

1. Δ [f(x) ± φ(x)] = Δf(x) ± Δφ (x) 2. Δ [c f (x)] = c Δ f (x) ; c is constant

3. Δm Δn f (x) = Δm + n f (x), m, n being (+)ve integers.

But, Δ[ f (x) . φ(x)] ≠ f (x) . Δ φ(x).

2. Backward differences. The differences y1 – y0, y2 – y1, ......, yn – yn–1 when denoted by ∇y1,
∇y2, ......, ∇yn respectively are called first backward differences where ∇ is the backward
difference operator. (U.P.T.U. 2009)

Similarly, we define higher order backward differences as,
∇yr = yr – yr – 1

  ∇2yr = ∇yr – ∇yr – 1

∇3yr = ∇2yr – ∇2yr – 1
 etc.

Particularly,  ∇2y2 = ∇y2 – ∇y1 = y2 – y1 – (y1 – y0) = y2 – 2y1 + y0

 ∇3y3 = ∇2y3 – ∇2y2 = y3 – 3y2 + 3y1 – y0 etc.

∗ Δn(y0) = yn – nC1 yn – 1 + nC2yn – 2 + ...... + (– 1)n y0
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Backward difference table

x y ∇y ∇2y ∇3y ∇4y ∇5y

x0 y0

∇y1

x1 y1 ∇2y2

(= x0 + h) ∇y2 ∇3y3

x2 y2 ∇2y3 ∇4y4

(= x0 + 2h) ∇y3 ∇3y4 ∇5y5

x3 y3 ∇2y4 ∇4y5

(= x0 + 3h) ∇y4 ∇3y5

x4 y4 ∇2y5

(= x0 + 4h) ∇y5

x5 y5

(= x0 + 5h)

3. Central differences. The central difference operator δ is defined by the relations

y1 – y0 = δy1/2, y2 – y1 = δy3/2, ......, yn – yn–1 = δy
n –

1
2

.

[G.B.T.U. 2012, U.P.T.U. 2009]

Similarly, high order central differences are defined as

δy3/2 – δy1/2 = δ2y1, δy5/2 – δy3/2 = δ2y2 and so on.

These differences are shown as follows:

Central difference table

x y δy δ2y δ3y δ4y δ5y

x0 y0
δy1/2

x1 y1 δ2y1
δy3/2 δ3y3/2

x2 y2 δ2y2 δ4y2
δy5/2 δ3y5/2 δ5y5/2

x3 y3 δ2y3 δ4y3
δy7/2 δ3y7/2

x4 y4 δ2y4

δy9/2
x5 y5

Note 1. The central differences on the same horizontal line have same suffix.
2. It is only the notation which changes, not the differences e.g.,

y1 – y0 = Δy0 = ∇y1= δy1/2.
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4.23 OTHER DIFFERENCE OPERATORS

1. Shift operator E. [G.B.T.U. 2012, U.P.T.U. 2009]
It is the operation of increasing the argument x by h so that

 Ef(x) = f(x + h)
E2f(x) = f(x + 2h) and so on.

The inverse operator E–1 is defined by
  E–1f(x) = f(x – h).

Also Enyx = yx + nh.
2. Averaging operator μ. [G.B.T.U. 2012, U.P.T.U. 2009]

It is defined by

μyx = 
1
2

 LNM
y y

x h x h+ −
+1

2
1
2

O
QP

In difference calculus, E is fundamental operator and ∇, Δ, δ, μ can be expressed in
terms of E.

4.24 RELATION BETWEEN OPERATORS

1. Δ = E – 1 or E = 1 + Δ.

[M.T.U. (MCA) 2012, U.P.T.U. (MCA) 2009]
Proof. We know that,

Δyx = yx + h – yx = Eyx – yx = (E – 1)yx
⇒ Δ = E – 1

or E = 1 + Δ

2. ∇ = 1 – E–1

Proof. ∇yx = yx – yx – h = yx – E–1yx

∴ ∇ = 1 – E–1

3.  δ = E1/2 – E–1/2 (U.P.T.U. 2014)

Proof.  δyx = y
x

h+
2

 – y
x

h−
2

 = E1/2 yx – E–1/2 yx = (E1/2 – E–1/2) yx

∴ δ = E1/2 – E–1/2

4. μ = 
1
2

 (E1/2 + E–1/2)

Proof.  μyx = 
1
2

 ( y
x

h+
2

 + y
x

h−
2

) = 
1
2

 (E1/2 + E–1/2) yx

⇒ μ = 
1
2

 (E1/2 + E–1/2)

5. Δ = E∇ = ∇E = δE1/2

[G.B.T.U. 2011, U.P.T.U. (MCA) 2009, M.T.U. 2012]
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Proof. E(∇yx) = E(yx – yx–h) = yx + h – yx = Δyx

⇒  E∇ = Δ
∇(E yx) = ∇ yx + h = yx + h – yx = Δyx

⇒ ∇E = Δ

δE1/2 yx = δ y
x

h+
2

 = yx + h – yx = Δyx

⇒ δE1/2 = Δ

6. E = ehD [U.P.T.U. (MCA) 2009]

Proof.  Ef(x) = f(x + h)

= f(x) + h f ′(x) + 
h2

2 !
 f ″(x) + ..... (By Taylor series)

= f(x) + hDf(x) + 
h2

2 !
 D2f(x) + ......

= 1
2

2

+ + +
L
NM

O
QP

h
h

D
D( )
!

......  f(x) = ehD f(x)

∴   E = ehD or Δ = ehD – 1.

4.25 DIFFERENCES OF A POLYNOMIAL

The nth differences of a polynomial of nth degree are constant and all higher order differences
are zero when the values of the independent variable are at equal interval.

Let f(x) = axn + bxn – 1 + cxn – 2 + ...... + kx + l
∴ Δf(x) = f(x + h) – f(x)

= a[(x + h)n – xn] + b [(x + h)n – 1 – xn – 1] +  ...... + kh

= anhxn – 1 + b′xn – 2 + c′xn – 3 + ...... + k′x + l′ ...(1)

where b′, c′, ......, l′ are new constant coefficients.

∴ First differences of a polynomial of nth degree is a polynomial of degree (n – 1).

Similarly, Δ2f(x) = Δf(x + h) – Δf(x)

= anh [(x + h)n – 1 – xn – 1] + b′[(x + h)n – 2 – xn – 2] + ...... + k′h

= an(n – 1) h2xn – 2 + b″xn – 3 + ...... + k″ ...(2)

∴ Second differences represent a polynomial of degree (n – 2).

Continuing this process, for nth differences, we get a polynomial of degree zero i.e.,

Δn f(x) = an(n – 1) (n – 2) ...... 1 hn = a n ! hn

which is a constant. Hence, the (n + 1)th and higher differences of a polynomial of nth degree
will be zero. Converse of this theorem is also true.
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EXAMPLES

Example 1. Construct the forward difference table, given that

x: 5 10 15 20 25 30
y: 9962 9848 9659 9397 9063 8660

and point out the values of Δ2y10 , Δ4y5.
Sol. Forward difference table is as follows:

x y Δy Δ2y Δ3y Δ4y

5 9962
– 114

10 9848 – 75
– 189 2

15 9659 – 73 – 1
– 262 1

20 9397 – 72 2
– 334 3

25 9063 – 69
– 403

30 8660

From the table, Δ2y10 = – 73 and Δ4y5 = – 1.

Example 2. Construct a backward difference table for y = log x given that

x: 10 20 30 40 50

y: 1 1.3010 1.4771 1.6021 1.6990

and find values of ∇3 log 40 and ∇4 log 50.

Sol. Backward difference table is:

x y ∇y ∇2y ∇3y ∇4y

10 1
0.3010

20 1.3010 – 0.1249
0.1761 0.0738

30 1.4771 – 0.0511 – 0.0508
0.1250 0.0230

40 1.6021 – 0.0281
0.0969

50 1.6990

From the table, ∇3 log 40 = 0.0738 and ∇4 log 50 = – 0.0508.
Example 3. (i) Find f(6) given f(0) = – 3, f(1) = 6, f(2) = 8, f(3) = 12 ; third difference being

constant.

(ii) Find Δ10(1 – ax)(1 – bx2)(1 – cx3)(1 – dx4).
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Sol. (i) The difference table is:

x f(x) Δf(x) Δ2f(x) Δ3f(x)

0 – 3
9

1 6 – 7
2 9

2 8 2
4

3 12

f(0 + 6) = E6f(0) = (1 + Δ)6f(0) = (1 + 6Δ + 15Δ2 + 20Δ3) f(0)
= – 3 + 6 (9) + 15 (– 7) + 20 (9) = 126.

(ii)  Maximum power of x in polynomial will be 10 and co-efficient of x10 will be abcd.
Here,  k = abcd, h = 1, n = 10
∴ Expression = k hn n ! = abcd 10 !
Example 4. Evaluate:
(i) Δ tan–1 x (ii) Δ2 cos 2x
where h is the interval of differencing.
Sol. (i) Δ tan–1 x = tan–1 (x + h) – tan–1 x

= tan–1 
x h x

x x h
+ −

+ +
RST

UVW1 ( )
 = tan–1 

h
hx x1 2+ +

F
HG

I
KJ

(ii) Δ2 cos 2x = Δ[cos 2(x + h) – cos 2x]
= [cos 2(x + 2h) – cos 2(x + h)] – [cos 2(x + h) – cos 2x]
= – 2 sin (2x + 3h) sin h +  2 sin (2x + h) sin h
= – 2 sin h [2 cos (2x + 2h) sin h] = – 4 sin2 h cos 2(x + h).

Example 5. If f(x) = exp(ax), evaluate Δnf(x).
Sol.   Δeax = ea(x + h) – eax = (eah – 1)eax

Δ2eax = Δ(Δeax) = Δ[(eah – 1)eax] = (eah – 1)(eah – 1)eax = (eah – 1)2 eax

Similarly, Δ3 eax = (eah – 1)3 eax

# # #
Δn eax = (eah – 1)n eax.

Example 6. With usual notations, prove that,  Δn 
1
x
F
HG
I
KJ  = (– 1)n . 

n ! h
x (x h) ...... (x nh)

n

+ +
.

Sol.  Δn 
1
x
F
HG
I
KJ  = Δn – 1 Δ 

1
x
F
HG
I
KJ  = Δn – 1 

1 1
x h x+

−
L
NM

O
QP  = (– 1) Δn – 2 Δ 1 1

x x h
−

+
F
HG

I
KJ

L
NM

O
QP

 = (– 1) Δn – 2 
1 1 1

2
1

x h x x h x h+
−

F
HG

I
KJ −

+
−

+
F
HG

I
KJ

L
NM

O
QP
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 = (– 1) Δn – 2 
2 1 1

2x h x x h+
− −

+
L
NM

O
QP  = (– 1) Δn – 2 

−
+ +

L
NM

O
QP

2
2

2h
x x h x h( )( )

= (– 1)2 Δn – 2 
2

2

2!
( )( )

h
x x h x h+ +
L
NM

O
QP
 = (– 1)3 Δn – 3 

3
2 3

3!
( )( )( )

h
x x h x h x h+ + +
L
NM

O
QP

#

= (– 1)n 
n h

x x h x nh

n!
( ) ...... ( )+ +

.

Example 7. Evaluate: (i) Δn [sin (ax + b) ] (ii) Δn [cos (ax + b)].

Sol. (i) Δ sin (ax + b) = sin [a (x + h) + b] – sin (ax + b)

= 2 sin 
ah
2

 cos a x
h

b+FHG
I
KJ +

L
NM

O
QP2
 = 2 sin 

ah
2

 sin ax b
ah+ + +F

HG
I
KJ

π
2

∴ Δ2 sin (ax + b) = Δ 2
2 2

sin sin
ah

ax b
ah+ + +F

HG
I
KJ

L
NM

O
QP

π

= 2
2

2
2 2 2

sin sin sin
ah ah

ax b
ah ahF

HG
I
KJ
F
HG

I
KJ + + + + +L
NM

O
QP

π π

= 2
2

2

sin
ahF

HG
I
KJ  sin ax b

ah+ + +F
HG

I
KJ

L
NM

O
QP2

2
π

Proceeding in the same manner, we get

Δ3 sin (ax + b) = 2
2

3
2

3

sin sin
( )ah

ax b
ahF

HG
I
KJ + + +L
NM

O
QP

π

 # #

Δn sin (ax + b) = 2
2 2

sin sin
( )ah

ax b
n ahnF

HG
I
KJ + + +L
NM

O
QP

π

Similarly,

(ii)  Δn cos (ax + b) = 2
2 2

sin cos
ah

ax b n
ahnF

HG
I
KJ + + +F

HG
I
KJ

L
NM

O
QP

π
.

Example 8. Prove that

(i) Δ log f(x) = log 1
f(x)
f(x)

+
L
NM

O
QP

Δ
(ii) μ = 1

4

2

+
F
HG

I
KJ

δ
.

[G.B.T.U. 2013, U.P.T.U. 2009]
Sol. (i) LHS = log f (x + h) – log f (x)

= log [ f(x) + Δ f (x)] – log f (x) | ∵ Δf(x) = f (x + h) – f (x)

= log 
f x f x

f x
( ) ( )

( )
+L

NM
O
QP

Δ
 = log 1 +
L
NM

O
QP

Δf x
f x

( )
( )

 = RHS
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(ii) RHS = 1
4

2

+ δ
 = 1

1
4

1/2 1/2 2+ − −( )E E |∵ δ = E1/2 – E–1/2

= 
1
2

4 (E E )1/2 1/2 2+ − −

= 
1
2

(E E )1/2 1/2 2+ −  = 
E E

2

1/2 1/2+ −

 = μ = LHS

Example 9. Prove that ex = 
Δ2

E

F
HG
I
KJ  e

x . 
Ee

e

x

2 xΔ
. (M.T.U. 2013)

Sol.
Δ2

E

F
HG
I
KJ  e

x = Δ2 E–1 ex = Δ2 ex – h = e–h Δ2 ex

 RHS = e–h  . Δ2 ex . 
E e

e

x

xΔ2  = e–h . E ex = e–h ex + h = ex.

Example 10. Prove that,

(i) (E1/2 + E –1/2) (1 + Δ)1/2 = 2 + Δ (U.P.T.U. 2009)

(ii) Δ = 
1
2

 δ2 + δ 1 /42+ ( )δ [G.B.T.U. 2013, U.P.T.U. 2009, G.B.T.U. (C.O.) 2011]

(iii) Δ3y2 = ∇3y5.

(iv) hD = – log (1 – ∇) = sin h–1 (μδ). (M.T.U. 2013, U.P.T.U. 2006)

Sol. (i) (E1/2 + E–1/2) E1/2 = E + 1 = 1 + Δ + 1 = Δ + 2

(ii)
1
2

 δ2 + δ 1
4

2

+ δ
 = 

1
2

 (E1/2 – E–1/2)2 + (E1/2 – E–1/2) 1
1
4

1/2 1/2 2+ − −( )E E

= 
1
2

 (E + E–1 – 2) + (E1/2 – E–1/2) E E1/2 1/2

2
+F

HG
I
KJ

−

= 
1
2

 (2E – 2) = E – 1 = Δ

(iii)  Δ3y2 = (E – 1)3 y2

= (E3 – 3E2 + 3E – 1) y2 = y5 – 3y4 + 3y3 – y2

 ∇3y5 = (1 – E–1) y5

= (1 – 3E–1 + 3E–2 – E–3) y5 = y5 – 3y4 + 3y3 – y2

(iv) hD = log E = – log (E–1) = – log (1 – ∇) | ∵ E–1 = 1 – ∇

Also, μ = 
1
2

 (E1/2 + E–1/2) and δ = E1/2 – E–1/2

∴  μδ = 
1
2

 (E – E–1) = 
1
2

 (ehD – e–hD) = sinh (hD)

or hD = sinh–1 (μδ).
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Example 11. Prove that

(i) Δ + ∇ = 
Δ

Δ∇
− ∇

, where Δ and ∇ are forward difference and backward difference

operators respectively. [G.B.T.U. 2012, G.B.T.U. (MCA) 2010, 2011; U.P.T.U. 2008, 2009]

(ii) Δ2 yr
r 0

n 1

=

−

∑  = Δyn – Δy0 (iii) Δryk = ∇ryk + r.

Sol. (i)   
Δ

Δ∇
− ∇

 = 
E 1

1 E
1 E
E 11

1−
−

− −
−−

−

 = 
E 1
E 1

E

E 1
E

E 1
−
−F
HG
I
KJ

−

−F
HG
I
KJ

−
 = E

1
E

−  = E – E–1

= (E – 1) + (1 – E–1) = Δ + ∇

(ii) Δ Δ Δ2
1

0

1

0

1

y y yr r r
r

n

r

n

= −+
=

−

=

−

∑∑ ( )  = Δy1 – Δy0 + Δy2 – Δy1 + ...... + Δyn – Δyn – 1

= Δyn – Δy0.

(iii) ∇ryk + r = (1 – E–1)ryk + r = 
E 1

E
−F
HG
I
KJ

r

yk + r = (E – 1)r E–ryk + r = Δryk.

Example 12. Prove that

(i) μδ = 
1
2

 (Δ + ∇) = 
Δ ΔE

2 2

−
+

1

(ii) 1 + 
δ δ μ

2
2 2

2
1

F
HG
I
KJ = +

[G.B.T.U. 2011] [G.B.T.U. 2013, U.P.T.U. 2014]

(iii) ∇2 = h2D2 – h3D3 + 
7
12

 h4D4. ...... (iv) ∇ – Δ = – ∇Δ

[G.B.T.U. (C.O.) 2010; G.B.T.U. (MCA) 2010, 2011]

Sol. (i) μδ = 
1
2

(E1/2 + E–1/2) (E1/2 – E–1/2)

= 
1
2

(E – E–1) = 
1
2

[(E – 1) + (1 – E–1)] ...(1)

⇒   μδ = 
1
2

 (Δ + ∇)

Also from (1),

 μδ = 
1
2

 [Δ + (E – 1) E–1] = 
1
2

(Δ + ΔE–1) = 
Δ ΔE−

+
1

2 2

Hence, the results.
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(ii)  LHS = 1
2

2

+
F
HG
I
KJ

δ  = 1
(E E )

2

1/2 1/2 2

+ − −
 = 1

E E
2

–1

+ + −F
HG

I
KJ

2

= 
1
2

 (E + E–1)

 RHS = 1 2 2+ δ μ

= 1
1
4

1/2 1/2 2 1/2 1/2 2
1/2

+ − +RST
UVW

L
NM

O
QP

− −( ) . ( )E E E E

= 1

1/2

+ −F
HG

I
KJ

R
S|
T|

U
V|
W|

−(E E )
4

1 2

 = 
E E 2

4

2 2 1/2
+ +F

HG
I
KJ

−

 = 
E E

2

1+F
HG

I
KJ

−

Hence, LHS = RHS.

(iii)   E = ehD and ∇ = 1 – E–1

∴     ∇2 = (1 – e–hD)2

= 1 1
2 3 4

2 3 4
2

− − + − + −
RST

UVW
L
N
MM

O
Q
PPh

h h h
D

D D D( )
!

( )
!

( )
!

...

= h
h h h

D
D D D− + − +

RST
UVW

( )
!

( )
!

( )
!

...
2 3 4 2

2 3 4

= h2D2 1
2 6

2

− − +
RST

UVW
L
N
MM

O
Q
PP

h hD D)2(
...

= h2D2 1
2 6

2
2 6

2

+ − +
RST

UVW
− − +
RST

UVW
L
N
MM

O
Q
PP

h h h hD D) D D)2 2(
...

(
...

= h2D2 1
1
4

1
3

2− + +FHG
I
KJ −

L
NM

O
QPh hD D( ) ...

= h2D2 1
7
12

2 2− + −F
HG

I
KJh hD D ...  = h2D2 – h3D3 + 

7
12

 h4D4 – ...

(iv)  ∇ – Δ = (1 – E–1) – (E – 1) = 
E 1

E
−F
HG
I
KJ  – (E – 1) = (E – 1)(E–1 – 1)

= – (E – 1) (1 – E–1) = – ∇Δ

Example 13. Prove that if m is a (+)ve integer then 
(x 1)

m !

(m)+
 = 

x
m !

(m)

 + 
x

(m 1) !

(m 1)−

−

Sol.  RHS = 
x x x m

m
x x x m

m
( ) ...... ( )

!
( ) ...... ( )

( ) !
− − + + − − +

−
1 1 1 2

1
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= 
x x x x m

m
( ) ( ) ...... ( )

!
− − − +1 2 2

 [(x – m + 1) + m]

= 
( ) ( )( ) ...... ( )

!
( )

!

( )x x x x x m
m

x
m

m+ − − − + = +1 1 2 2 1
 = LHS.

Example 14. Given u0 + u8 = 1.9243, u1 + u7 = 1.9590
   u2 + u6 = 1.9823, u3 + u5 = 1.9956. Find u4.

Sol. Taking Δ8 u0 = 0
⇒ (E – 1)8 u0 = 0
⇒ u8 – 8c1u7 + 8c2u6 – 8c3u5 + 8c4u4 – 8c5u3 + 8c6u2 – 8c7u1 + 8c8u0 = 0
⇒  (u0 + u8) – 8(u1 + u7) + 28(u2 + u6) – 56(u3 + u5) + 70 u4 = 0
⇒  u4 = 0.99996. (After putting the values)

ASSIGNMENT

1. (i) Form a table of differences for the function:
f(x) = x3 + 5x – 7 for x = –1, 0, 1, 2, 3, 4, 5. Continue the table to obtain f(6)  and f(7).

(ii) If y = x3 + x2 – 2x + 1, calculate values of y for x = 0, 1, 2, 3, 4, 5 and form the difference table.
Find the value of y at x = 6 by extending the table and verify that the same value is obtained
by substitution.

2. Prove that: D sin–1 x = sin–1 [(x + 1) 1 2− x  – x 1 1 2− +( )x ].

3. (i) Write forward difference table for
x: 10 20 30 40
y: 1.1 2.0 4.4 7.9.

(ii) Assuming  that the following values of y belong to a polynomial of degree 4, compute the next
three values:
x : 0 1 2 3 4 5 6 7
y : 1 – 1 1 – 1 1 — — —

4. Construct the table of differences for the data below.
x : 0 1 2 3 4
f(x) : 1.0 1.5 2.2 3.1 4.6
Evaluate Δ3 f(2).

5. Prove that:

(i) ∇ = ΔE–1 = E–1Δ = 1 – E–1 (ii) E1/2 = μ + 
1
2

 δ

(iii) δ = ΔE–1/2 = ∇E1/2 (iv) E = (1 – ∇)–1

(v) Δ∇ = ∇Δ = δ2 (G.B.T.U. 2011) (vi) δ = Δ(1 + Δ)–1/2 = ∇(1 – ∇)–1/2 (U.P.T.U. 2009)

(vii) δ2E = Δ2 (G.B.T.U. 2012) (viii) μδ = 
1
2

(E – E–1) (G.B.T.U. 2012)

(ix) Δ ≡ ∇ (1 – ∇)–1 [M.T.U. (MCA) 2012]
6. ux  is a function of x for which fifth differences are constant and

u1 + u7 = –786, u2 + u6 = 686, u3 + u5 = 1088. Find u4.
7. Prove that:

(i) u4 = u3 + Δu2 + Δ2u1 + Δ3u1 (ii) u4 = u0 + 4Δu0 + 6Δ2u–1 + 10Δ3u–1.
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8. Evaluate:

(i) Δ(eax log bx) (ii) Δ 2
1

x

x( )!+

F
HG

I
KJ

; h = 1.

Answers
1. (i) 239, 371 (ii) 1, 1, 9, 31, 73, 141; 241
3. (ii) 31, 129, 351 4. 0.4
6. 570.9.

8. (i) eax e
h
x

e bxah ahlog ( ) log1 1+FHG
I
KJ + −

L
NM

O
QP

(ii) – x
x( ) !+ 2

 2x.

4.26 FACTORIAL NOTATION

A product of the form x(x – 1)(x – 2) ...... (x – r + 1) is denoted by [x]r and is called a factorial.

Particularly,  [x] = x; [x]2 = x(x – 1); [x]3 = x (x – 1)(x – 2) etc.

In case the interval of differencing is h then

[x]n = x(x – h) (x – 2h) ...... (x – n − 1 h)
Factorial notation helps in finding the successive differences of a polynomial directly by

simple rule of differentiation.

4.27 TO SHOW THAT  (i) Δn[x]n = n !    (ii) Δn + 1 [x]n = 0

 Δ[x]n = [(x + h)]n – [x]n

= (x + h)(x + h – h) (x + h – 2h) ...... (x + h – n − 1 h)

– x(x – h) (x – 2h) ...... (x – n − 1 h)

= x(x – h) ...... (x – n − 2 h) [x + h – (x – nh + h)] = nh [x]n – 1

Similarly, Δ2[x]n = Δ[nh [x]n–1] = nh Δ[x]n
 
– 1 = n(n – 1) h2 [x]n – 2

#
Δn[x]n = n(n – 1) ..... 2 . 1 . hn – 1 (x + h – x) = n ! hn

Also, Δn + 1[x]n = n ! hn – n ! hn = 0
when h = 1,  Δ[x]n = n[x]n – 1 and Δn[x]n = n !

Hence, the result of differencing [x]r is analogous to that of differencing xr when h = 1.

4.28 TO SHOW THAT x(–n) = 
1

x n n( )( )+
, THE INTERVAL OF  DIFFERENCING

BEING UNITY

By definition of x(n), we have

x(n) = (x – n − 1 h) x(n–1) ...(1)

when interval of differencing is h.

∴ When n = 0, we have  x(0) = (x + h) x(–1) ...(2)
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Since,  Δx(n) = nhx(n – 1) ...(3)
when n = 1, Δx(1) = hx(0).

⇒ Δx = h x(0) ⇒ h = hx(0) ⇒ x(0) = 1

From (2), x(–1) = 
1

( )x h+
...(4)

when n = –1, from (1),
x(–1) = (x + 2h) x(–2)

⇒
1

x h+
 = (x + 2h) x(–2) ⇒ x(–2) = 

1
2( )( )x h x h+ +

In general, x(–n) = 
1

2( )( ) ...... ( )x h x h x nh+ + +
...(5)

x(–n) = 
1

( )( )x nh n+
Here x(–n) is called reciprocal factorial where n is a (+)ve integer.

Particular case. When h = 1, x(–n) = 
1

( )( )x n n+
.

4.29 MISSING TERM TECHNIQUE

Suppose n values out of (n + 1) values of y = f(x) are given, the values of x being equidistant.
Let the unknown value be N. We construct the difference table.
Since only n values of y are known, we can assume y = f(x) to be a polynomial of degree

(n – 1) in x.
Equating to zero the nth difference, we can get the value of N.

EXAMPLES

Example 1. Express f(x) = x4 – 12x3 + 24x2 – 30x + 9 and its successive differences in
factorial notation. Hence show that Δ5f(x) = 0.

Sol. Let f(x) = A[x]4 + B[x]3 + C[x]2 + D[x] + E

Using method of synthetic division, we divide by x, x – 1, x – 2, x – 3 etc. successively,
then

1 1 – 12 24 – 30 9 = E
1 – 11 13

2 1 – 11 13 – 17 = D
2 – 18

3 1 – 9 – 5 = C

3

4 1 – 6 = B

1 = A
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Hence, f(x) = [x]4 – 6[x]3 – 5[x]2 – 17[x] + 9

∴ Δf(x) = 4[x]3 – 18[x]2 – 10[x] – 17

Δ2f(x) = 12[x]2 – 36[x] – 10

Δ3f(x) = 24[x] – 36

Δ4f(x) = 24 and Δ5f(x) = 0.

Example 2. Obtain the function whose first difference is 9x2 + 11x + 5.

Sol. Let f(x) be the required function so that  Δf(x) = 9x2 + 11x + 5

Let 9x2 + 11x + 5 = 9[x]2 + A[x] + B = 9x(x – 1) + Ax + B

Putting  x = 0, B = 5 and x = 1, A = 20

∴   Δf(x) = 9[x]2 + 20[x] + 5

Integrating, we get

f(x) = 9 
[ ]x 3

3
 + 20 

[ ]x 2

2
 + 5[x] + c

= 3x(x – 1) (x – 2) + 10x(x – 1) + 5x + c = 3x3 + x2 + x + c

where c is the constant of integration.

Example 3. Find the missing values in the table:

x: 45 50 55 60 65
y: 3 — 2 — – 2.4.

Sol. Difference table is as follows:

x y Δy Δ2y Δ3y

45 3
y1 – 3

50 y1 5 – 2y1
2 – y1 3 y1 + y3 – 9

55 2 y1 + y3 – 4
y3 – 2 3.6 – y1 – 3y3

60 y3 – 0.4 – 2y3
– 2.4 – y3

65 – 2.4

As only three entries y0, y2, y4 are given, the function y can be represented by a second
degree polynomial.

∴   Δ3y0 = 0 and Δ3y1 = 0

⇒  3y1 + y3 = 9 and y1 + 3y3 = 3.6

Solving these, we get

 y1 = 2.925, y2 = 0.225.
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Example 4. Find the relation between α, β and γ in order that α + βx + γx2 may be
expressible in one term in the factorial notation.

Sol. Let f(x) = α + βx + γx2 = (a + bx)(2)

where a and b are certain unknown constants.
Now, (a + bx)(2) = (a + bx) [a + b(x – 1)]

= (a + bx) (a – b + bx) = (a + bx)2 – ab – b2x
= (a2 – ab) + (2ab – b2)x + b2x2 = α + βx + γx2

Comparing the co-efficients of various powers of x, we get
α = a2 – ab, β = 2ab – b2, γ = b2

Eliminating a and b from the above equations, we get γ2 + 4αγ = β2

Example 5. (i) Estimate the missing term in the following table:
x: 0 1 2 3 4

y = f(x): 1 3 9 ? 81. [G.B.T.U. (C.O.) 2010]
(ii) Find the missing term in the table:

x: 2 3 4 5 6

f(x): 45 49.2 54.1 ? 67.4 [M.T.U. 2013, U.P.T.U. 2008]
Sol. (i) We are given Four values
∴  Δ4f(x) = 0 ∀ x
⇒ (E – 1)4 f(x) = 0 ∀ x
⇒ (E4 – 4E3 + 6E2 – 4E + 1) f(x) = 0 ∀ x
⇒ f(x + 4) – 4f(x + 3) + 6f(x + 2) – 4f(x + 1) + f(x) = 0 ∀ x

where interval of differencing is 1.
Now putting x = 0, we obtain,

f(4) – 4f(3) + 6f(2) – 4f(1) + f(0) = 0 ...(1)
⇒ 81 – 4f(3) + 54 – 12 + 1 = 0 (From table)
⇒ 4f(3) = 124 ⇒ f(3) = 31.
(ii) We are given four values.
∴ Δ4 f(x) = 0 ∀ x
⇒ (E – 1)4 f(x) = 0 ∀ x
⇒ (E4 – 4E3 + 6E2 – 4E + 1) f(x) = 0 ∀x
⇒ f(x + 4) – 4f(x + 3) + 6f(x + 2) – 4f(x + 1) + f(x) = 0 ∀ x

where interval of differencing is 1.
Now, putting x = 2, we obtain,

f(6) – 4f(5) + 6f(4) – 4f(3) + f(2) = 0
⇒ 67.4 – 4f(5) + (6 × 54.1) – (4 × 49.2) + 45 = 0
⇒    4f(5) = 240.2
⇒  f(5) = 60.05
Example 6. Estimate the production for 1964 and 1966 from the following data:
Year: 1961 1962 1963 1964 1965 1966 1967
Production: 200 220 260 — 350 — 430
Sol. Since five figures are known, assume all the fifth order differences as zero. Since

two figures are unknown, we need two equations to determine them.
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Hence,  Δ5y0 = 0 and Δ5y1 = 0
⇒ (E – 1)5y0 = 0 and (E – 1)5y1 = 0
⇒ y5 – 5y4 + 10y3 – 10y2 + 5y1 – y0 = 0

and y6 – 5y5 + 10y4 – 10y3 + 5y2 – y1 = 0
Substituting the known values, we get

y5 – 1750 + 10y3 – 2600 + 1100 – 200 = 0
and 430 – 5y5 + 3500 – 10y3 + 1300 – 220 = 0

⇒  y5 + 10y3 = 3450 ...(1)
and – 5y5 – 10y3 = – 5010 ...(2)

Adding (1) and (2), we get
 – 4y5 = – 1560 ⇒  y5 = 390

From (1),  390 + 10y3 = 3450
⇒ 10y3 = 3060 ⇒ y3 = 306
Hence production for year 1964 = 306

and production for year 1966 = 390.

ASSIGNMENT

1. (i) Estimate the missing term in the following:

x : 1 2 3 4 5 6 7
y : 2 4 8 — 32 64 128
Explain why the result differs from 16?

(ii) Find the missing value of the following data:

x : 1 2 3 4 5

f(x) : 7 × 13 21 37

2. (i) From the following data, find the value of U47:
U46 = 0.2884, U48 = 0.5356, U49 = 0.6513, U50 = 0.7620.

[Hint. Δ4 Ux = 0 ⇒ (E – 1)4 Ux = 0.]

(ii) Given: log 100 = 2, log 101 = 2.0043, log 103 = 2.0128, log 104 = 2.0170. Find log 102.
3. (i) Determine the missing values in the following table:

x : 0 5 10 15 20 25

y : 6 10 — 17 — 31 (G.B.T.U. 2011)

(ii) x : 1 1.5 2 2.5 3 3.5 4
f(x) : 6 ? 10 20 ? 15 5

[G.B.T.U. 2010; G.B.T.U. (C.O.) 2011]

(iii) x : 1 2 3 4 5 6 7 8

f(x) : 1 8 ? 64 ? 216 343 512

(iv) x : 2 2.1 2.2 2.3 2.4 2.5 2.6

y : 0.135 — 0.111 0.100 — 0.082 0.074

(v) x : 10 15 20 25 30 35

f(x) : 43 — 29 32 — 77 [M.T.U. 2012, G.B.T.U. 2011]
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(vi) x : 1 2 3 4 5 6 7 8

f(x) : 2 4 8 — 32 — 128 256
Explain why the results differ from 16 and 64. [G.B.T.U. 2013]

4. Express f(x) = 
x

x x
−

+ +
1

1 3( ) ( )
 in terms of negative factorial polynomials.

Answers
1. (i) 16.1, 2x is not a polynomial (ii) 9.5
2. (i) 0.4147 (ii) 2.0086
3. (i) 13.25, 22.5 (ii) 0.222, 22.022

(iii) 27, 125 (iv) 0.123, 0.0904
(v) 33.933, 46.733 (vi) 16.257, 63.476; 2x is not a polynomial.

4. x(–1) – 4x(–2) + 4x(–3)

We now proceed to study the use of finite difference calculus for the purpose of
interpolation. Thus we shall do in following cases which are as follows:

(i) The value of argument in given data varies by an equal interval. The technique is
called an interpolation with equal intervals.

(ii) The values of argument are not at equal intervals. This is known as interpolation
with unequal intervals.

4.30 NEWTON’S FORMULAE FOR INTERPOLATION

Newton’s formula is used for constructing the interpolation polynomial. It makes use of divided
differences. This result was first discovered by the Scottish mathematician James Gregory
(1638–1675) a contemporary of Newton.

Gregory and Newton did extensive work on methods of interpolation but now the for-
mula is referred to as Newton’s interpolation formula. Newton has derived general forward
and backward difference interpolation formulae.

4.31 NEWTON’S GREGORY FORWARD INTERPOLATION FORMULA
(M.T.U. 2013)

Let  y = f(x) be a function of x which assumes the values f(a),  f(a + h), f(a + 2h), ......., f(a + nh)
for (n + 1) equidistant values a, a + h, a + 2h, ......, a + nh of the independent variable x. Let f(x)
be a polynomial of nth degree.

Let f(x)  = A0 + A1 (x – a) + A2 (x – a) (x – a – h) + A3 (x – a) (x – a – h) (x – a – 2h ) +

....... + An (x – a) ...... (x – a – n − 1h) …(1)

where A0, A1, A2 , ......., An  are to be determined.

Put x = a, a + h, a + 2h, ......., a + nh in (1) successively.

For x = a, f(a) = A0 ...(2)

For x = a + h, f(a + h) = A0 + A1h

⇒ f(a + h) = f(a) + A1h | By (2)

⇒   A1 = 
Δf a

h
( )

...(3)
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For x = a + 2h,

f(a + 2h) = A0 + A1 (2h) + A2 (2h) h

= f(a) + 2h 
Δf a

h
( )RST
UVW  + 2h2 A2

⇒  2h2A2 = f(a + 2h) – 2f(a + h) + f(a) = Δ2f(a)

⇒  A2 = 
Δ2

22
f a
h
( )

!

Similarly,  A3 = 
Δ3

33
f a
h
( )

!
and so on.

Thus,    An = 
Δn

n
f a

n h
( )

!
.

From (1),

  f(x) = f(a)  + (x – a) 
Δ f a

h
( )

 + (x – a) (x – a – h) 
Δ2

22
f a
h
( )

!
 + .......

+ (x – a) ...... (x – a – n − 1 h) 
Δn

n
f a

n h
( )

!

Put x = a + hu ⇒ u = 
x a

h
−

, we have

f(a + hu) = f(a) + hu 
Δ f a

h
( )

 + 
( ) ( )

!
hu hu h

h
−

2 2  Δ2 f (a) +......

+ 
( ) ( ) ( ) ....... ( )

!
hu hu h hu h hu n h

n hn
− − − −2 1

 Δn f(a)

⇒ f(a + hu) = f(a) + uΔ f(a) + 
u u( )

!
− 1

2
 Δ2 f(a) + ...

+ 
u u u u n

n
( )( ) ... ( )

!
− − − +1 2 1

 Δn f(a)

This formula is particularly useful for interpolating the values of f(x) near the beginning
of the set of values given. h is called interval of differencing while Δ is forward difference
operator.

EXAMPLES

Example 1. The population of a town in the decennial census was as given below. Esti-
mate the population for the year 1895. (G.B.T.U. 2011)

Year x: 1891 1901 1911 1921 1931
Population y: 46 66 81 93 101
(in thousands)
Sol. Here   a = 1891, h = 10,

a + hu = 1895 ⇒ 1891 + 10 u  = 1895 ⇒ u = 0.4
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The difference table is as under:

x y Δy Δ2y Δ3y Δ4y

1891 46

20

1901 66 – 5

15 2

1911 81 – 3 – 3

12 – 1

1921 93 – 4

8

1931 101

Applying Newton’s forward difference formula,

y(1895) = y(1891) + u Δy(1891) + 
u u( )

!
− 1

2
 Δ2y(1891) + 

u u u( )( )
!

− −1 2
3

 Δ3y(1891)

 + 
u u u u( )( )( )

!
− − −1 2 3

4
 Δ4y(1891)

⇒ y(1895) = 46 + (0.4)(20) + 
(0.4)(0.4 1)

2
−

 (– 5)

+ (0.4)(0.4 1)(0.4 2)
6

.4 .4 .4− − + − −
( )

( )( )( . – )( )
2

0 0 1 0 4 2 0 3
24

 (– 3)

⇒ y(1895) = 54.8528 thousands = 54852.8 ≈ 54853

Hence the population for the year 1895 is 54853 approximately.

Example 2. From the following table of half-yearly premium for policies maturing at
different ages, estimate the premium for policies maturing at age of 46. (U.P.T.U. 2014)

Age 45 50 55 60 65

Premium 114.84 96.16 83.32 74.48 68.48
(in rupees)

Sol. Here  h = 5, a = 45, a + hu = 46
∴ 45 + 5u = 46 ⇒ u = 0.2
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The difference table is:

Age Premium Δy Δ2y Δ3y Δ4y
(x) (in rupees)

(y)

45 114.84
– 18.68

50 96.16 5.84
– 12.84 – 1.84

55 83.32 4 0.68
– 8.84 – 1.16

60 74.48 2.84
– 6

65 68.48

By Newton’s forward difference formula,

 y46 = y45 + u Δy45 + 
u u

y
u u u( )

!
( )( )

!
− + − −1

2
1 2
3

2
45Δ  Δ3y45 + 

u u u u( )( )( )
!

− − −1 2 3
4

 Δ4 y45

= 114.84 + (0.2)(–18.68) + 
(0.2)(0.2 1)

2 !
−

 (5.84)

+ 
(0.2)(0.2 1)(0.2 2)− −

3 !
 (– 1.84) + (0.2)(0.2 1)(0.2 2)(0.2 3)− − −

4 !
 (0.68)

= 110.525632

Hence the premium for policies maturing at the age of 46 is `̀̀̀̀ 110.52.

Example 3. From the following table, find the value of  e0.24:

x: 0.1 0.2 0.3 0.4 0.5

ex: 1.10517 1.22140 1.34986 1.49182 1.64872.

Sol. The difference table is:

x 105y 105Δy 105Δ2y 105 Δ3y 104Δ4y

0.1 110517
11623

0.2 122140 1223
12846 127

0.3 134986 1350 17
14196 144

0.4 149182 1494
15690

0.5 164872
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Here h = 0.1. ∴  0.24 = 0.1 + (0.1) u or u = 1.4
Newton-Gregory forward difference formula is

y(0.24) = y(0.1) + u Δ y(0.1) + 
u u

y
u u u( )

!
( )

( )( )
!

− + − −1
2

0
1 2
3

2Δ .1  Δ3y(0.1)

+ 
u u u u( )( )( )

4 !
− − −1 2 3

 Δ4 y(0.1)

⇒ 105 y(0.24) = 105 y(0.1) + u 105 Δy(0.1) + 
u u( )

2 !
− 1

 105 Δ2y(0.1)

+ 
u u u( )( )

3 !
− −1 2

 105 Δ3y(0.1) + 
u u u u( )( )( )

4 !
− − −1 2 3

 105 Δ4y(0.1)

⇒  105 y(0.24) = 110517 + (1.4)(11623) + 
(1.4)(1.4 1)

2
−

 (1223)

+ 
(1.4)(1.4 1)(1.4 2)

3 !
1.4)(1.4 1.4 1.4− − + − − −

( )
( )( )( )

!
127

1 2 3
4

 (17)

= 127124.9088
∴ y(0.24) = e.24 = 1.271249088
Example 4. The following table gives the population of a town during the last six cen-

suses. Estimate the population in 1913 by Newton’s forward difference formula

Year 1911 1921 1931 1941 1951 1961

Population 12 15 20 27 39 52
(in thousands)

[U.P.T.U. (MCA) 2009]
Sol. Here, a = 1911, h = 10, x = 1913

∴ u = x a
h
− = −1913 1911

10
 = 0.2

Forward difference table is

x f(x) Δf(x) Δ2f(x) Δ3f(x) Δ4f(x) Δ5f(x)

1911 12

3

1921 15 2

5 0

1931 20 2 3

7 3 – 10

1941 27 5 – 7

12 – 4

1951 39 1

13

1961 52
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Newton’s forward difference formula is

f(1913) = f(1911) + uΔf(1911) + 
u u

f
( )

!
( )

− 1
2

19112Δ  + 
u u u

f
( ) ( )

!
( )

− −1 2
3

19113Δ

+ 
u u u u

f
( )( )( )

!
( )

− − −1 2 3
4

19114Δ  + 
u u u u u

f
( )( )( )( )

!
( )

− − − −1 2 3 4
5

19115Δ

= 12 + (0.2)(3) + 
( . )( . )

( )
( . )( . )( . )( . )

!
( )

0 2 0 8
2

2
0 2 0 8 1 8 2 8

4
3

−
+

− − −

+ 
( . )( . )( . )( . )( . )

!
( )

0 2 0 8 1 8 2 8 3 8
5

10
− − − −

−

f(1913) = 12.08384 thousands

Hence the population of the town in the year 1913 ~−  12083.84 = 12084 (approximately).

Example 5. From the table, estimate the number of students who obtained marks between
40 and 45. (M.T.U. 2013)

Marks: 30–40 40–50 50–60 60–70 70–80

No. of students: 31 42 51 35 31.

Sol. Difference table is:

Marks less than
(x) y Δy Δ2y Δ3y Δ4y

40 31
42

50 73 9
51 – 25

60 124 – 16 37
35 12

70 159 – 4
31

80 190

We shall find y45, number of students with marks less than 45.

a = 40, h  = 10, a + hu = 45.

∴  40 + 10u = 45 ⇒ u = 0.5

By Newton’s forward difference formula,

 y(45) = y(40) + u Δ y(40) + 
u u( )

!
− 1

2
 Δ2 y(40)

+ 
u u u( )( )

!
− −1 2

3
 Δ3 y(40) + 

u u u u( )( )( )
!

− − −1 2 3
4

 Δ4 y(40)
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= 31 + (0.5)(42) + (0.5)(0.5 1)
2

(0.5)(0.5 1)(0.5 2)
6

− + − −
( )9  (– 25)

+ (0.5)(0.5 1)(0.5 2)(0.5 3)
24

− − −  (37)

= 47.8672 ≈ 48

Hence number of students getting marks less than 45 = 48

By number of students getting marks less than 40 = 31

Hence number of students getting marks between 40 and 45 = 48 – 31 = 17.

Example 6. Find the cubic polynomial which takes the following values:
x: 0 1 2 3

f(x): 1 2 1 10.
Sol. Let us form the difference table:

x y Δy Δ2 y Δ3 y

0 1
1

1 2 – 2
– 1 12

2 1 10
9

3 10

Here, h = 1. Hence using the formula, x = a + hu

and choosing   a = 0, we get x = u

∴ By Newton’s forward difference formula,

y = y0 + x Δy0 + 
x x

y
x x x

y
( )

!
( ) ( )

!
− + − −1

2
1 2
3

2
0

3
0Δ Δ

= 1 + x(1) + 
x x( )

!
− 1

2
 (– 2) + 

x x x( ) ( )
!

− −1 2
3

 (12)

= 2x3 – 7x2 + 6x + 1

Hence the required cubic polynomial is

y = f(x) = 2x3 – 7x2 + 6x + 1.

Example 7. The following table gives the marks secured by100 students in the Numerical
Analysis subject:

Range of marks: 30–40 40–50 50–60 60–70 70–80

No. of students: 25 35 22 11 7

Use Newton’s forward difference interpolation formula to find.
(i) the number of students who got more than 55 marks.

(ii) the number of students who secured marks in the range from 36 to 45.
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Sol. The given table is re-arranged as follows:

Marks obtained No. of students
Less than 40 25
Less than 50 60
Less than 60 82
Less than 70 93
Less than 80 100

(i) Here, a = 40, h = 10, a + hu = 55
∴ 40 + 10u = 55 ⇒ u = 1.5
First, we find the number of students who got less than 55 marks.
The difference table is as under:

Marks obtained No. of Δy Δ2y Δ3y Δ4y
less than students = y

40 25
35

50 60 – 13
22 2

60 82 – 11 5
11 7

70 93 – 4
7

80 100

Applying Newton’s forward difference formula,

 y55 = y40 + uΔy40 + 
u u

y
u u u( )

!
( )( )

!
−

+
− −1

2
1 2
3

2
40Δ  Δ3y40 + 

u u u u( )( )( )
!

− − −1 2 3
4

 Δ4y40

 = 25 + (1.5)(35) + 
(1.5)(.5)

2 !
( 13)

(1.5)(.5)( .5)
3 !

− +
−

(2) + (1.5)(.5)( .5)( 1.5)
4 !
− − (5)

= 71.6171875 ≈ 72
There are 72 students who got less than 55 marks.
∴ No. of students who got more than 55 marks = 100 – 72 = 28
(ii) To calculate the number of students securing marks between 36 and 45, take the

difference of y45 and y36.

u = 
x a

h
− = −36 40

10
 = – .4

Also, u = 
45 40

10
−

 = .5

By Newton’s forward difference formula.

y36 = y40 + u Δ y40 + u u
y

u u u( )
!

( )( )
!

− + − −1
2

1 2
3

2
40Δ  Δ3 y40 + 

u u u u( )( )( )
!

− − −1 2 3
4

 Δ4 y40
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= 25 + (– 0.4)(35) + 
( )( )

!
( )

( )( )( )
!

− −
− +

− − −0
2

13
0

3
.4 1.4 .4 1.4 2.4

 (2)

+ ( )( )( )( )
!

− − − −0
4

.4 1.4 2.4 3.4  (5) = 7.864 ≈ 8

Also, y45 = y40 + u Δ y40 + 
u u

y
u u u( )

!
( )( )

!
− + − −1

2
1 2
3

2
40Δ  Δ3 y40

+ 
u u u u

y
( ) ( ) ( )

!
− − −1 2 3

4
4

40Δ

= 25 + (0.5)(35) + 
(0.5)( .5)

2
( 13)

(0.5)( .5)( 1.5)
6

− − + − −0 0
 (2)

+ 
(0.5)( .5)( 1.5)( 2.5)

24
− − −0

 (5)

= 44.0546 ≈ 44.
Hence, the number of students who secured marks in the range from 36 to 45 is

= y45 – y36 = 44 – 8 = 36.

Example 8. The following are the numbers of deaths in four successive ten year age
groups. Find the number of deaths at 45–50 and 50–55.

Age group: 25–35 35–45 45–55 55–65

Deaths: 13229 18139 24225 31496.

Sol. Difference table of cumulative frequencies:

Age up to No. of deaths Δf(x) Δ2f(x) Δ3f(x)
x f(x)

35 13229
18139

45 31368 6086
24225 1185

55 55593 7271
31496

65 87089

Here, h = 10, a = 35, a + hu = 50
∴  35 + 10u = 50 ⇒ u = 1.5
By Newton’s forward difference formula,

y50 = y35 + u Δ y35 + u u
y

u u u( )
!

( )( )
!

− + − −1
2

1 2
3

2
35Δ  Δ3 y35

= 13229 + (1.5)(18139) + 
(1.5)(0.5)

2
(1.5)(0.5)(– .5)

6
( )6086

0+  (1185)

= 42645.6875 ≈ 42646
∴ Deaths at the age between 45 – 50 is 42646 – 31368 = 11278

and Deaths at the age between 50 – 55 is 55593 – 42646 = 12947.
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ASSIGNMENT

1. Estimate the value of f(22) from the following available data:
x: 20 25 30 35 40 45

f(x): 354 332 291 260 231 204
2. Given that:

x: 1 2 3 4 5 6

y(x): 0 1 8 27 64 125
Find the value of f(2.5). [U.P.T.U. (MCA) 2008]

3. (i) The table below gives value of tan x for 0.10 ≤ x ≤ 0.30.
x: 0.10 0.15 0.20 0.25 0.30

tan x: 0.1003 0.1511 0.2027 0.2553 0.3093
Evaluate tan 0.12 using Newton’s forward difference formula.

(ii) Find the value of sin 52° from the following table using Newton’s forward difference formula:
θ: 45° 50° 55° 60°

sin θ: 0.7071 0.7660 0.8192 0.8660
4. (i) Fit a polynomial of degree 3 and hence determine y(3.5) for the following data:

x: 3 4 5 6
y: 6 24 60 120 [M.T.U. 2013, G.B.T.U. 2011, 2012]

(ii) Find the interpolating polynomial to the following data and hence find the value of y for x = 5:

x: 4 6 8 10
f(x): 1 3 8 16 (G.B.T.U. 2013)

(iii) Express the value of θ in terms of x using the following data:

x: 40 50 60 70 80 90

θ: 184 204 226 250 276 304
Also find θ at x = 43. (M.T.U. 2012)

5. (i)  Obtain the value of f(3.5) from the following data:
x: 3 4 5 6 7

f(x): 3 6.6 15 22 35 (G.B.T.U. 2010)
(ii) Use Newton-Gregory formula to compute y at x = 24 from the following data:

x: 21 25 29 33 37

y: 18.4 17.8 17.1 16.3 15.5 [G.B.T.U. (C.O.) 2011]
6. (i) Find the cubic polynomial which takes the following values:

y(0) = 1, y(1) = 0, y(2) = 1 and y(3) = 10
Hence or otherwise obtain y(4).

(ii) Find the polynomial interpolating the data:
x: 0 1 2

y: 0 5 2 (U.P.T.U. 2008)
7. Ordinates f(x) of a normal curve in terms of standard deviation x are given as

x: 1.00 1.02 1.04 1.06 1.08

f(x): 0.2420 0.2371 0.2323 0.2275 0.2227
Find the ordinate for standard deviation x = 1.025.
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8. Find the number of men getting wages between ` 10 and ` 15 from following table:

Wages (in `): 0–10 10–20 20–30 30–40

Frequency: 9 30 35 42 (G.B.T.U. 2011)

9. Following are the marks obtained by 492 candidates in a certain examination

Marks: 0–40 40–45 45–50 50–55 55–60 60–65

No. of candidates: 210 43 54 74 32 79

Find out the number of candidates who secured

(a) more than 48 but not more than 50 marks

(b) less than 48 but not less than 45 marks.

10. Find the number of students from the following data who secured marks not more than 45

Marks range: 30–40 40–50 50–60 60–70 70–80

No. of students : 35 48 70 40 22

11. Use Newton’s forward difference formula to obtain the interpolating polynomial f (x) satisfying
the following data:

x: 1 2 3 4

f(x): 26 18 4 1

If another point x = 5, f(x) = 26 is added to the above data, will the interpolating polynomial be
the same as before or different. Explain why?

12. Find the polynomial of degree four which takes the following values:

x: 2 4 6 8 10

y: 0 0 1 0 0 (U.P.T.U. 2007)

13. Use Newton’s method to find a polynomial p(x) of lowest possible degree such that p(n) = 2n for
n = 0, 1, 2, 3, 4.

14. Find the order of the polynomial which might be suitable for the following function:

x: 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7

f(x): 0.577 0.568 0.556 0.540 0.520 0.497 0.471 0.442

Also find the value of f(2.15) using difference formulae. [G.B.T.U. (MCA) 2010]

Answers
1. 352.22304 2. 3.375
3. (i) 0.1205 (ii) 0.7880

4. (i) x3 – 3x2 + 2x, 13.125 (ii)
3
8

11
4

2x − x + 6, 1.625 (iii) 1
100

11
10

2x + x + 124, 189.79

5. (i) 3.28125 (ii) 17.9571
6. (i) x3 – 2x2 + 1 ; 33 (ii) 9x – 4x2

7. 0.23589625 8. 15
9. (a) 27 (b) 27 10. 51

11.
17
6

 x3 – 20x2 + 
193
6

 x + 11; no change since third differences are constant.

12.
1

64
 (x4 – 24x3 + 196x2 – 624x + 640) 13. x x

x
x4 3

2

24 12
11
12

7
12

− + +  + 1

14. 7th, 0.562425293.
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4.32 NEWTON’S GREGORY BACKWARD INTERPOLATION FORMULA
[U.P.T.U. MCA (SUM) 2008]

Let  y = f(x)  be  a  function  of  x  which  assumes the values f(a), f(a + h), f (a + 2h), ......,
f(a + nh) for (n + 1) equidistant values a, a + h, a + 2h, ......, a + nh of the independent variable x.

Let f(x) be a polynomial of nth degree.

Let, f(x) = A0 + A1(x – a – nh) + A2 (x – a – nh) (x – a – n − 1 h) + ......

+  An (x – a – nh) (x – a – n − 1 h) ...... (x – a – h)
where A0, A1, A2, A3, ......, An are to be determined. ...(1)

Put x = a + nh, a + n − 1 h, ......, a in (1) respectively.
Put x = a + nh, then f (a + nh) = A0 ...(2)
Put x = a + (n – 1) h, then

f(a + n − 1 h) = A0 – h A1 = f(a + nh) – h A1 | By (2)

⇒   A1 = 
∇ +f a nh

h
( )

...(3)

Put x = a + (n – 2)h, then

f (a + n − 2  h) = A0 – 2hA1 + (– 2h) (– h) A2

⇒ 2 ! h2 A2 = f(a + n − 2  h) – f(a + nh) + 2∇ f(a + nh) = ∇2 f(a + nh)

A2 = 
∇ +2

22
f a nh

h
( )
!

...(4)

Proceeding, we get An = 
∇ +n

n
f a nh
n h
( )
!

...(5)

Substituting the values in (1), we get

f(x) = f(a + nh) + (x – a – nh) 
∇ +f a nh

h
( )

 + ...... + (x – a – nh) (x – a – n − 1 h)

..... (x – a – h) 
∇ +n

n
f a nh
n h
( )
!

…(6)

Put x = a + nh + uh, then
  x – a – nh = uh

and  x – a – (n – 1)h = (u + 1)h
  #

 x – a – h = (u + n − 1) h
∴ (6) becomes,

 f(x) = f(a + nh) + u ∇f(a + nh) + 
u u( )

!
+ 1

2
 ∇2 f(a + nh)

+ ...... + uh . (u + 1)h ..... (u + n − 1)(h) 
∇ +n

n
f a nh
n h
( )
!

or f(a + nh + uh) = f(a + nh) + u ∇f(a + nh) + 
u u( )

!
+ 1

2
 ∇2f(a + nh)

+ ...... + 
u u u n

n
( ) ...... ( )

!
+ + −1 1

 ∇n f(a + nh)

This formula is useful when the value of f(x) is required near the end of the table.
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EXAMPLES

Example 1. The population of a town was as given. Estimate the population for the
year 1925.

Years (x): 1891 1901 1911 1921 1931
Population (y): 46 66 81 93 101
(in thousands)
Sol. Here, a + nh = 1931, h = 10, a + nh + uh = 1925

∴  u = 
1925 1931

10
−

 = – 0.6

Difference table is:

x y ∇y ∇2y ∇3y ∇4y

1891 46
20

1901 66 – 5
15 2

1911 81 – 3 – 3
12 – 1

1921 93 – 4
8

1931 101

Applying Newton’s Backward difference formula, we get

y1925 = y1931 + u∇y1931 + 
u u( )

!
+ 1

2
 ∇2y1931

+ 
u u u( )( )

!
+ +1 2

3
 ∇3y1931 + 

u u u u( )( )( )
!

+ + +1 2 3
4

 ∇4y1931

= 101 + (– 0.6)(8) + 
( )( . )

!
( )

( )( )( )
!

− − + −0 0 4
2

4
0 0

3
.6 .6 .4 1.4

 (–1)

+ 
( .6)(0.4)(1.4)(2.4)

4 !
− 0

 (–3)

= 96.8368 thousands.
Hence the population for the year 1925 = 96836.8 ≈ 96837.
Example 2. The population of a town is as follows:
Year: 1921 1931 1941 1951 1961 1971
Population: 20 24 29 36 46 51
(in Lakhs)
Estimate the increase in population during the period 1955 to 1961.
Sol. Here,  a + nh = 1971, h = 10, a + nh + uh = 1955
∴ 1971 + 10u = 1955 ⇒ u = – 1.6
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Difference table is:

x y ∇y ∇2y ∇3y ∇4y ∇5y

1921 20
4

1931 24 1
5 1

1941 29 2 0
7  1 – 9

1951 36 3 – 9
10 – 8

1961 46 – 5
5

1971 51

Applying Newton’s backward difference formula, we get

 y1955 = y1971 + u∇y1971 + 
u u( )

!
+ 1

2
 ∇2y1971 + 

u u u( )( )
!

+ +1 2
3

 ∇3y1971

+ 
u u u u( )( )( )

!
+ + +1 2 3

4
 ∇4y1971 + 

u u u u u( )( )( )( )
!

+ + + +1 2 3 4
5

 ∇5 y1971

= 51 + (– 1.6)(5) + 
( )( . )

!
− −1.6 0 6

2
 (– 5) + 

( )( . )( . )− −1.6 0 6 0 4
6

 (– 8)

  + 
( )( . )(. )( )− −1. 1.6 0 6 4 4

24
 (– 9) + 

( )( . )( . )( )( )− −1. 1. 2.6 0 6 0 4 4 4
120

 (– 9)

= 39.789632
∴ Increase in population during period 1955 to 1961 is

= 46 – 39.789632 = 6.210368 Lakhs = 621036.8 ≈ 621037.
Example 3. Evaluate from following table f(3.8) to three significant figures using Gregory-

Newton backward interpolation formula
x: 0 1 2 3 4

f(x): 1 1.5 2.2 3.1 4.6 (U.P.T.U. 2009)
Sol. Here, a + nh = 4, h = 1, a + nh + uh = 3.8

∴   u = 
3 8 4

1
. −

 = – 0.2

Backward difference table is

x f(x) ∇ f(x) ∇2 f(x) ∇3f(x) ∇4f(x)

0 1
0.5

1 1.5 0.2
0.7 0

2 2.2 0.2 0.4
0.9 0.4

3 3.1 0.6
1.5

4 4.6
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By Newton’s backward difference formula,

  f(3.8) = f(4) + u∇f(4) + 
u u

f
u u u

f
( )

( )
( ) ( )

!
( )

+
∇ +

+ +
∇

1
2

4
1 2
3

42 3

+ 
u u u u

f
( ) ( ) ( )

!
( )

+ + +
∇

1 2 3
4

44

= 4.6 + (– 0.2) (1.5) + 
( . ) ( . )

( . )
( . ) ( . ) ( . )

!
( . )

− + −0 2 0 8
2

0 6
0 2 0 8 18

3
0 4

+ 
( . ) ( . ) ( . ) ( . )

!
( . )

− 0 2 0 8 18 2 8
4

0 4  = 4.21936.

Example 4. Given log x for x = 40, 45, 50, 55, 60 and 65 according to the following table:

 x: 40 45 50 55 60 65

log x: 1.60206 1.65321 1.69897 1.74036 1.77815 1.81291

Find the value of log 5875. [M.T.U. (MCA) 2012]

Sol. The difference table is:

x 105 log x = 105yx 105 ∇yx 105 ∇2yx 105 ∇3yx 105∇4 yx 105 ∇5yx

40 160206
5115

45 165321 – 539
4576 102

50 169897 – 437 – 25
4139 77 5

55 174036 – 360 – 20
3779 57

60 177815 – 303
3476

65 181291

Newton’s Backward difference formula is

 f(a + nh + uh) = f(a + nh) + u∇f(a + nh) + 
u u( )

!
+ 1

2
 ∇2f(a + nh)

+ 
u u u( )( )

!
+ +1 2

3
 ∇3f(a + nh) + 

u u u u( )( )( )
!

+ + +1 2 3
4

 ∇4 f(a + nh)

  + 
u u u u u( )( )( )( )

!
+ + + +1 2 3 4

5
 ∇5 f(a + nh) ...(1)

First we shall find the value of log(58.75).
Here,  a + nh = 65, h = 5, a + nh + uh = 58.75
∴  65 + 5u = 58.75 ⇒ u = – 1.25
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From (1),

 105 f(58.75) = 181291 + (–1.25)(3476) + ( )( )
!

− −1.25 .250
2

 (– 303)

+ 
( )( )( )

!
( )

( )( )( )( )
!

− − + − −1.25 .25 .75 1.25 .25 .75 1.750 0
3

57
0 0

4
 (– 20)

+ 
( )( )( )( )( )

!
− −1.25 .25 .75 1.75 2.750 0

5
 (5)

⇒  105 f(58.75) = 176900.588
∴ f(58.75) = log 58.75 = 176900.588 × 10–5 = 1.76900588
Hence, log 5875 = 3.76900588 | ∵ Mantissa remain the same
Example 5. From the following table of half-yearly premium for policies maturing at

different ages, estimate the premium for policy maturing at the age of 63:

Age: 45 50 55 60 65

Premium: 114.84 96.16 83.32 74.48 68.48
(in rupees)
Sol. The difference table is:

Age Premium ∇y ∇2y ∇3y ∇4y
(x) (in rupees)

(y)

45 114.84
– 18.68

50 96.16 5.84
– 12.84 – 1.84

55 83.32 4 0.68
– 8.84 – 1.16

60 74.48 2.84
– 6

65 68.48

Here a + nh = 65, h = 5, a + nh + uh = 63
∴  65 + 5u = 63 ⇒ u = – 0.4
By Newton’s backward difference formula,

y(63) = y(65) + u∇y(65) + 
u u

y
u u u

y
( )

!
( )

( )( )
!

( )
+ ∇ + + + ∇1

2
65

1 2
3

652 3

+ + + + ∇u u u u
y

( )( )( )
!

( )
1 2 3

4
654

= 68.48 + (– 0.4)(– 6) + 
( . )( . )

( . )
− 0 4 0 6

2
2 84

+ 
( . )( . )( . )

( . )
( . )( . )( . )( . )

(. )
−

− +
−0 4 0 6 16

6
116

0 4 0 6 16 2 6
24

68

= 70.585152
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ASSIGNMENT

1. Find a polynomial of degree three using Newton-Gregory backward difference formula which
takes the following values. Hence find y(7):

x: 3 4 5 6
y: 6 24 60 120 (G.B.T.U. 2012)

2. The population of a town in decennial census is as under. Estimate the population for the year
1955:
Year: 1921 1931 1941 1951 1961

Population (in lacs): 46 66 81 93 101 (M.T.U. 2012)
3. Estimate the value of f (42) from the following available data:

x: 20 25 30 35 40 45
f(x): 354 332 291 260 231 204

4. The table below gives the value of tan x for 0.10 ≤ x ≤ 0.30:
x: 0.10 0.15 0.20 0.25 0.30

y = tan x: 0.1003 0.1511 0.2027 0.2553 0.3093
Find: (i) tan 0.50 (ii) tan 0.26 (iii) tan 0.40.

5. (i) Given:
x: 1 2 3 4 5 6 7 8

f(x): 1 8 27 64 125 216 343 512
Find f (7.5) using Newton’s Backward difference formula.

(ii) Compute f(8) from the following data:
x: 1 3 5 7 9

f(x): 9 21 81 237 537 (G.B.T.U. 2013)
6. Using Newton’s backward difference formula, find the value of e–1.9 from the following table of

values of e–x:
x: 1 1.25 1.50 1.75 2.00

e–x: 0.3679 0.2865 0.2231 0.1738 0.1353
7. If y(10) = 35.3, y(15) = 32.4, y(20) = 29.2, y(25) = 26.1, y(30) = 23.2 and y(35) = 20.5, find y(12)

using Newton’s forward as well as backward interpolation formula. Also explain why the differ-
ence (if any) in the result occur. (U.P.T.U. 2007)

8. From the following table of values of x and f(x), determine (i) f(0.23) (ii) f (0.29):
x: 0.20 0.22 0.24 0.26 0.28 0.30

f(x): 1.6596 1.6698 1.6804 1.6912 1.7024 1.7139
9. From the following table, find the value of tan 17°

θ°: 0 4 8 12 16 20 24

tan θ°: 0 0.0699 0.1405 0.2126 0.2867 0.3640 0.4402
10. From the following table:

x: 10° 20° 30° 40° 50° 60° 70° 80°

cos x: 0.9848 0.9397 0.8660 0.7660 0.6428 0.5000 0.3420 0.1737
Calculate cos 25° and cos 73° using Gregory Newton formula. (U.P.T.U. 2006)

11. Use Newton–Gregory formula to interpolate the value of y at x = 36 from the following data:
x: 21 25 29 33 37
y: 18.4 17.8 17.1 16.3 15.5 (U.P.T.U. 2014)
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Answers
1. x3 – 3x2 + 2x, 210 2. 9683680 3. 219

4. (i) 0.5543 (ii) 0.2662 (iii) 0.4241

5. (i) 421.875 (ii) 366 6. 0.1496

7. 34.22007, 34.30866 8. (i ) 1.6751 (ii) 1.7081

9. 0.3057 10. 0.9063, 0.2923 11. 15.698

4.33 INTERPOLATION BY UNEVENLY SPACED POINTS

The interpolation formulae derived so far possess the disadvantage of being applicable only
to equally spaced values of the argument. It is then desirable to develop interpolation formulae
for unequally spaced values of x. We shall study two such formulae:

(1) Lagrange’s interpolation formula
(2) Newton’s general interpolation formula with divided differences.

4.34 LAGRANGE’S INTERPOLATION FORMULA [G.B.T.U. (MCA) 2010, 2011]

Let f(x0), f(x1) ,......, f(xn) be (n + 1) entries of  a function y = f(x), where f(x) is assumed to be a
polynomial corresponding to the arguments x0, x1, x2, ......, xn.

The polynomial f(x) may be written as
   f(x) = A0 (x – x1) (x – x2) ...... (x – x n) + A1(x – x0)(x – x2) ...... (x – xn)

+ ...... + An (x – x0) (x – x1) ...... (x – xn –1) ...(1)
where A0, A1, ......, An are constants to be determined.

Putting x = x0, x1, ......, xn in  (1), we get
 f(x0) = A0 (x0 – x1) (x0 – x2) ....... (x0 – xn)

∴ A0 = 
f x

x x x x x xn

( )
( ) ( ) ...... ( )

0

0 1 0 2 0− − − ...(2)

f(x1) = A1 (x1 – x0) (x1 – x2) ...... (x1 – xn)

∴   A1 = 
f x

x x x x x xn

( )
( ) ( ) ...... ( )

1

1 0 1 2 1− − −
...(3)

 # # #
 Similarly, An = f x

x x x x x x
n

n n n n

( )
( ) ( ) ...... ( )− − − −0 1 1

...(4)

Substituting the values of A0, A1,  ......, An in equation (1), we get

  f(x) = ( ) ( ) ...... ( )
( ) ( ) ...... ( )

x x x x x x
x x x x x x

n

n

− − −
− − −

1 2

0 1 0 2 0
f(x0) + ( ) ( ) ...... ( )

( ) ( ) ...... ( )
x x x x x x

x x x x x x
n

n

− − −
− − −

0 2

1 0 1 2 1
f(x1)

+ ......  + 
( ) ( ) ...... ( )

( ) ( ) ...... ( )

x x x x x x

x x x x x x
n

n n n n

− − −
− − −

−

−

0 1 1

0 1 1
 f(xn)

This  is called Lagrange’s interpolation formula.
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4.35 ANOTHER FORM OF LAGRANGE’S FORMULA

Lagrange’s formula can also be put in the form

Pn(x) = 
φ

φ
( ) ( )

( ) ( )
x f x

x x x
r

r rr

n

− ′=
∑

0

where   φ(x) = Π
r

n

rx – x
= 0

( ) and φ′(xr) = 
d
dx

x
x xr

{ ( )}φL
NM

O
QP =

We have the Lagrange’s formula,

Pn(x) = 
( ) ( ) ... ( ) ( ) ... ( )

( ) ( ) ... ( ) ( ) ... ( )
( )

x x x x x x x x x x

x x x x x x x x x x
f xr r n

r r r r r r r n
r

r

n − − − − −
− − − − −

− +

− +=
∑ 0 1 1 1

0 1 1 10

= 
φ ( ) ( )

( ) ( ) ... ( ) ( ) ... ( )
x

x x
f x

x x x x x x x x x xr

r

r r r r r r r nr

n

−
RST

UVW − − − − −

R
S|
T|

U
V|
W|− +=

∑
0 1 1 10

...(1)

Now, φ(x) = Π
r

n

rx – x
= 0

( )

 = (x – x0)(x – x1) ..... (x – xr – 1) (x – xr) (x – xr + 1) ..... (x – xn)
∴ φ′(x) = (x – x1) (x – x2) ..... (x – xr) ..... (x – xn) + (x – x0) (x – x2) ..... (x – xr) ..... (x  – xn)

  + ..... + (x – x0) (x – x1) ..... (x – xr – 1) (x – xr + 1) ..... (x – xn) + .....
  + (x – x0) (x – x1) ..... (x – xr) ..... (x – xn – 1)

⇒ φ′(xr) = [ ( )]φ′ =x x xr

= (xr – x0) (xr – x1) ..... (xr – xr – 1) (xr – xr + 1) ..... (xr – xn) ...(2)

Hence from (1), Pn(x) = 
φ

φ
( ) ( )

( ) ( )
x f x

x x x
r

r rr

n

− ′=
∑

0
|Using (2)

EXAMPLES

Example 1. Using Lagrange’s interpolation formula, find y(10) from the following table:

x 5 6 9 11

y 12 13 14 16 (U.P.T.U. 2009)

Sol. Here, x0 = 5,   x1 = 6,   x2 = 9,    x3 = 11

 f(x0) = 12, f(x1) = 13, f(x2) = 14, f(x3) = 16
Lagrange’s formula is

 f(x) = 
( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

( )
x x x x x x

x x x x x x
f x

x x x x x x
x x x x x x

f x
− − −

− − −
+

− − −
− − −

1 2 3

0 1 0 2 0 3
0

0 2 3

1 0 1 2 1 3
1

+ 
( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

( )
x x x x x x

x x x x x x
f x

x x x x x x
x x x x x x

f x
− − −

− − −
+

− − −
− − −

0 1 3

2 0 2 1 2 3
2

0 1 2

3 0 3 1 3 2
3
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f(x) = 
( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )
( ) ( ) ( )

( )
x x x x x x− − −

− − −
+ − − −

− − −
6 9 11

5 6 5 9 5 11
12

5 9 11
6 5 6 9 6 11

13

+ 
( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( )
( )

x x x x x x− − −
− − −

+ − − −
− − −

5 6 11
9 5 9 6 9 11

14
5 6 9

11 5 11 6 11 9
16

= – 
1
2

6 9 11
13
15

5 9 11( ) ( ) ( ) ( ) ( ) ( )x x x x x x− − − + − − −  – 
7
12

5 6 11( ) ( ) ( )x x x− − −

+ 
4
15

5 6 9( ) ( ) ( )x x x− − −

Putting x = 10, we get

 f(10) = – 
1
2

10 6 10 9 10 11
13
15

10 5 10 9 10 11( ) ( ) ( ) ( ) ( ) ( )− − − + − − −

– 
7
12

10 5 10 6 10 11
4
15

10 5 10 6 10 9( ) ( ) ( ) ( ) ( ) ( )− − − + − − −

= 14.66666667
Hence, y(10) = 14.66666667.
Example 2. Compute the value of f(x) for x = 2.5 from the following table:

x: 1 2 3 4
f(x): 1 8 27 64

using Lagrange’s interpolation method.
Sol. Here x0 = 1, x1 = 2, x2 = 3, x3 = 4

f(x0) = 1, f(x1) = 8, f(x2) = 27, f(x3) = 64
Lagrange’s formula is

f(x) = 
( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

( )
x x x x x x

x x x x x x
f x

x x x x x x
x x x x x x

f x
− − −

− − −
+

− − −
− − −

1 2 3

0 1 0 2 0 3
0

0 2 3

1 0 1 2 1 3
1

+ 
( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

( )
x x x x x x

x x x x x x
f x

x x x x x x
x x x x x x

f x
− − −

− − −
+

− − −
− − −

0 1 3

2 0 2 1 2 3
2

0 1 2

3 0 3 1 3 2
3

= 
( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )
( ) ( ) ( )

( )
x x x x x x− − −

− − −
+ − − −

− − −
2 3 4

1 2 1 3 1 4
1

1 3 4
2 1 2 3 2 4

8  + 
( ) ( ) ( )
( ) ( ) ( )
x x x− − −

− − −
1 2 4

3 1 3 2 3 4
 (27)

+ 
( ) ( ) ( )
( ) ( ) ( )

( )
x x x− − −

− − −
1 2 3

4 1 4 2 4 3
64

Putting x = 2.5, we get

f(2.5) = −
1
6

 (2.5 – 2) (2.5 – 3) (2.5 – 4) + 4(2.5 – 1) (2.5 – 3) (2.5 – 4)

– 
27
2

 (2.5 – 1) (2.5 – 2) (2.5 – 4) + 
32
3

 (2.5 – 1) (2.5 – 2) (2.5 – 3)

= 15.625.
Example 3. Find the cubic Lagrange’s interpolating polynomial from the following data:

x: 0 1 2 5
f(x): 2 3 12 147.

Sol. Here x0 = 0, x1 = 1, x2 = 2, x3 = 5
f(x0) = 2, f(x1) = 3, f(x2) = 12, f(x3) = 147
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Lagrange’s formula is

f(x) = 
( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

( )
x x x x x x

x x x x x x
f x

x x x x x x
x x x x x x

f x
− − −

− − −
+

− − −
− − −

1 2 3

0 1 0 2 0 3
0

0 2 3

1 0 1 2 1 3
1

+ 
( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

( )
x x x x x x

x x x x x x
f x

x x x x x x
x x x x x x

f x
− − −

− − −
+

− − −
− − −

0 1 3

2 0 2 1 2 3
2

0 1 2

3 0 3 1 3 2
3

= 
( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )
( ) ( ) ( )

( )
x x x x x x− − −

− − −
+ − − −

− − −
1 2 5

0 1 0 2 0 5
2

0 2 5
1 0 1 2 1 5

3  + 
( ) ( ) ( )
( ) ( ) ( )

( )
x x x− − −

− − −
0 1 5

2 0 2 1 2 5
12

+ 
( ) ( ) ( )
( ) ( ) ( )

( )
x x x− − −

− − −
0 1 2

5 0 5 1 5 2
147

= − − − − + − −1
5

1 2 5
3
4

2 5( ) ( ) ( ) ( ) ( )x x x x x x  – 2x(x – 1) (x – 5)

+ 
49
20

1 2x x x( ) ( )− −

⇒ f(x) = x3 + x2 – x + 2

Example 4. Find the unique polynomial P(x) of degree 2 such that:

P(1) = 1, P(3) = 27, P(4) = 64

Use Lagrange method of interpolation.

Sol. Here, x0 = 1, x1 = 3,  x2 = 4

f(x0) = 1, f(x1) = 27, f(x2) = 64

By Lagrange’s interpolation formula

P(x) = 
( ) ( )

( ) ( )
( )

( ) ( )
( ) ( )

( )
( ) ( )

( ) ( )
( )

x x x x
x x x x

f x
x x x x

x x x x
f x

x x x x
x x x x

f x
− −
− −

+
− −
− −

+
− −
− −

1 2

0 1 0 2
0

0 2

1 0 1 2
1

0 1

2 0 2 1
2

= 
( ) ( )
( ) ( )

( )
( ) ( )
( ) ( )

( )
( ) ( )
( ) ( )

( )
x x x x x x− −

− −
+ − −

− −
+ − −

− −
3 4

1 3 1 4
1

1 4
3 1 3 4

27
1 3

4 1 4 3
64

= 
1
6

7 12
27
2

5 4
64
3

4 32 2 2( ) ( ) ( )x x x x x x− + − − + + − +  = 8x2 – 19x + 12

Example 5. The function y = f(x) is given at the points (7, 3), (8, 1), (9, 1) and (10, 9).
Find the value of y for x = 9.5 using Lagrange’s interpolation formula.

Sol. We are given

x: 7 8 9 10

f(x): 3 1 1 9

Here,  x0 = 7, x1 = 8, x2 = 9, x3 = 10

f(x0) = 3,  f(x1) = 1, f(x2) = 1, f(x3) = 9

Lagrange’s interpolation formula is

f(x) = 
( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

( )
x x x x x x

x x x x x x
f x

x x x x x x
x x x x x x

f x
− − −

− − −
+

− − −
− − −

1 2 3

0 1 0 2 0 3
0

0 2 3

1 0 1 2 1 3
1

+ 
( ) ( ) ( )

( ) ( ) ( )
( )

x x x x x x
x x x x x x

f x
− − −

− − −
0 1 3

2 0 2 1 2 3
2  + ( ) ( ) ( )

( ) ( ) ( )
( )

x x x x x x
x x x x x x

f x
− − −

− − −
0 1 2

3 0 3 1 3 2
3
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= 
( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )
( ) ( ) ( )

( )
x x x x x x− − −

− − −
+ − − −

− − −
8 9 10

7 8 7 9 7 10
3

7 9 10
8 7 8 9 8 10

1  + 
( ) ( ) ( )
( ) ( ) ( )

( )
x x x− − −

− − −
7 8 10

9 7 9 8 9 10
1

+ 
( ) ( ) ( )

( ) ( ) ( )
( )

x x x− − −
− − −

7 8 9
10 7 10 8 10 9

9 ...(1)

Putting x = 9.5 in eqn. (1), we get

f(9.5) = − − − − + − − −1
2

9 5 8 9 5 9 9 5 10
1
2

9 5 7 9 5 9 9 5 10( . ) ( . ) ( . ) ( . ) ( . ) ( . )

– 
1
2

9 5 7 9 5 8 9 5 10
3
2

9 5 7 9 5 8 9 5 9( . ) ( . ) ( . ) ( . ) ( . ) ( . )− − − + − − −  = 3.625.

Example 6. Use Lagrange’s interpolation formula to fit a polynomial to the data:

x: – 1 0 2 3

ux: – 8 3 1 12

Hence or otherwise find the value of u1.

Sol. Here,

x0 = – 1, x1 = 0, x2 = 2, x3 = 3

f(x0) = – 8, f(x1) = 3, f(x2) = 1, f(x3) = 12

Lagrange’s interpolation formula is

 ux = 
( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

( )
x x x x x x

x x x x x x
f x

x x x x x x
x x x x x x

f x
− − −

− − −
+

− − −
− − −

1 2 3

0 1 0 2 0 3
0

0 2 3

1 0 1 2 1 3
1

+ 
( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

( )
x x x x x x

x x x x x x
f x

x x x x x x
x x x x x x

f x
− − −

− − −
+

− − −
− − −

0 1 3

2 0 2 1 2 3
2

0 1 2

3 0 3 1 3 2
3

= 
( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

( )
x x x x x x− − −

− − − − − −
− + + − −

+ − −
0 2 3

1 0 1 2 1 3
8

1 2 3
0 1 0 2 0 3

3  + 
( ) ( ) ( )
( ) ( ) ( )

( )
x x x+ − −

+ − −
1 0 3

2 1 2 0 2 3
1

+ 
( ) ( ) ( )
( ) ( ) ( )

( )
x x x+ − −

+ − −
1 0 2

3 1 3 0 3 2
12

= 
2
3

2 3
1
2

1 2 3x x x x x x( ) ( ) ( ) ( ) ( )− − + + − −  – 
1
6

1 3 1 2( ) ( ) ( ) ( )x x x x x x+ − + + −

⇒ ux = 2x3 – 6x2 + 3x + 3 ...(1)

Putting x = 1 in (1), we get

u1 = 2(1)3 – 6(1)2 + 3(1) + 3 = 2.

Example 7. By means of Lagrange’s formula, prove that

(i) y0 = 
1
2

(y y )
1
8

1
2

(y y )
1
2

(y y )1 1 3 1 1 3+ − − − −L
NM

O
QP− − −

(ii) y 0.05 (y y ) 0.3 (y y ) 0.75 (y y )3 0 6 1 5 2 4= + − + + +

(iii) y1 = y3 – 0.3 (y5 – y–3 ) + 0.2 (y–3 – y–5 ).
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Sol. (i) For the arguments –3, –1, 1, 3, the Lagrange’s formula is

yx = 
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
x x x

y
x x x

y
+ − −

− + − − − −
+ + − −

− + − − − −− −
1 1 3

3 1 3 1 3 3
3 1 3

1 3 1 1 1 33 1 + 
( ) ( ) ( )
( ) ( ) ( )
x x x+ + −

+ + −
3 1 3

1 3 1 1 1 3
 y1

+ 
( ) ( ) ( )
( ) ( ) ( )
x x x

y
+ + −
+ + −

3 1 1
3 3 3 1 3 1 3 ...(1)

Putting x = 0 in (1), we get

 y0 = − + + −− −
1

16
9
16

9
16

1
163 1 1 3y y y y

= 
1
2

1
8

1
2

1
21 1 3 1 1 3( ) ( ) ( )y y y y y y+ − − − −L

NM
O
QP− − −

(ii) For the arguments 0, 1, 2, 4, 5, 6, the Lagrange’s formula is

yx = 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

x x x x x
y

x x x x x
y

− − − − −
− − − − −

+ − − − − −
− − − − −

1 2 4 5 6
0 1 0 2 0 4 0 5 0 6

0 2 4 5 6
1 0 1 2 1 4 1 5 1 60 1

+ 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

x x x x x
y

x x x x x
y

− − − − −
− − − − −

+ − − − − −
− − − − −

0 1 4 5 6
2 0 2 1 2 4 2 5 2 6

0 1 2 5 6
4 0 4 1 4 2 4 5 4 62 4

+ 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

x x x x x
y

x x x x x
y

− − − − −
− − − − −

+ − − − − −
− − − − −

0 1 2 4 6
5 0 5 1 5 2 5 4 5 6

0 1 2 4 5
6 0 6 1 6 2 6 4 6 55 6 ...(1)

Putting x = 3 in (1), we get
y3 = 0.05 y0 – 0.3 y1 + 0.75 y2 + 0.75 y4 – 0.3 y5 + 0.05 y6

= 0.05 (y0 + y6) – 0.3(y1 + y5) + 0.75 (y2 + y4).
(iii) For the arguments –5, –3, 3, 5, the Lagrange’s formula is

yx = 
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
x x x

y
x x x

y
+ − −

− + − − − −
+ + − −

− + − − − −− −
3 3 5

5 3 5 3 5 5
5 3 5

3 5 3 3 3 55 3

 + 
( ) ( ) ( )
( ) ( ) ( )
x x x

y
+ + −
+ + −

5 3 5
3 5 3 3 3 5 3 + 

( ) ( ) ( )
( ) ( ) ( )
x x x

y
+ + −
+ + −

5 3 3
5 5 5 3 5 3 5 ...(1)

Putting x = 1 in eqn. (1), we get
y1 = – 0.2 y– 5 + 0.5y–3 + y3 – 0.3 y5 = y3 – 0.3 ( y5 – y–3) + 0.2 ( y–3 – y–5).

ASSIGNMENT

1. Using Lagrange’s interpolation formula, find polynomial which takes the values 3, 12, 15, –21
when x has the values 3, 2, 1 and –1. (U.P.T.U. 2014)

2. Values of f(x) for values of x are given as
f(1) = 4, f(2) = 5, f(7) = 5, f(8) = 4

Find f(6) and also the value of x for which f(x) is maximum or minimum.
3. (i) Using Lagrange interpolation formula, calculate f(3) from the following table:

x: 0 1 2 4 5 6
f(x): 1 14 15 5 6 19 (U.P.T.U. 2006)

(ii) Use Lagrange’s interpolation formula to compute f(5.5) from the following data:
x: 0 1 4 5 6

f(x): 1 14 15 6 3 [G.B.T.U. (C.O.) 2011]
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4. Compute f (27) from the following data using Lagrange’s interpolation formula.
x: 14 17 31 35

f(x): 68.7 64.0 44.0 39.1 (U.P.T.U. 2007)
5. (i) Find the value of tan 33° by Lagrange’s formula if

tan 30° = 0.5774, tan 32° = 0.6249, tan 35° = 0.7002, tan 38° = 0.7813.
(ii) Find the value of  f(0.55) using Lagrange interpolation with the following table of values:

x: 0.4 0.5 0.7 0.8
f(x): – 0.916 – 0.693  – 0.357 – 0.223 [U.P.T.U. MCA (SUM) 2009]

6. (i) Use Lagrange’s formula to find f(6) from the following table:
x: 2 5 7 10 12

f(x): 18 180 448 1210 2028.
(ii) Apply Lagrange’s formula to find f(15), if

x: 10 12 14 16 18 20
f(x): 2420 1942 1497 1109 790 540.

7. Derive the Lagrange’s interpolation formula for unequal intervals. Find the value of f(2.6) from
the given table (Use above formula). [U.P.T.U. (MCA) 2006]

x: – 2 – 1 1 2 6
f(x): – 4 14 – 4 – 16 196

8. If y0, y1, ..., y9 are consecutive terms of a series, prove that

y5 = 
1

70
[56(y4 + y6) – 28(y3 + y7) + 8(y2 + y8) – (y1 + y9)]

9. Using the following table, find f(x) as a polynomial in x:
x: – 1 0  3 6 7

f(x): 3 – 6 39 822 1611. (U.P.T.U. 2009)
10. (i) If y(1) = – 3, y(3) = 9, y(4) = 30, and y(6) = 132, find the four-point Lagrange interpolation

polynomial that takes the same values as the function y at the given points.
(ii) Apply Lagrange’s formula to find a cubic polynomial which approximates the data:

x: – 2 – 1 2 3
y(x): – 12 – 8  3 5 [G.B.T.U. (C.O.) 2010]

(iii) Find the unique polynomial P(x) of degree 2 or less such that P(2) = 8, P(4) = 64, P(5) = 125
using the Lagrange interpolation formula. Hence evaluate P(2.5).

[G.B.T.U. MCA (SUM) 2010]
11. Given the table of values

x: 150 152 154 156

y = x : 12.247 12.329 12.410 12.490

Evaluate 155  using Lagrange’s interpolation formula.
12. Use Lagrange’s method to find a polynomial p(x) of lowest possible degree such that p(n) = 2n for

n = 0, 1, 2, 3, 4.
13. Values of f(x) are given at a, b and c. Show that the maximum is obtained by

x = 
f a b c f b c a f c a b

f a b c f b c a f c a b
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2 2− + − + −
− + − + −

.

14. (i) Find a Lagrange’s interpolating polynomial for the data given below:
x0 = 1,   x1 = 2.5,  x2 = 4 and x3 = 5.5

f(x0) = 4, f(x1) = 7.5, f(x2) = 13 and f(x3) = 17.5
Also, find the value of f(5).

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com


456 A TEXTBOOK OF ENGINEERING MATHEMATICS

(ii) Use Lagrange’s method to find interpolating polynomial of degree 3 to fit the following data:
x: 0 1 2 3

f(x): 0 1.7183  6.3891 19.0855
Hence compute the value of f(1.5). [G.B.T.U. (MCA) 2011]

15. Determine by Lagrange’s formula, the percentage number of criminals under 35 years:
Age % number of criminals

under 25 years 52
under 30 years 67.3
under 40 years 84.1
under 50 years 94.4

16. Obtain Lagrange’s interpolatory for the following data:
x: 1 3 5 7 10

f(x): 13 31 25 37 101
Find the values of f(4) and f(8.5) (U.P.T.U. 2015)

Answers
1. x3 – 9x2 + 17x + 6 2. 5.66; x = 4.5
3. (i) 10 (ii) 3.096875 4. 49.31046
5. (i) 0.64942084 (ii) – 0.59721875 6. (i) 293.99856 (ii) 1294.8437
7. – 17.248 9. x4 – 3x3 + 5x2 – 6

10. (i) x3 – 3x2 + 5x – 6 (ii) y(x) = – 
1

15
x3 – 

3
20

 x2 + 
241
60

 x – 3.9

(iii) P(x) = 11x2 – 38x + 40, 13.75

11. 12.45 12.
x x

x
x4 3

2

24 12
11
24

7
12

− + +  + 1

14. (i) – 
4
27

14
9

5
3

115
27

3 2x x x+ − +  ; 16.2962963 (ii) 0.84551x3  – 1.06028x2 + 1.93307x ; 3.367571

15. 77.405

16. f(x) = – 
1

1080
 (91x4 – 2401x3 + 19571 x2 – 60431 x + 29130) ; f(4) = 27.616,  f(8.5) = 64.83.

4.36 ERROR IN LAGRANGE’S INTERPOLATION FORMULA

Remainder,

 y(x) – Ln(x) = Rn(x) = 
Πn x

n
+

+
1

1

( )

( ) !
 y(n + 1) (ξ), a < ξ < b

where Lagrange’s formula is for the class of functions having continuous derivatives of order
up to (n + 1) on [a, b].

Quantity EL = max.
[ , ]a b

 |Rn(x)| may be taken as an estimate of error.

Let us assume

 |y(n + 1) (ξ)| ≤ Mn + 1, a ≤ ξ ≤ b

then, EL ≤ 
Mn

n
+

+
1

1( ) !
 max.

[ , ]a b
 |Πn + 1(x)|.
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EXAMPLES

Example 1. Show that the truncation error of quadratic interpolation in an equidistant

table is bounded by 
h

9 3

3

 max |f ″′(ξ )| where h is the step size and f is the tabulated function.

Sol. Let xi – 1, xi, xi + 1 denote three consecutive equi-spaced points with step size h.

The truncation error of the quadratic Lagrange interpolation is bounded by

|E2(f ; x)| ≤ 
M3

6
 max |(x – xi – 1)(x – xi)(x – xi + 1)|

where xi – 1 ≤ x ≤ xi + 1 and M3 = max
a x b≤ ≤

 |f ″′(x)|

Substitute t = 
x x

h
i−
 then,

 x – xi – 1 = x – (xi – h) = x – xi + h = th + h = (t + 1)h

 x – xi + 1 = x – (xi + h) = x – xi – h = th – h = (t – 1)h

and  (x – xi – 1)(x – xi)(x – xi + 1) = (t + 1) t(t – 1)h3 = t(t2 – 1)h3 = g(t)

Setting g′(t) = 0, we get

 3t2 – 1 = 0 ⇒ t = ± 
1

3
.

For both these values of t, we obtain

max |(x – xi – 1)(x – xi)(x – xi + 1)| = h3 max
− ≤ ≤1 1t

 |t(t2 – 1)| = 
2

3 3

3h

Hence, the truncation error of the quadratic interpolation is bounded by

|E2(f ; x)| ≤ 
h3

3
9 3

M

or, |E2(f ; x)| ≤ 
h3

9 3
 max |f ″′(ξ)|.

Example 2. Determine the step size that can be used in the tabulation of f(x) = sin x in

the interval 0,
4
πL
NM
O
QP  at equally spaced nodal points so that the truncation error of the quadratic

interpolation is less than 5 × 10–8.
Sol. From Ex. 1, we have

|E2(f ; x)| ≤ 
h3

9 3
 M3

For f(x) = sin x, we get f ″′(x) = – cos x and M3 = max |cos |
/0 4≤ ≤x

x
π

 = 1

Hence the step size h is given by

h3

9 3
 ≤ 5 × 10–8 or h ≈ 0.009
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Example 3. Using  Lagrange’s  interpolation formula, find the value of sin 
π
6
F
HG
I
KJ  from the

following data:

x: 0 π/4 π/2

y = sin x: 0 0.70711 1.0

Also estimate the error in the solution.

Sol. sin 
π
6
F
HG
I
KJ  = 

π π π

π π π
6

0
6 2

4
0

4 2

−FHG
I
KJ −FHG

I
KJ

−FHG
I
KJ −FHG

I
KJ

 (0.70711) + 

π π π

π π π
6

0
6 4

2
0

2 4

−FHG
I
KJ −FHG

I
KJ

−FHG
I
KJ −FHG

I
KJ

 (1) = 0.51743

Now, y(x) = sin x, y′(x) = cos x, y″(x) = – sin x, y′″(x) = – cos x

Hence,  |y′″ (ξ)| < 1

when x = π/6,

 |Rn(x)| ≤ 

π π π π π
6

0
6 4 6 2

3

−FHG
I
KJ −FHG

I
KJ −FHG

I
KJ

!
 = 0.02392

which agrees with the actual error in problem.

4.37 EXPRESSION OF RATIONAL FUNCTION AS A SUM OF PARTIAL FRACTIONS

Let f(x) = 
3 1
1 2 3

2x x
x x x

+ +
− − −( )( )( )

Consider φ(x) = 3x2 + x + 1 and tabulate its values for x = 1, 2, 3, we get

x: 1 2 3

φ(x) = 3x2 + x + 1: 5 15 31

Using Lagrange’s interpolation formula, we get

φ(x) = 
( )( )
( )( )
x x− −

− −
2 3

1 2 1 3
 (5) + ( )( )x x− −

−
1 3

1
 (15) + 

( )( )x x− −1 2
2

 (31)

= 
5
2

 (x – 2)(x – 3) – 15 (x – 1)(x – 3) + 
31
2

 (x – 1)(x – 2)

f (x) = 
5

2 1( )x −
 – 15

2x −
 + 

31
2 3( )x −

.

4.38 INVERSE INTERPOLATION

The  process  of  estimating  the  value  of  x for the value of y not in the table is called inverse
interpolation. When values of x are unevenly spaced, Lagrange’s method is used by
interchanging x and y.
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EXAMPLE

Example. From the given table:
x: 20 25 30 35

y(x): 0.342 0.423 0.5 0.65
Find the value of x for y(x) = 0.390.
Sol. By inverse interpolation formula,

 x = 
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
y y y y y y

y y y y y y
x

y y y y y y
y y y y y y

x
− − −
− − −

+
− − −
− − −

1 2 3

0 1 0 2 0 3
0

0 2 3

1 0 1 2 1 3
1

+  
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
y y y y y y

y y y y y y
x

y y y y y y
y y y y y y

x
− − −
− − −

+
− − −
− − −

0 1 3

2 0 2 1 2 3
2

0 1 2

3 0 3 1 3 2
3

= 
( . . ) ( . . ) ( . . )

( . . ) ( . . ) ( . . )
( )

039 0 423 039 05 039 0 65
0342 0 423 0342 05 0342 0 65

20
− − −

− − −

+ 
( . . ) ( . . ) ( . . )

( . . ) )( . . ) ( . . )
( )

039 0342 039 05 039 0 65
0 423 0342 0 423 05 0 423 0 65

25
− − −

− − −

+ 
( . . ) ( . . ) ( . . )

( . . ) ( . . ) ( . . )
( )

039 0342 039 0 423 039 0 65
05 0342 05 0 423 05 0 65

30
− − −
− − −

+ 
( . . ) ( . . ) ( . . )
( . . ) ( . . ) ( . . )

( )
039 0342 039 0 423 039 05
0 65 0342 0 65 0 423 0 65 05

35
− − −
− − −

= 22.84057797.

4.39 DIVIDED DIFFERENCES

Lagrange’s interpolation formula has the disadvantage that if another interpolation point
were added, the interpolation co-efficients will have to be recomputed.

We therefore seek an interpolation polynomial which has the property that a polynomial
of higher degree may be derived from it by simply adding new terms.

Newton’s general interpolation formula is one such formula and it employs divided
differences.

If (x0, y0), (x1, y1), (x2, y2) ...... are given points then the first divided difference for the
arguments x0, x1 is defined by

 Δ|
x1

y0 = [x0, x1] = 
y y
x x

1 0

1 0

−
−

Similarly, [x1, x2] = 
y y
x x

2 1

2 1

−
−

 and so on.

The second divided difference for x0, x1, x2 is defined as

   Δ|
,

2

1 2x x
 y0 = [x0,  x1, x2] = 

[ , ] [ , ]x x x x
x x

1 2 0 1

2 0

−
−

Third divided difference for x0, x1, x2, x3 is defined as

 [x0, x1, x2, x3] = 
[ , , ] [ , , ]x x x x x x

x x
1 2 3 0 1 2

3 0

−
−

  and so on.
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4.40 PROPERTIES OF DIVIDED DIFFERENCES

1. The divided differences are symmetrical in their arguments i.e., independent of
the order of arguments.

[x0, x1] = 
y

x x
1

1 0−
 + 

y
x x

0

0 1−
 = [x1, x0]

Also, [x0, x1, x2] = 
y

x x x x
0

0 1 0 2( )( )− −
 + 

y
x x x x

1

1 0 1 2( )( )− −
 + 

y
x x x x

2

2 0 2 1( )( )− −
 = [x2, x0, x1] or [x1, x2, x0]

2. The nth divided differences of a polynomial of nth degree are constant.
Let the arguments be equally spaced so that

x1 – x0 = x2 – x1 = ..... = xn – xn – 1 = h

then, [x0, x1] = 
y y
x x

1 0

1 0

−
−

 = 
Δy
h

0

 [x0, x1, x2] = 
[ , ] [ , ]

( )
x x x x

x x
1 2 0 1

2 0

−
−

 = 
1

2h
 Δ Δy

h
y
h

1 0−F
HG

I
KJ  = 

1
2

1
2!

.
h

 (Δ2 y0)

In general, [x0, x1, x2, ......, xn] = 
1
n !

 . 1
hn

 Δny0

If tabulated function is a nth degree polynomial. ∴ Δny0 = constant
∴ nth divided differences will also be constant.

4.41 NEWTON’S DIVIDED DIFFERENCE INTERPOLATION FORMULA
(U.P.T.U. 2009)

Let y0, y1, ......, yn be the values of y = f(x) corresponding to the arguments x0, x1, ......, xn, then
from the definition of divided differences, we have

 [x, x0] = 
y y
x x

−
−

0

0
so that,  y = y0 + (x – x0) [x, x0] ...(1)

Again,  [x, x0, x1] = 
[ , ] [ , ]x x x x

x x
0 0 1

1

−
−

which gives,  [x, x0] = [x0, x1] + (x – x1) [x, x0, x1] ...(2)
From (1) and (2),  y = y0 + (x – x0) [x0, x1] + (x – x0) (x – x1) [x, x0, x1] ...(3)

Also,  [x, x0, x1, x2] = 
[ , , ] [ , , ]x x x x x x

x x
0 1 0 1 2

2

−
−

which gives   [x, x0, x1] = [x0, x1, x2] + (x – x2) [x, x0, x1, x2] ...(4)
From (3) and (4), y = y0 + (x – x0) [x0, x1] + (x – x0) (x – x1) [x0, x1, x2]

+ (x – x0) (x – x1) (x – x2) [x, x0, x1, x2]
Proceeding in this manner, we get

 y = f(x) = y0 + (x – x0) [x0, x1] + (x – x0) (x – x1) [x0, x1, x2]
+ (x – x0) (x – x1) (x – x2) [x0, x1, x2, x3] + ..... + (x – x0) (x – x1) (x – x2)

..... (x – xn – 1) [x0, x1, x2, x3, ......, xn] + (x – x0) (x – x1) (x – x2)
..... (x – xn) [x, x0, x1, x2, ......, xn]

which is called Newton’s general interpolation formula with divided differences, the last term
being the remainder term after (n + 1) terms.
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Newton’s divided difference formula can also be written as

y = y0 + (x – x0) Δ| y0 + (x – x0) (x – x1) Δ| 2y0 + (x – x0) (x – x1) (x – x2) Δ| 3y0
+ (x – x0) (x – x1) (x – x2) (x – x3) Δ|

4y0 + ..... + (x – x0) (x – x1) ..... (x – xn–1) Δ| ny0

EXAMPLES

Example 1. (i) Find the third divided difference with arguments 2, 4, 9, 10 of the function
f(x) = x3 – 2x.

(ii) If f(x) = 
1
x2 , find the first divided differences f(a, b), f(a, b, c), f(a, b, c, d).

(iii) If f(x) = g(x) h(x), prove that f(x1, x2) = g(x1) h(x1, x2) + g(x1, x2) h (x2).
Sol. (i)

x f(x) Δ| f(x) Δ| 2f(x) Δ| 3f(x)

2 4
56 4
4 2

26
−
−

=

4 56
131 26

9 2
15

−
−

=

711 56
9 4

131
−
−

= 23 15
10 2

1
−
−

=

9 711
269 131

10 4
23

−
−

=

980 711
10 9

269
−
−

=

10 980

Hence  third divided difference is 1.
(ii)

x f(x) = 
1

x2 Δ| f(x) Δ| 2f(x) Δ| 3f(x)

a
1
2a

1 1
2 2b a
b a

−FHG
I
KJ

−
 = – 

a b

a b

+F
HG
I
KJ2 2

b
1
2b

ab bc ca

a b c

+ +
2 2 2

− +F
HG
I
KJ

b c

b c2 2 – 
abc acd abd bcd

a b c d

+ + +F
HG

I
KJ2 2 2 2

c
1
2c

bc cd db

b c d

+ +
2 2 2

− +F
HG
I
KJ

c d

c d2 2

d
1
2d
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From the above divided difference table, we observe that first divided differences,

f(a, b) = – 
a b
a b

+F
HG
I
KJ2 2

f(a, b, c) = 
ab bc ca

a b c
+ +
2 2 2 and f(a, b, c, d) = – abc acd abd bcd

a b c d
+ + +F

HG
I
KJ2 2 2 2

(iii)  RHS = g(x1) 
h x h x

x x
g x g x

x x
h x

( ) ( ) ( ) ( )
( )2 1

2 1

2 1

2 1
2

−
−

+
−
−

= 
1

2 1x x−
 [{g(x1) h(x2) – g(x1)h(x1)} + {g(x2) h(x2) – g(x1) h(x2)}]

= 
g x h x g x h x

x x
( ) ( ) ( ) ( )2 2 1 1

2 1

−
−

 = Δ|
x2

g(x1) h(x1) = Δ|
x2

 f(x1) = f(x1, x2) = LHS.

Example 2. (i) Prove that Δ|
bcd

3 1
a

1
abcd

F
HG
I
KJ = −

(ii) Show that the nth divided differences [x0, x1, ....., xn] for ux = 
1
x

 is ( 1)
x x ..... x

n

0 1 n

−L
NM

O
QP
.

Sol. (i)

x f(x) Δ| f(x) Δ| 2f(x) Δ| 3f(x)

a
1
a

1 1
b a
b a

−

−
 = – 

1
ba

b
1
b

(– 1)2 
1

abc
1 1
c b
c b

−

−
 = – 

1
bc

(– 1)3 
1

abcd

c
1
c

(– 1)2 
1

bdc
1 1
d c
d c

−

−
 = – 

1
dc

d
1
d

From the table, we observe that Δ| 3

bcd
 

1
a
F
HG
I
KJ  = – 

1
abcd

. ...(1)

(ii) From (1), we see that

Δ| 3

bcd
 

1

a
F
HG
I
KJ  = – 

1
abcd

 = (– 1)3 f(a, b, c, d)

∴ In general,

Δ|, , .....,
n

x x xn x0 1

1F
HG
I
KJ  = (–1)n f (x0, x1, x2, ....., xn) = 

( )
.....

−L
NM

O
QP

1

0 1 2

n

nx x x x
.
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Example 3. Using Newton’s divided difference formula, find a polynomial function
satisfying the following data:

x: – 4 – 1 0 2 5
f(x): 1245 33 5 9 1335

Hence find f(1). (U.P.T.U. 2014)
Sol. The divided difference table is

x f(x) Δ| f(x) Δ| 2f(x) Δ| 3f(x) Δ| 4f(x)

– 4 1245
– 404

– 1 33 94
– 28 – 14

0 5 10 3
2 13

2 9 88
442

5 1335

Applying Newton’s divided difference formula
f(x) = 1245 + (x + 4) (– 404) + (x + 4) (x + 1) 94

+ (x + 4) (x + 1) (x – 0) (– 14) + (x + 4)(x + 1)x(x – 2)(3)
 = 3x4 – 5x3 + 6x2 – 14x + 5

Hence, f(1) = 3 – 5 + 6 – 14 + 5 = – 5.
Example 4. Find f ′(10) from the following data:

x: 3 5 11 27 34

f(x): – 13 23 899 17315 35606.

Sol. Divided difference table is

x f(x) Δ| f(x) Δ| 2f(x) Δ| 3f(x) Δ| 4f(x)

3 – 13
18

5 23 16
146 1

11 899 40 0
1026 1

27 17315 69
2613

34 35606

By Newton’s divided difference formula,
   f(x) = – 13 + (x – 3) 18 + (x – 3)(x – 5)16 + (x – 3)(x – 5)(x – 11)1

∴   f ′(x) = 3x2 – 6x – 7
Put x = 10, f ′(10) = 3(10)2 – 6(10) – 7 = 233.
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Example 5. Given the following table, find f(x) as a polynomial in powers of (x – 5)

x: 0 2 3 4 7 9

f(x): 4 26 58 112 466 922.

Sol. Divided difference table is

x f(x) Δ| f(x) Δ| 2f(x) Δ| 3f(x)

0 4
11

2 26 7
32 1

3 58 11
54 1

4 112 16
118 1

7 466 22
228

9 922

By Newton’s divided difference formula, we get
f(x) = 4 + (x – 0)(11) + (x – 0)(x – 2)7 + (x – 0)(x – 2)(x – 3)1

         = x3 + 2x2 + 3x + 4
In order to express it in power of (x – 5), we use synthetic division, as

5 1 2 3 4
5 35 190

5 1 7 38 194
5 60

5 1 12 98
5

1 17

∴ 2x2 + x3 + 3x + 4 = (x – 5)3 + 17(x – 5)2 + 98 (x –5) + 194.
Example 6. By means of Newton’s divided difference formula, find the values of f(8)

and f(15) from the following table:

x: 4 5 7 10 11 13

f(x): 48 100 294 900 1210 2028.

[G.B.T.U. 2011, U.P.T.U. (MCA) 2009]

Sol. Newton’s divided difference formula, using the arguments 4, 5, 7, 10, 11 and 13 is

f(x) = f(4) + (x – 4) Δ|
5

 f(4) + (x – 4)(x – 5) Δ|
,5 7

2 f(4) + (x – 4)(x – 5)(x – 7) Δ|
,

3

5 7, 10
 f(4) + ...(1)
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The divided difference table is as under:

x f(x) Δ|  f(x) Δ| 2 f(x) Δ| 3f(x) Δ| 4f(x)

4 48
100 48

5 4
−

−  =  52

5 100
97 52
7 4

−
−  =   15

294 100
7 5

97
−
−

= 21 15
10 4

−
−  =   1

7 294
202 97
10 5

21
−
−

= 0

900 294
10 7

202
−
−

= 27 21
11 5

1
−
−

=

10 900
310 202

11 7
27

−
−

= 0

1210 900
11 10

310
−

−
= 33 27

13 7
−
−  = 1

11 1210
409 310

13 10
−
−  = 33

2028 1210
13 11

409
−
−

=

13 2028

Substituting the values of the divided differences in (1),

f(x) = 48 + (x – 4) × 52 + (x – 4)(x – 5) × 15 + (x – 5)(x – 4)(x – 7) × 1

Putting x = 8 and 15, we get, f(8) = 448 and f(15) = 3150.

Example 7. Given that log10 2 = 0.3010, log10 3 = 0.4771, log10 7 = 0.8451, find the value
of log10  33.

Sol. log 30 = 1.4771, log 32 = 5 log 2 = 5 × 0.3010 = 1.5050
log 36 = 2 (log 2 + log 3) = 2 × (0.3010 + 0.4771) = 1.5562

log 35 = log 
70
2

 = log 70 – log 2 = 1.8451 – 0.3010 = 1.5441.

Divided difference table is as under:

x 104 log10 x 104 Δ|  log10 x 104Δ| 2 log10 x 104Δ| 3log10 x

30 14771
279
2

139 5= .

32 15050
9 2
5

184
.

.= −

391
3

130 3= . 0 48
6

0 08
.

.= −

35 15441 – 
9 3
7

2 32
.

.= −

129
1

 = 121

36 15562
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Applying Newton’s divided difference formula, we get
104 log10 x = 14771 + (x – 30) (139.5) + (x – 30)(x – 32) (–1.84)

  + (x – 30)(x – 32)(x – 35)(–0.08)
Putting x = 33

104 log10 33 = 15184.46
∴  log10 33 = 1.5184.
Example 8. The mode of a certain frequency curve y = f(x) is very near to x = 9 and the

values of frequency density f(x) for x = 8.9, 9.0 and 9.3 are respectively equal to 0.30, 0.35 and
0.25. Calculate the approximate value of mode.

Sol. Divided difference table is as under:

x 100 f(x) 100Δ| f(x) 100Δ| 2f(x)

8.9 30
5

0 9
50
9.

=

9.0 35 – 
350

9 0 4
3500

36×
= −

.

– 
10
0 3

100
3.

= −

9.3 25

Applying Newton’s divided difference formula

100 f(x) = 30 + (x – 8.9) × 
50
9

 + (x – 8.9)(x – 9) −FHG
I
KJ

3500
36

∴ f(x) = – 0.9722x2 + 17.45833x – 17.597217
 f ′(x) = – 1.9444 x + 17.45833

Putting f ′(x) = 0, we get x = 
17 45833

19444
.
.

 = 8.9788

Also, f ″(x) = – 1.9444 i.e., (–)ve
∴ f(x) is maximum at x = 8.9788. Hence mode is 8.9788.

ASSIGNMENT

1. Construct Newton’s interpolation polynomial for the data shown in the following table:
x: 0 2 3 4

f(x): 7 11 28 63 [U.P.T.U. MCA (SUM) 2009]
2. (i) Given the values:

x: 5 7 11 13 17
f(x): 150 392 1452 2366 5202

Evaluate f (9) using Newton’s divided difference formula.
(ii) Apply Newton’s divided difference formula to find the value of f(8) if

f(1) = 3, f(3) = 31, f(6) = 223, f(10) = 1011, f(11) = 1343.
3. Obtain the Newton’s divided difference interpolating polynomial and hence find f(6), f(5) and f(8).

x: 3 7 9 10
f (x): 168 120 72 63 [G.B.T.U. 2012, U.P.T.U. 2007]
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4. Given that
x: 1 3 4 6 7
yx: 1 27 81 729 2187

Find y5. Why does it differ from 35 ?
5. Use Newton’s divided difference formula to find the interpolating polynomial and hence evaluate

y(9.5) from the given data:
x: 7 8 9 10
y: 3 1 1 9 [G.B.T.U. 2011 ; G.B.T.U. (C.O.) 2011]

6. (i) The following table is given:
x: 0 1 2 5
y: 2 3 12 147
What is the form of the function?

(ii) Develop the divided-difference table from the data given below and obtain the interpolation
polynomial f(x):
x: 1 3 5 7 11

f(x): 5 11 17 23 29
Also, find the value of f(19.5). (U.P.T.U. 2009)

7. Find the function ux in powers of x – 1 given that u0 = 8, u1 = 11, u4 = 68, u5 = 123.
8. For the following table, find f(x) as a polynomial in x using Newton’s divided difference formula.

x: 5 6 9 11
f(x): 12 13 14 16 (U.P.T.U. 2006)

9. (i) Apply Newton’s divided difference method to obtain an interpolatory polynomial for the
following data:
x : 3 5 7 9 11 13

f(x) : 31 51 17 19 90 110 (U.P.T.U. 2015)
(ii) Find the Newton’s divided difference interpolation polynomial for:

x: 0.5 1.5 3.0 5.0 6.5 8.0
f(x): 1.625 5.875 31.0 131.0 282.125 521.0

10. Using Newton’s divided difference formula, calculate f(6) from the following data:
x: 1 2 7 8

f(x): 1 5 5 4
11. (i) Using Newton divided difference method, find the interpolating polynomial and hence compute

f (3) from the following table: [M.T.U. 2014, G.B.T.U. 2013]
x: 0 1 2 4 5 6

f(x): 1 14 15 5 6 19
(ii) Use Newton’s divided difference method to compute f(5.5) from the following data:

x: 0 1 4 5 6

f(x): 1 14 15 6 3 (G.B.T.U. 2010)
12. Given the data f(1) = 4, f(2) = 5, f(7) = 5, f(8) = 4. Find the the value of f(6) and also the value of x

for which f(x) is maximum or minimum. (M.T.U. 2013)
13. For the following table, find f (x) as a polynomial in x using Newton’s divided difference formula:

x: – 1 0 3 6 9
f (x): 3 – 6 39 822 1611

Hence compute f(1). (M.T.U. 2012; U.P.T.U. 2009)
14. Using the Newton’s divided difference formula, find a polynomial which takes the values 3, 12,

15, – 21 when x has the values 3, 2, 1, – 1 respectively. (U.P.T.U. 2008)
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15. Find Newton’s divided differences polynomial for the following data:
x: – 3 – 1 0 3 5

f (x): – 30 – 22 – 12 330 3458 (M.T.U. 2013)
16. Compute f ′(3) from the following table:

x: 1 2 4 8 10
f (x): 0 1 5 21 27 (G.B.T.U. 2011)

17. Find f″′(5) from the data given below:
x: 2 4 9 13 16 21 29
f (x): 57 1345 66340 402052 1118209 4287844 21242820

Answers
1. x3 – 2x + 7 2. (i) 810 (ii) 521
3. x3 – 21x2 + 119x – 27; 147, 168, 93 4. 208.82222, 3x is not a polynomial
5. x3 – 23x2 + 174x – 431, 3.625

6. (i) x3 + x2 – x + 2 (ii) – 112.3955078; − + − + +x x x
x

4 3 2

320 20
43
160

71
20

107
64

7. (x – 1)3 + 2(x – 1)2 + 4(x – 1) + 11 8.
x x x3 2

20
7

6
557

60
− +  – 11.5

9. (i) f(x) = – 0.025 x5 + 0.7265625 x4 – 6.3125 x3 + 9.796875 x2 + 79.3375 x – 177.5234375
(ii) x3 + x + 1 10. 6.2381

11. (i) x3 – 9x2 + 21x + 1, 10 (ii) 3.096875 12. 5.66, x = 4.5

13. f(x) = − + − − −257
270

1703
135

377
30

527
15

64 3 2x x x x , – 42.037

14. f(x) = x3 – 9x2 + 17x + 6 15. 5x4 + 9x3 – 27x2 – 21x – 12
16. 1.97916 17. 1626.
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TEST YOUR KNOWLEDGE

1. What is meant by convergence of iterative method? (M.T.U. 2012)

2. Isolate the roots of the equation x3 – 4x + 1 = 0. (M.T.U. 2012)

3. Derive Newton-Raphson formula to find approximate root of the equation f(x) = 0.

(M.T.U. 2013)

4. What is the order of convergence of Newton-Raphson method?

5. Find the missing values in the following table:

x: 0 5 10 15 20 25
y: 6 10 — 17 — 31

6. Prove that:

(i) (Δ + 1) (1 – ∇) ≡ 1 (ii) δE1/2 ≡ Δ

(iii)
1
2 4 2

2 1 2

+
F
HG

I
KJ

+δ δ
/

 = E1/2 (iv)
Δ

Δ∇
− ∇

 = ∇ + Δ.

7. Construct the forward difference table for f(x) = x3
 – 2x2

 + 4x + 5 for x = 1, 3, 5, 7. (M.T.U. 2012)

8. Define central difference operator, shift operator and the average operator. (G.B.T.U. 2012)

9. Verify that ∇E ≡ Δ. (M.T.U. 2012)

10. Prove that: ex = 
Δ

Δ

2

2E
EF

HG
I
KJ e

e

e
x

x

x. (M.T.U. 2013)

11. Show that: hD ≡ sinh–1 (μδ). (M.T.U. 2013)

12. Find the value of Δ2(abcx). (M.T.U. 2013)

13. Show that E ≡ 1 + Δ and Δ = ∇ (1 – ∇)–1. [M.T.U. (MCA) 2012]

14. Show that the Regula-Falsi method has linear rate of convergence.

15. Define the order of convergence of an iterative method.

16. What do you mean by the rate of convergence of an iterative method? (M.T.U. 2014)

17. Show that δ = E1/2 – E–1/2. (M.T.U. 2014)

18. Define rate of convergence. (M.T.U. 2014)

Answers
2. 0.2541, 1.860, – 2.1147 4. 2 5. 13.25, 22.5.

12. a(bch – 1)2 bcx
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UNIT 5
Numerical Techniques-II

5.1 SOLUTION OF SYSTEM OF SIMULTANEOUS LINEAR EQUATIONS

The systems of simultaneous linear equations arise, both directly in modelling physical
situations and indirectly in the numerical solution of other mathematical models. Problems
such as determining the potential in certain electrical networks, stresses in a building frame,
flow rates in a hydraulic system etc., are all reduced to solving a set of algebraic equations
simultaneously.

Linear algebraic systems are also involved in the optimization theory, least squares
fitting of data, numerical solution of boundary value problems for ordinary and partial
differential equations, statistical inference etc.

Consider a non-homogeneous system of n simultaneous linear algebraic equations in n
unknowns as

a11x1 + a12x2 + a13x3 + ... + a1nxn = b1
a21x1 + a22x2 + a23x3 + ... + a2nxn = b2
a31x1 + a32x2 + a33x3 + ... + a3nxn = b3 ...(1)

#  # #  #
an1x1 + an2x2 + an3x3 + ... + annxn = bn

Using matrix notation, the above system (1) can be written as
AX = B ...(2)

where, A = 

a a a a
a a a a
a a a a

a a a a

n

n

n

n n n nn

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

...

...

...
# # # # #

…

L

N

MMMMM

O

Q

PPPPP
, X = 

x
x
x

xn

1

2

3
#

L

N

MMMMM

O

Q

PPPPP
and B = 

b
b
b

bn

1

2

3
#

L

N

MMMMM

O

Q

PPPPP
By finding a solution of the system, we mean to obtain the values of n unknowns x1, x2,

x3, ..., xn such that they satisfy the given equations. If B = O, then the system is called
homogeneous.

The methods of solution of linear algebraic eqns. (1) may be classified into two types:
(i) Direct methods. These methods yield the exact solution after a finite number of steps in
absence of round-off errors. In these methods, the amount of computation involved can be
specified in advance. They are independent of the desired accuracy.
(ii) Iterative methods. These methods give a sequence of approximations which
converges when the number of steps tend to infinity.

In some cases, both the direct and iterative methods are combined. First, we may use a
direct method and then the solution may be improved by using iterative methods.

Here, we will study a direct and then an iterative method to solve the system (1).
470
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5.2 DIRECT METHODS

Consider a system of linear equations
 AX = B ...(1)

where A is coefficient matrix, X is column matrix of unknowns and B is column matrix of
constants. The necessary and sufficient condition for the system (1) to be consistent is

ρ(A) = ρ(A : B)
where ρ(A) denotes the rank of A and ρ(A : B) denotes the rank of augmented matrix (A : B).

Further if ρ(A) = ρ(A : B) = number of unknowns, the system (1) will have unique solution
and if ρ(A) = ρ(A : B) < number of unknowns, the system (1) will have infinite no. of solutions.

Again, the system (1) of equations can also be solved by using the inverse of matrix.
If A is non singular square matrix then premultiplying (1) by A–1, we get

  A–1 (AX) = A–1B
⇒  X = A–1B

The inverse of A can be obtained by either A–1 = 
adj . A
|A|

 or by using elementary row

operations or by using Cayley-Hamilton theorem.
Also, Cramer’s rule can be used to solve (1). But this method is satisfactory only for a

small number of simultaneous equations. Although this method involves simple calculation
yet large amount of computation is required to evaluate large order determinants. For an
n × n system, the method involves evaluation of (n + 1) determinants each of nth order. Each
determinant involves large number of multiplications. The addition or subtraction time on
computers is usually small compared to the time taken for multiplications or divisions time.
The method which requires the least multiplication time is the one which is preferred. In
addition to this, there are no simple methods to evaluate large order determinants. For example,
to evaluate 10 × 10 determinants, we will have to carry out 10 times evaluation of determinants,
each one of which require the evaluation of 9 × 9 determinants etc. and they naturally need
large amount of computation. In view of above, the Cramer’s rule is impractical for large
systems of equations.

Similarly, the computation of inverse of a matrix is the main problem on computers and
it becomes tougher for large system. Hence the method of finding unknowns by X = A–1B is
also not practical for large systems.

To avoid these unnecessary computations, some simpler and less time consuming
procedures were developed and suggested.

5.3 LU DECOMPOSITION METHOD

This method is also known as the Triangularization method or method of factorization.
In this method, the coefficient matrix A of the system of equations  AX = B  is decomposed

into the product of a lower triangular matrix L and an upper triangular matrix U so that
 A = LU ...(1)

where L = 

l
l l
l l l

l l l ln n n mn

11

21 22

31 32 33

1 2 3

0 0 0
0 0

0

...

...

...

...
# # # # #

L

N

MMMMM

O

Q

PPPPP
and U = 

u u u u
u u u

u u

u

n

n

n

nn

11 12 13 1

22 23 2

33 3

0
0 0

0 0 0

...

...

...

...
# # # # #

L

N

MMMMMM

O

Q

PPPPPP
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Using the matrix multiplication and comparing corresponding elements in (1), we obtain
li1 u1j + li2 u2j + ... + lin unj = aij, 1 ≤ j ≤ n

where    lij = 0, j > i and uij = 0, i > j
To produce a unique solution, it is convenient to choose either uii = 1 or lii = 1 ; 1 ≤ i ≤ n.
(i) When we choose lii = 1, the method is called the Doolittle’s method.

(ii) When we choose uii = 1, the method is called the Crout’s method.
The given system of equations is

 AX = B ...(2)
⇒ LUX = B ...(3)|Using (1)
Let UX = Y then eqn. (3) becomes

LY = B ...(4)
The unknowns y1, y2, y3, ..., yn in (4) are determined by forward substitution and the

unknowns x1, x2, x3, ..., xn in UX = Y are obtained by back substitution.
Note 1. The method fails if any of the diagonal elements lii or uii is zero.

2. LU decomposition is guaranteed when the matrix A is positive definite.

EXAMPLES

Example 1. Solve, by Crout’s method, the following system of equations:
 x + y + z = 3

 2x – y + 3z = 16
 3x + y – z = – 3. [G.B.T.U. (M. Tech.) 2010]

Sol. We choose uii = 1 and write
A = LU

 
1 1 1
2 1 3
3 1 1

0 0
0

1
0 1
0 0 1

11

21 22

31 32 33

12 13

23−
−

L

N
MM

O

Q
PP =
L

N
MM

O

Q
PP
L

N
MM

O

Q
PP

l
l l
l l l

u u
u

= 

l l u l u
l l u l l u l u
l l u l l u l u l

11 11 12 11 13

21 21 12 22 21 13 22 23

31 31 12 32 31 13 32 23 33

+ +
+ + +

L

N
MM

O

Q
PP

Equating, we get
 l11 = 1,  l21 = 2, l31 = 3

l11 u12 = 1 ⇒ u12 = 1
l11 u13 = 1 ⇒ u13 = 1

l21 u12 + l22 = – 1 ⇒  l22 = – 3
 l31 u12 + l32 = 1 ⇒  l32 = – 2

 l31 u13 + l22 u23 = 3 ⇒ u23 = – 
1
3

l31 u13 + l32 u23 + l33 = – 1 ⇒  l33 = – 
14
3
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Thus, we get

 A = LU = 
1 0 0
2 3 0

3 2
14
3

1 1 1

0 1
1
3

0 0 1

−

− −

L

N

MMMMM

O

Q

PPPPP
−

L

N
MMM

O

Q
PPP

The given system is
AX = B

⇒  LUX = B ...(1)
Let UX = Y so that (1) becomes

LY = B

1 0 0
2 3 0

3 2
14
3

3
16

3

1

2

3

−

− −

L

N

MMMMM

O

Q

PPPPP

L

N
MM
O

Q
PP = −

L
N
MM
O
Q
PP

y
y
y

which gives
y1 = 3

 2y1 – 3y2 = 16

 3y1 – 2y2 – 
14
3

 y3 = – 3

⇒ y1 = 3, y2 = – 
10
3

, y3 = 4 | By forward substitution

Now,  UX = Y
1 1 1
0 1 1 3
0 0 1

3
10 3

4
−

L
N
MM

O
Q
PP
L
N
MM
O
Q
PP = −
L
N
MM

O
Q
PP/ /

x
y
z

which gives,  x + y + z = 3

 y – 
1
3

10
3

z = −

 z = 4
By back substitution

x = 1, y = – 2, z = 4.
Example 2. Solve the following system of equations by the LU factorization method:

2x + 3y + z = 9
x + 2y + 3z = 6
3x + y + 2z = 8.

Sol. We choose lii = 1 and write

2 3 1
1 2 3
3 1 2

1 0 0
1 0

1
0
0 0

21

31 32

11 12 13

22 23

33

L
N
MM

O
Q
PP =
L

N
MM

O

Q
PP
L

N
MM

O

Q
PPl

l l

u u u
u u

u

  = 

u u u
l u l u u l u u
l u l u l u l u l u u

11 12 13

21 11 21 12 22 21 13 23

31 11 31 12 32 22 31 13 32 23 33

+ +
+ + +

L

N
MMM

O

Q
PPP
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Equating, we get
   u11 = 2, u12 = 3, u13 = 1

  l21 u11 = 1 ⇒  l21 = 1/2
  l31 u11 = 3 ⇒  l31 = 3/2

  l21 u12 + u22 = 2 ⇒ u22 =  1/2
  l21 u13 + u23 = 3 ⇒ u23 = 5/2

 l31 u12 + l32 u22 = 1 ⇒  l32 = – 7
 l31 u13 + l32 u23 + u33 = 2 ⇒ u33 = 18

Thus, we get

  A = LU = 
1 0 0

1 2 1 0
3 2 7 1

/
/ −

L
N
MM

O
Q
PP  

2 3 1
0 1 2 5 2
0 0 18

/ /
L
N
MM

O
Q
PP

The given system is
 AX = B

⇒     LUX = B ...(1)
Let UX = Y so that (1) becomes

 LY = B

1 0 0
1 2 1 0
3 2 7 1

/
/ −

L
N
MM

O
Q
PP  

y
y
y

1

2

3

9
6
8

L

N
MM
O

Q
PP =
L
N
MM
O
Q
PP

which gives
 y1 = 9

1
2

 y1 + y2 = 6

 
3
2

 y1 – 7 y2 + y3 = 8

⇒   y1 = 9, y2 = 3/2, y3 = 5 | By forward substitution
Now,  UX = Y

    

2 3 1
0 1 2 5 2
0 0 18

9
3 2
5

/ / /
L
N
MM

O
Q
PP
L
N
MM
O
Q
PP =
L
N
MM
O
Q
PP

x
y
z

which gives,
   2x + 3y + z = 9

 
1
2

y + 
5
2

 z = 
3
2

   18 z = 5
By back substitution

⇒  x = 
35
18

, y = 
29
18

, z = 
5
18

Note. We may also choose uii = 1 to get the solution.
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Example 3. Show that the LU decomposition method fails to solve the system of equations
   x1 + x2 – x3 = 2

 2x1 + 2x2 + 5x3 = –3
 3x1 + 2x2 – 3x3 = 6

whose exact solution is (1, 0, – 1).
Sol. Case I. If we write (taking lii = 1)

 
1 1 1
2 2 5
3 2 3

1 0 0
1 0

1
0
0 0

21

31 32

11 12 13

22 23

33

−

−

L

N
MM

O

Q
PP =
L

N
MM

O

Q
PP
L

N
MM

O

Q
PPl

l l

u u u
u u

u

We obtain,
u11 = 1, u12 = 1, u13 = –1

l21 u11 = 2 ⇒  l21 = 2
l21 u12 + u22 = 2 ⇒ u22 = 0

Hence LU decomposition method fails as the pivot u22 = 0.
Case II. If we write (taking uii = 1)

 

1 1 1
2 2 5
3 2 3

0 0
0

1
0 1
0 0 1

11

21 22

31 32 33

12 13

23

−

−

L

N
MMM

O

Q
PPP

=
L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP

l
l l
l l l

u u
u

We obtain,
l11 = 1, l21 = 2, l31 = 3

l11 u12 = 1 ⇒ u12 = 1
l11 u13 = –1 ⇒ u13 = –1

   l21 u12 + l22 = 2 ⇒  l22 = 0
Hence LU decomposition method fails as again the pivot l22 = 0.

ASSIGNMENT

1. Solve the following system(s) of linear equations by Crout’s method.
(i) x1 + x2 + x3 = 1 (ii) 10x + y + z = 12

4x1 + 3x2 – x3 = 6 2x + 10y + z = 13
 3x1 + 5x2 + 3x3 = 4 2x + 2y + 10z = 14

(iii) 3x – y + 2z = 12 (iv) x1 + x2 + x3 = 1
x + 2y + 3z = 11 3x1 + x2 – 3x3 = 5
 2x – 2y – z = 2 x1 – 2x2 – 5x3 = 10 (M.T.U. 2013)
[M.T.U. 2012, G.B.T.U. 2011, 2013]

(v)

2 1 4 1
4 3 5 2
1 1 1 1
1 3 3 2

4
10
2
1

1

2

3

4

−
− −

− −
−

L

N

MMM

O

Q

PPP

L

N

MMM

O

Q

PPP
= −

−

L

N

MMM

O

Q

PPP

x
x
x
x

. (U.P.T.U. 2007)
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2. Solve the following system of linear equations by LU decomposition method.

(i) x1 + 2x2 + 3x3 = 14

2x1 + 5x2 + 2x3 = 18
(ii)

(U.P.T.U. 2009)
3x1 + x2 + 5x3 = 20

(iii)  5x – 2y + z = 4
 7x + y – 5z = 8

 3x + 7y + 4z = 10. (G.B.T.U. 2012)
3. Solve the following system of equations by triangularization method.

(i)  2x – 3y + 10z = 3 (ii) x1 + 2x2 – x3 = 3
– x + 4y + 2z = 20 x1 – x2 + x3 = – 1
 5x + 2y + z = – 12 2x1 – 2x2 + 3x3 = 2

(iii)  x1 + x2 – x3 = 2
2x1 + 3x2 + 5x3 = – 3
3x1 + 2x2 – 3x3 = 6.

4. Obtain the LU decomposition of the matrix

2 6 10
1 5 1
1 15 5

−

− −

L

N
MMM

O

Q
PPP

so that for 1 ≤ i ≤ 3,
(i) uii = 2 (ii) lii = 2.

5. Decompose A = 
4 1 1
1 4 2
3 2 4

−
−

L

N
MM

O

Q
PP  in the form LU where L  is lower triangular matrix and U is the

upper triangular matrix and hence solve the system of equations:
4x1 + x2 + x3 = 4

x1 + 4x2 – 2x3 = 4
3x1 + 2x2 – 4x3 = 6 (U.P.T.U. 2014)

Answers
1. (i) x1 = 1, x2 = 0.5, x3 = – 0.5 (ii) x = 1, y = 1, z = 1

(iii) x = 3, y = 1, z = 2 (iv) x1 = 6, x2 = – 7, x3 = 2

(v) x1 = 1, x2 = – 1, x3 = – 1, x4 = – 1

2. (i) x1 = 1, x2 = 2, x3 = 3 (ii) x1 = 5, x2 = 6, x3 = – 10, x4 = 8

(iii) x = 1.11926, y = 0.8685, z = 0.14067

3. (i) x = – 4, y = 3, z = 2 (ii) x1 = – 1, x2 = 4, x3 = 4

(iii) x1 = 1, x2 = 0, x3 = – 1

4. (i) L = 
1 0 0

1 2 4 0
1 2 6 3
/
/−

L
N
MM

O
Q
PP , U = 

2 6 10
0 2 1
0 0 2

−
−

L

N
MMM

O

Q
PPP

(ii) L = 

2 0 0
1 2 0
1 3 2−

L

N
MMM

O

Q
PPP
 , U = 

1 3 5
0 4 2
0 0 3

−
−

L

N
MMM

O

Q
PPP

5. x1 = 1, x2 = 0.5, x3 = – 0.5

2 1 1 2
4 0 2 1
3 2 2 0
1 3 2 1

10
8
7
5

1

2

3

4

−

−

L

N

MMM

O

Q

PPP

L

N

MMM

O

Q

PPP
=

−

−

L

N

MMM

O

Q

PPP

x
x
x
x
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5.4 CHOLESKY METHOD

This method is also called square-root method. Consider a system of equations

AX = B ...(1)

If the coefficient matrix A is symmetric and positive definite then A can be decomposed
as

    A = LLT ...(2)

where L is a lower triangular matrix.

A may also be decomposed as A = UUT where U is an upper triangular matrix.

From (1) and (2),

LLTX = B

⇒ LY = B ...(3)

where LTX = Y ...(4)

The values yi, 1 ≤ i ≤ n can be obtained by forward substitution and the solution xi,
1 ≤ i ≤ n are obtained by back substitution.

Example. Solve the following system of equations

  
1 2 3
2 8 22
3 22 82

x
x
x

5
6

10

1

2

3

L

N
MM

O

Q
PP
L

N
MM
O

Q
PP = −

L

N
MM
O

Q
PP

using Cholesky method.
Sol. Let     A = LLT |∵ A is symmetric

1 2 3
2 8 22
3 22 82

0 0
0 0

0 0

11

21 22

31 32 33

11 21 31

22 32

33

L
N
MM

O
Q
PP =
L

N
MM

O

Q
PP
L

N
MM

O

Q
PP

l
l l
l l l

l l l
l l

l

= 
l l l l l
l l l l l l l l
l l l l l l l l l

11
2

11 21 11 31

21 11 21
2

22
2

21 31 22 32

31 11 31 21 32 22 31
2

32
2

33
2

+ +
+ + +

L

N
MMM

O

Q
PPP

Equating the corresponding elements, we get
 l11

2 = 1 ⇒ l11 = 1
 l11 l21 = 2 ⇒ l21 = 2

 l11 l31 = 3 ⇒ l31 = 3
  l21

2 + l22
2 = 8 ⇒ l22 = 2

l31 l21 + l32 l22 = 22 ⇒ l32 = 8
 l31

2 + l32
2 + l33

2 = 82 ⇒ l33 = 3

Hence,     L = 

1 0 0
2 2 0
3 8 3

L

N
MMM

O

Q
PPP
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The given system can be written as LLTX = B
or  LY = B where LTX = Y

From LY = B, we get

     

1 0 0
2 2 0
3 8 3

5
6

10

1

2

3

L
N
MM

O
Q
PP
L

N
MM
O

Q
PP = −

L
N
MM
O
Q
PP

y
y
y

⇒ y1 = 5, y2 = – 2, y3 = – 3 |By forward substitution
From LTX = Y, we get

  

1 2 3
0 2 8
0 0 3

5
2
3

1

2

3

L
N
MM

O
Q
PP
L

N
MM
O

Q
PP = −

−

L
N
MM
O
Q
PP

x
x
x

⇒ x1 = 2, x2 = 3, x3 = – 1. | By backward substitution

ASSIGNMENT

1. Solve the system of equations
4x1 – x2 = 1

– x1 + 4x2 – x3 = 0
  – x2 + 4x3 = 0

by the Cholesky method.

Answer

1. x1 = 
15
56

, x2 = 
1

14
, x3 = 

1
56

.

5.5 ITERATIVE METHODS

The iterative or indirect methods start from an approximation to the true solution and if
convergent, derive a sequence of closer approximations. The cycle of computations is repeated
till the desired accuracy is attained. In these methods, the amount of computation depends on
the accuracy required.

Generally, direct methods are preferred for the solution of a linear system of equations
but in case of matrices having large number of zero elements, iterative methods are preferred
since they preserve those elements.

The direct method discussed so far involve many subtractions. When the terms involved
in subtractions are nearly equal, their difference is nearly zero and hence causes inaccuracies.
The inaccuracies due to this inherent weakness of the direct methods cannot be completely
avoided whereas the iterative methods are free from such inaccuracies.

The disadvantage of the iterative methods is that they can not be applied to all systems
of equations. The sufficient condition for their use is that the system of equations should be
diagonally dominant. In other words, after rearranging the equations, if necessary, the larger
coefficients must be along the leading diagonal of the coefficient matrix. Successful use of
iteration process requires that the moduli of diagonal coefficients of given systems should be
large in comparison with the moduli of nondiagonal coefficients.

Among the iterative methods, we will first discuss Jacobi’s method and then Gauss-
Seidel method. It is known that for a given system of equations, the Gauss-Seidel method
converges more rapidly than the Jacobi’s method.
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5.6 JACOBI’S ITERATIVE METHOD OR METHOD OF SIMULTANEOUS
DISPLACEMENTS

Consider a system of n simultaneous linear equations in n unknowns as
a11x1 + a12x2 + a13x3 + ... + a1nxn = b1

a21x1 + a22x2 + a23x3 + ... + a2nxn = b2  

U
V
||

W
||

...(1)

 # # # # #
an1x1 + an2x2 + an3x3 + ... + ann xn = bn

where aii is the largest coefficient in the ith equation (1 ≤ i ≤ n).
System (1) of equations can be rewritten as

x1 = 
b
a

1

11
 – 

a
a

12

11
 x2 – 

a
a

13

11

 x3 – ... – 
a
a

n1

11

 xn

x2 = 
b
a

2

22
 – 

a
a

21

22
 x1 – a

a
23

22

 x3 – ... – 
a
a

n2

22

 xn ...(2)

#  #  #  #

xn = 
b
a

n

nn

 – 
a
a

n

nn

1  x1 – a
a

n

nn

2  x2 – ... – 
a

a
n n

nn

( )− 1  xn–1

Let the first approximations to the unknowns x1, x2, ..., xn
 be x1

(1), x2
(1), ..., xn

(1). Put the
first approximation in RHS of (2) to get the results as x1

(2), x2
(2), x3

(2), ..., xn
(2), a system of

second approximations.
This entire process is repeated until the values of x1, x2, ..., xn are obtained to desired

accuracy i.e., until successive values of each of the unknowns are sufficiently close.
Jacobi’s method, if suitable to a system of equations, converges for any value of initial

approximations. Generally they are taken as x1
(0) = 0, x2

(0) = 0, x3
(0) = 0, ... and so on in absence

of any better estimates.
Example. Solve the following system of equations by Jacobi’s method:

 8x – 3y + 2z = 20
  6x + 3y + 12z = 35
   4x + 11y – z = 33.

Sol. The coefficient matrix of the given system is not diagonally dominant. Hence we
rearrange the equations such that the elements in the coefficient matrix are diagonally
dominant.

    8x – 3y + 2z = 20

   4x + 11y – z = 33   

U
V|
W|

...(1)

 6x + 3y + 12z = 35
Now, we write the equations in the form

 x = 
1
8

 (20 + 3y – 2z)

 y = 
1
11

 (33 – 4x + z)   

U
V
||

W
||

...(2)

   z = 
1

12
 (35 – 6x – 3y)

U

V
|||

W
|||
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We start from an initial approximation x(0) = 0, y(0) = 0 and z(0) = 0. Substituting them in
(2), we get

First approximation

 x(1) = 
1
8

 [20 + 3(0) – 2(0)] = 2.5

 y(1) = 
1
11

 [33 – 4(0) + (0)] = 3

 z(1) = 
1

12
 [35 – 6(0) – 3(0)] = 2.9166667

Second approximation

 x(2) = 
1
8

 [20 + 3y(1) – 2z(1)] = 2.895833

 y(2) = 
1
11

 [33 – 4x(1) + z(1)] = 2.3560606

 z(2) = 
1

12
 [35 – 6x(1) – 3y(1)] = 0.9166666

Third approximation

 x(3) = 
1
8

 [20 + 3y(2) – 2z(2)] = 3.1543561

 y(3) = 
1
11

 [33 – 4x(2) + z(2)] = 2.030303

 z(3) = 
1

12
 [35 – 6x(2) – 3y(2)] = 0.8797348

Proceeding in this way, after 12th approximation, we find that the two successive
approximations are same upto four decimal places. Hence at this stage, we get

  x = 3.0167, y = 1.9858 and z = 0.9118.

ASSIGNMENT

1. Solve the following system of equations by Jacobi iteration method:
(i) 3x + 4y + 15z = 54.8 (ii) 54x + y + z = 110

  x + 12y + 3z = 39.66 2x + 15y + 6z = 72
  10x + y – 2z = 7.74 – x + 6y + 27z = 85

(iii) 10x1 + 2x2 + x3 = 9 (iv) 30x – 2y + 3z = 75
x1 + 10x2 – x3 = – 22   x + 17y – 2z = 48

– 2x1 + 3x2 + 10x3 = 22   x + y + 9z = 15
(v)  10x1 – x2 = 17

– x1 + 10x2 – x3 = 24
– x1 + 10x3 – x4 = 32

– x3 + 10x4 = 46
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2. Solve the following system of equations using Jacobi’s method:
 5x – y + z = 10

2x + 4y = 12
x + y + 5z = – 1

Start with the solution (2, 3, 0).

Answers
1. (i) x = 1.074, y = 2.524, z = 2.765 (ii) x = 1.926, y = 3.573, z = 2.425

(iii) x1 = 1, x2 = – 2, x3 = 3 (iv) x = 2.580, y = 2.798, z = 1.069

(v) x1 = 2, x2 = 3, x3 = 4, x4 = 5 2. x = 2.555, y = 1.722, z = – 1.05

5.7 GAUSS-SEIDEL ITERATIVE METHOD OR METHOD OF SUCCESSIVE
DISPLACEMENTS

Consider a system of n simultaneous linear eqns. in n unknowns as
 a11x1 + a12x2 + a13x3 + ... + a1nxn = b1

 a21x1 + a22x2 + a23x3 + ... + a2nxn = b2  

U
V
||

W
||

...(1)

 # #  #   # # #
an1x1 + an2x2  + an3x3 + ...... + annxn = bn

where aii is the largest coefficient in the ith equation (1 ≤ i ≤ n).
We solve each equation of the system (1) for the unknown with the largest coefficient

interms of the remaining unknown. System (1) can be written as

x1 = 
b
a

1

11
 – 

a
a

12

11
 x2 – a

a
13

11

 x3 – ... – 
a
a

n1

11

 xn

x2 = 
b
a

2

22
 – 

a
a

21

22
 x1 – 

a
a

23

22

 x3 – ... – 
a
a

n2

22
 xn     

U

V

|||||

W

|||||

 #  # # # # # ...(2)

xn = 
b
a

n

nn
 – 

a
a

n

nn

1  x1 – 
a
a

n

nn

2  x2 – ... – 
a

a
n n

nn

( )−1  xn–1

In the first equation of (2), we substitute the first approximation x1
(1), x2

(1), x3
(1), ..., xn

(1)

into RHS. and denote the result as x1
(2).

In the second equation, we substitute x1
(2), x2

(1), x3
(1), ..., xn

(1) and denote the result as x2
(2).

In the third equation, we substitute x1
(2), x2

(2), x3
(1), ..., xn

(1) and denote the result as x3
(2).

In this manner, we complete the first stage of iteration and the entire process is recpeated
till the values of x1, x2, x3, ..., xn are obtained to the accuracy required.

This method uses an improved component as soon as it is available therefore it is also
called the method of successive displacements.

For any choice of first approximation xj
(1) (1 ≤ j ≤ n), Gauss-Seidel method converges if

every equation of (2) satisfies the condition 
j j i

n
ij

ii

a

a
= ≠
∑
1,

 ≤ 1, (1 ≤ i ≤ n), where ‘<’ sign should be

valid in case of at least one equation.
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EXAMPLES

Example 1. Use Gauss-Seidel iterative method to solve the following system of simulta-
neous equations:

 9x + 4y + z = –17
x – 2y – 6z = 14

x + 6y = 4
Perform four iterations. (U.P.T.U. 2014)
Sol. The given system is not diagonally dominant. Hence rearranging the equations as

 9x + 4y + z = –17
x + 6y = 4

x – 2y – 6z = 14
Now, Gauss-Seidel’s iterative method can be applied.
From the above equations, we get

x = 
1
9

 (– 17 – 4y – z) ...(1)

y = 
1
6

 (4 – x) ...(2)

z = 
1
6

 (x – 2y – 14) ...(3)

First approximation
Starting with y = 0 = z, we obtain

 x(1) = – 
17
9

 = – 1.8888

Now, putting x = – 1.888 and z = 0 in eqn. (2), we get
 y(1) = 0.9815

Again putting x = – 1.888 and y = 0.9815 in eqn. (3), we get
 z(1) = – 2.9753

Second approximation

 x(2) = 
1
9

 {–17 – 4y(1) – z(1)} = –1.9945

 y(2) = 
1
6

 {4 – x(2)} = 0.9991

 z(2) = 
1
6

 {x(2) – 2y(2) – 14} = – 2.9988

Third approximation
 x(3) = –1.9997
 y(3) = 0.9999
 z(3) = – 2.9999

Fourth approximation
 x(4) = – 1.9999 ≈ –2
 y(4) = 0.9999 ≈ 1
 z(4) = – 2.9999 ≈ –3
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Hence after four iterations, we obtain
  x = – 2, y = 1, z = – 3.

Example 2. Solve the following system of equations using Gauss-Seidel iterative method:
2x + 10y + z = 51
10x + y + 2z = 44
x + 2y + 10z = 61 [U.P.T.U. (MCA) 2009]

Sol. The given system is not diagonally dominant. Hence rearranging the equations as
10x + y + 2z = 44
2x + 10y + z = 51
x + 2y + 10z = 61

Now, Gauss-Seidel’s iterative method can be applied.
From the above equations, we get

x = 
1

10
2(44 )− −y z ...(1)

y = 
1

10
 (51 – 2x – z) ...(2)

z = 
1

10
 (61 – x – 2y) ...(3)

First approximation.
Starting with y = 0 = z, we obtain from (1),

 x(1) = 4.4
Now, putting x = 4.4 and z = 0 in equation (2), we get

 y(1) = 4.22
Again, putting x = 4.4 and y = 4.22 in equation (3), we get

 z(1) = 4.816
Second approximation.

x(2) = 3.0148
y(2) = 4.01544
z(2) = 4.995432

Third approximation
 x(3) = 2.9993696
 y(3) = 4.00058288
z(3) = 4.999946464

Fourth approximation.
x(4) = 2.999952419 ≈ 3
y(4) = 4.00001487 ≈ 4
z(4) = 5.000001784 ≈ 5

Hence after four iterations, we obtain
 x = 3, y = 4 and z = 5
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Example 3. Solve the following system of equations by Gauss-Seidel iterative method:
20x + y – 2z = 17
3x + 20y – z = – 18

   2x – 3y + 20z = 25 [M.T.U. 2013; U.P.T.U. 2009]
Sol. The given system is diagonally dominant hence, from the given equations, we obtain

  x = 
1

20
17 2( )− +y z ...(1)

  y = 
1

20
 (–18 – 3x + z) ...(2)

z = 
1

20
 (25 – 2x + 3y) ...(3)

First Approximation
Starting with y = 0 = z, we obtain from (1),

x(1) = 0.85
Now, putting x = 0.85, z = 0 in equation (2), we get

y(1) = –1.0275
Again, putting x = 0.85 and y = – 1.0275 in eqn. (3), we get

z(1) = 1.010875
Second Approximation

x(2) = 1.0024625
y(2) = – 0.999825625
z(2) = 0.999779906

Third Approximation
x(3) = 0.999969271 ≈ 1
y(3) = –1.000006395 ≈ –1
z(3) = 1.000002114 ≈ 1

Hence after three approximations, we obtain,
x = 1, y = – 1, z = 1

ASSIGNMENT

1. Test if the following system of equations is diagonally dominant and hence solve this system
using Gauss-Seidel method:

  2x1 + x2 + 4x3 = 7
  3x1 + x2 + 2x3 = 6

 – x1 + 4x2 + 2x3 = 5 (G.B.T.U. 2011)
2. Define diagonally dominant system of equations. Solve the following system of equations using

Gauss-Seidel method:
  10x + 15y + 3z = 14
   – 30x + y + 5z = 17

   x + y + 4z = 3 (G.B.T.U. 2012)

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com


NUMERICAL TECHNIQUES–II 485

3. (i) Obtain the solution of the following system of equations using Gauss-Seidel iterative method:
  2x – 7y – 10z = – 17

5x + y + 3z = 14
x + 10y + 9z = 7

Perform three iterations. [G.B.T.U. (MCA) 2011]
(ii) Solve the following system of linear equations using Gauss-Seidel method:

  10x +3y + 7z = 41
  3x + 20y + 17z = 101
  x + 19y + 23z = 201.

Perform three iterations. (U.P.T.U. 2015)
4. Solve by Gauss-Seidel iterative method:

(i)   10x + 2y + z = 9 (ii)   3x1 + 2x2 – x3 = 7
    2x + 20y – 2z = – 44 x1 – 3x2 + 2x3 = 4

 – 2x + 3y + 10z = 22 – x1 + x2 – 3x3  = – 1
(iii)  x + 0.01y – 0.02z = 3.3354 (iv) 10x1 – x2 + 2x3 = 4

 0.02x + y – 0.05z = 4.8241   x1 + 10x2 + x3 = 7
 0.03x – 0.01y + z = 7.341 2x1 + 3x2 + 20x3 = 13

(v)  6x1 – 3x2 + x3 = 11 (vi)  8x – 3y + 2z = 20
x1 – 7x2 + x3 = 10  6x + 3y + 12z = 35

 2x1 + x2 – 8x3 = – 15  4x + 11y – z = 33
(G.B.T.U. 2013, 2011) [G.B.T.U. (M. Tech.) 2010]

(vii) 27x + 6y – z = 85 (viii)  83x + 11y – 4z = 95
6x + 15y + 2z = 72  7x + 52y + 13z = 104

  x + y + 54z = 110 (U.P.T.U. 2015)  3x + 8y + 29z = 71 (M.T.U. 2014)
5. Describe a method for solving a system of linear equations. Solve the following system of linear

equations using Gauss-Seidel method:
23x1 + 13x2 + 3x3 = 29
5x1 + 23x2 + 7x3 = 37
11x1 + x2 + 23x3 = 43. (U.P.T.U. 2009)

6. Solve the following equations by Gauss-Seidel procedure:
 9x1 + 2x2 + 4x3 = 20
 x1 + 10x2 + 4x3 = 6
2x1 – 4x2 + 10x3 = – 15

The answer should be correct to 3 significant digits. [U.P.T.U. MCA (SUM) 2009]
7. Using Gauss-Seidel method, solve the following system of linear algebraic equations

   10x1 – 2x2 – x3 – x4 = 3
  – 2x1 + 10x2 – x3 – x4 = 15
– x1 – x2 + 10x3 – 2x4 = 27

 – x1 – x2 – 2x3 + 10x4 = – 9
correct up to four decimal places. Perform seven iterations.

Answers

1. x1 = 1, x2 = 1, x3 = 1 2. x = – 0.4328, y = 1.1055, z = 0.5818
3. (i) x = 1, y = – 3, z = 4 (ii) x = – 3.9429, y = – 6.4887, z = 14.2708
4. (i) x = 1, y = – 2, z = 3 (ii) x1 = 2.72, x2 = – 1.04,  x3 = – 0.92
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(iii) x = 3.429, y = 5.119, z = 7.289 (iv) x1 = 0.3567, x2 = 0.6120, x3 = 0.5225
(v) x1 = 1, x2 = – 1, x3 = 2 (vi) x = 3.016, y = 1.985, z = 0.9118

(vii) x = 2.425, y = 3.573, z = 1.925 (viii) x = 1.057, y = 1.367, z = 1.961.
5. x1 = 0.4765, x2 = 1.0189,  x3 = 1.5973 6. x1 = 2.74, x2 = 0.987, x3 =  – 1.65
7. x1 = 1, x2 = 2, x3 = 3, x4 = 0

5.8 INTRODUCTION  TO NUMERICAL DIFFERENTIATION AND INTEGRATION

Consider a function of a single variable y = f(x). If f(x) is defined as an expression, its deriva-
tive or integral may often be determined using the techniques of calculus.

However, when f(x) is a complicated function or when it is given in a tabular form, we
use numerical methods.

Here, we will discuss numerical methods for approximating the derivative(s) f (r)(x),

r ≥ 1 of a given function f(x) and for the evaluation of the integral 
a

b
f x dxz ( )  where a, b may be

finite or infinite.
The accuracy attainable by these methods would depend on the given function and the

order of the polynomial used. If the polynomial fitted is exact then the error would be
theoretically zero. In practice, however, rounding errors will  introduce errors in the calculated
values.

The error introduced in obtaining derivatives is in general much worse than that intro-
duced in determining integrals. It may be observed that any errors in approximating a function
are amplified while taking the derivative whereas they are smoothed out in integration.

Thus numerical differentiation should be avoided if an alternative exists.

5.9 NUMERICAL DIFFERENTIATION [M.T.U. 2012, U.P.T.U. 2008]

In the case of numerical data, the functional form of f(x) is not known in general. First we
have to find an appropriate form of f(x) and then obtain its derivatives. So “Numerical
differentiation” is concerned with the method of finding the successive derivatives of a function
at a given argument, using the given table of entries corresponding to a set of arguments,
equally or unequally spaced. Using the theory of interpolation, a suitable interpolating
polynomial can be chosen to represent the function to a good degree of approximation in the
given interval of the argument.

For the proper choice of interpolation formula, the criterion is same as in case of
interpolation problems. In case of equidistant values of x, if the derivative is to be found at a
point near the beginning or the end of the given set of values, we should use Newton’s forward
or backward difference formula accordingly. Also if the derivative is to be found at a point
near the middle of the given set of values, then we should use any one of the central difference
formulae. However, if the values of the function are not known at equidistant values of x, we
shall use Newton’s divided difference or Lagrange’s formula.

5.10 FORMULAE FOR DERIVATIVES

(1) Newton’s forward difference interpolation formula is

 y = y0 + u Δy0 + u u
y

u u u
y

( )
!

( )( )
!

...
− + − − +1

2
1 2
3

2
0

3
0Δ Δ ...(1)

where  u = 
x a

h
−

...(2)
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Differentiating eqn. (1) with respect to u, we get

 
dy
du

y
u

y
u u= + − + − +Δ Δ0

2
0

22 1
2

3 6 2
6

 Δ3y0 + ... ...(3)

Differentiating eqn. (2) with respect to x, we get

 
du
dx h

= 1
...(4)

We know that

  
dy
dx

dy
du

du
dx h

y
u

y
u u

y= = + −F
HG

I
KJ + − +F

HG
I
KJ +

L
N
MM

O
Q
PP. ...

1 2 1
2

3 6 2
60

2
0

2
3

0Δ Δ Δ ...(5)

Expression (5) provides the value of 
dy
dx

 at any x which is not tabulated.

Formula (5) becomes simple for tabulated values of x, in particular when x = a and u = 0
Putting u = 0 in (5), we get

 
dy
dx h

y y y y y
x a

F
HG
I
KJ = − + − + −L

NM
O
QP=

1 1
2

1
3

1
4

1
50

2
0

3
0

4
0

5
0Δ Δ Δ Δ Δ ... ...(6)

(M.T.U. 2013)
Differentiating eqn. (5) with respect to x, we get

 d y
dx

d
dx

dy
dx

2

2 = F
HG
I
KJ  = 

d
du

dy
dx

du
dx

F
HG
I
KJ

= 
1

1
6 18 11

12
12

0
3

0

2
4

0h
y u y

u u
y

h
Δ Δ Δ+ − + − +F

HG
I
KJ +

L
N
MM

O
Q
PP( ) ...

= 
1

1
6 18 11

122
2

0
3

0

2
4

0
h

y u y
u u

yΔ Δ Δ+ − + − +F
HG

I
KJ +

L
N
MM

O
Q
PP( ) ... ...(7)

Putting u = 0 in eqn. (7), we get

d y
dx h

y y y
x a

2

2 2
2

0
3

0
4

0
1 11

12

F
HG
I
KJ = − + −F

HG
I
KJ

=

Δ Δ Δ ... ...(8)

Similarly, we get

d y
dx h

y y
x a

3

3 3
3

0
4

0
1 3

2

F
HG
I
KJ = − +F

HG
I
KJ

=

Δ Δ ... ...(9)

and so on.
Formulae for computing higher derivatives may be obtained by successive differentiation.
Aliter: We know that

  E = ehD ⇒ 1 + Δ = ehD

∴   hD = log (1 + Δ) = Δ Δ Δ Δ− + − +
2 3 4

2 3 4
...

⇒   D = 
1 1

2
1
3

1
4

2 3 4

h
Δ Δ Δ Δ− + − +L
NM

O
QP... [U.P.T.U. (MCA) 2007]
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Similarly, D2 = 
1 1

2
1
3

1
4

1 11
12

5
62

2 3 4
2

2
2 3 4 5

h h
Δ Δ Δ Δ Δ Δ Δ Δ− + − +F
HG

I
KJ = − + − +F

HG
I
KJ... ...

and  D3 = 
1 3

23
3 4

h
Δ Δ− +F
HG

I
KJ...

(2) Newton’s backward difference interpolation formula is

 y = yn + u ∇yn + 
u u

y
u u u

n
( )

!
( )( )

!
+ ∇ + + +1

2
1 2
3

2  ∇3yn + ... ...(10)

where u = 
x x

h
n−

...(11)

Differentiating eqn. (10) with respect to u, we get

dy
du

y
u

y
u u

n n= ∇ + +F
HG

I
KJ ∇ + + +F

HG
I
KJ

2 1
2

3 6 2
6

2
2

 ∇3yn + ... ...(12)

Differentiating eqn. (11) with respect to x, we get
du
dx h

= 1
...(13)

Now,
dy
dx

dy
du

du
dx

= .

= 
1 2 1

2
3 6 2

6
2

2
3

h
y

u
y

u u
yn n n∇ + +F

HG
I
KJ ∇ + + +F

HG
I
KJ ∇ +

L
N
MM

O
Q
PP... ...(14)

Expression (14) provides us the value of 
dy
dx

 at any x which is not tabulated.

At x = xn, we have u = 0
∴ Putting u = 0 in eqn. (14), we get

 
dy
dx h

y y y y
x x

n n n n
n

F
HG
I
KJ = ∇ + ∇ + ∇ + ∇ +F

HG
I
KJ=

1 1
2

1
3

1
4

2 3 4 ... ...(15)

Differentiating eqn. (14) with respect to x, we get

   
d y
dx

d
du

dy
dx

du
dx

2

2 = F
HG
I
KJ

= 
1

1
6 18 11

122
2 3

2
4

h
y u y

u u
yn n n∇ + + ∇ + + +F

HG
I
KJ ∇ +

L
N
MM

O
Q
PP( ) ... ...(16)

Putting u = 0 in eqn. (16), we get

d y
dx h

y y y
x x

n n n

n

2

2 2
2 3 41 11

12

F
HG
I
KJ = ∇ + ∇ + ∇ +F

HG
I
KJ

=

... ...(17)

Similarly, we get

d y
dx h

y y
x x

n n

n

3

3 3
3 41 3

2

F
HG
I
KJ = ∇ + ∇ +F

HG
I
KJ

=

... ...(18)

and so on.
Formulae for computing higher derivatives may be obtained by successive differentiation.
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Aliter: We know that
   E–1 = 1 – ∇
    e–hD = 1 – ∇

∴   – hD = log (1 – ∇) = – ∇ + ∇ + ∇ + ∇ +F
HG

I
KJ

1
2

1
3

1
4

2 3 4 ...

⇒   D = 
1 1

2
1
3

1
4

2 3 4

h
∇ + ∇ + ∇ + ∇ +F
HG

I
KJ...

Also,   D2 = 
1 1

2
1
3

1 11
122

2 3
2

2
2 3 4

h h
∇ + ∇ + ∇ +F
HG

I
KJ = ∇ + ∇ + ∇ +F

HG
I
KJ... ...

Similarly, D3 = 
1 3

23
3

h
∇ + ∇ +F
HG

I
KJ

4 ...  and so on.

(3) Stirling’s central difference interpolation formula is

   y = y0 + 
u y y u

y
u u y y

1 2 2
1

3 2
0 1

2
2

1

2 2 3
1

3
2

! !
( )

!
Δ Δ

Δ
Δ Δ+F

HG
I
KJ + + − +F

HG
I
KJ

−
−

− −

+ 
u u

y
u u u y y2 2 2

4
2

2 2 2 2 5
2

5
31

4
1 2

5 2
( )

!
( )( )

!
− + − − +F

HG
I
KJ−

− −Δ
Δ Δ

 + ... ...(19)

where  u = 
x a

h
−

...(20)

Differentiating eqn. (19) with respect to u, we get

 
dy
du

y y
u y

u y y
=

+
+ + −F

HG
I
KJ

+F
HG

I
KJ

−
−

− −Δ Δ
Δ

Δ Δ0 1 2
1

2 3
1

3
2

2
3 1

6 2

+ 
4 2

4
5 15 4

5 2

3
4

2

4 2 5
2

5
3u u

y
u u y y−F

HG
I
KJ + − +F

HG
I
KJ

+F
HG

I
KJ−

− −

! !
Δ

Δ Δ
 + ... ...(21)

Differentiating eqn. (20) with respect to x, we get

 
du
dx h

= 1
...(22)

Now,  
dy
dx

dy
du

du
dx

= .

= 
1

2
3 1

6 2
0 1 2

1

2 3
1

3
2

h
y y

u y
u y yΔ Δ

Δ
Δ Δ+

+ + −F
HG

I
KJ

+F
HG

I
KJ

L
N
MM

−
−

− −

+ 
4 2

4
5 15 4

5 2

3
4

2

4 2 5
2

5
3u u

y
u u y y−F

HG
I
KJ + − +F

HG
I
KJ

+F
HG

I
KJ +
O
Q
PP−

− −

! !
...Δ

Δ Δ
...(23)

Expression (23) provides us the value of 
dy
dx

 at any x which is not tabulated.

Put x = a, we have u = 0
∴ Putting u = 0 in eqn. (23), we get

 
dy
dx h

y y y y

x a

F
HG
I
KJ =

+F
HG

I
KJ −

+F
HG

I
KJ

L
N
MM=

− − −1
2

1
6 2

0 1
3

1
3

2Δ Δ Δ Δ
 + 

1
30 2

5
2

5
3Δ Δy y− −+F

HG
I
KJ −
O
Q
PP...

...(24)
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Differentiating eqn. (23) with respect to x, we get

 
d y
dx

d
du

dy
dx

du
dx

2

2 = F
HG
I
KJ

= 
1

2
6 1

122
2

1

3
1

3
2

2

h
y u

y y uΔ
Δ Δ

−
− −+

+F
HG

I
KJ + −F
HG

I
KJ

L
N
MM  Δ4y–2

+ 
2 3

12 2

3 5
2

5
3u u y y−F

HG
I
KJ

+F
HG

I
KJ +
O
Q
PP

− −Δ Δ
... ...(25)

Putting u = 0 in eqn. (25), we get

d y
dx h

y y y
x a

2

2 2
2

1
4

2
6

3
1 1

12
1
90

F
HG
I
KJ = − + −F

HG
I
KJ

=
− − −Δ Δ Δ ... ...(26)

and so on.
Formulae for computing higher derivatives may be obtained by successive differentiation.

(4) Bessel’s central difference interpolation formula is

y = 
y y

u y
u u y y0 1

0

2
1

2
0

2
1
2

1
2 2

+F
HG

I
KJ + −FHG

I
KJ + − +F

HG
I
KJ

−Δ
Δ Δ( )

!  + 
u u u

y
( )

!

− −FHG
I
KJ

−

1
1
2

3
3

1Δ

+ + − − +F
HG

I
KJ

− −( ) ( )( )
!

u u u u y y1 1 2
4 2

4
2

4
1Δ Δ

 + 
( ) ( )( )

!

u u u u u
y

+ − − −FHG
I
KJ

−

1 1 2
1
2

5
5

2Δ

+ 
( )( ) ( )( )( )

!
u u u u u u y y+ + − − − +F

HG
I
KJ

− −2 1 1 2 3
6 2

6
3

6
2Δ Δ

 + ... ...(27)

where u = 
x a

h
−

...(28)

Differentiating eqn. (27) with respect to u, we get

 
dy
du

y
u y y

= + −F
HG

I
KJ

+F
HG

I
KJ

−Δ
Δ Δ

0

2
1

2
02 1

2 2!
 + 

3 3
1
2

3

2u u− +F
H
GG

I
K
JJ!   Δ3y–1

+ 
4 6 2 2

4 2
5 10 5 1

5

3 2 4
2

4
1

4 3u u u y y u u u− − +F
HG

I
KJ

+F
HG

I
KJ + − + −F
HG

I
KJ

− −

! !
Δ Δ

 Δ5y–2

+ 
6 15 20 45 8 12

6 2

5 4 3 2 6
3

6
2u u u u u y y− − + + −F

HG
I
KJ

+F
HG

I
KJ

− −

!
Δ Δ

 + ... ...(29)

Differentiating eqn. (28) with respect to x, we get

du
dx h

= 1

Now,  
dy
dx

dy
du

du
dx

= .
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= 
1 2 1

2 2

3 3
1
2

30

2
1

2
0

2

h
y

u y y u u
Δ

Δ Δ
+ −F
HG

I
KJ

+F
HG

I
KJ +

− +F
H
GG

I
K
JJ

L

N

MMMM
−

! !   Δ3y–1

+ 
4 6 2 2

4 2
5 10 5 1

5

3 2 4
2

4
1

4 3u u u y y u u u− − +F
HG

I
KJ

+F
HG

I
KJ + − + −F
HG

I
KJ

− −

! !
Δ Δ

 Δ5y–2

+ 6 15 20 45 8 12
6 2

5 4 3 2 6
3

6
2u u u u u y y− − + + −F

HG
I
KJ

+F
HG

I
KJ +
O
Q
PP

− −

!
...

Δ Δ  ...(30)

Expression (30) provides us the value of 
dy
dx

 at any x which is not tabulated.

Put x = a, we have u = 0
∴ Putting u = 0 in eqn. (30), we get

  
dy
dx h

y
y y

y
y y

x a

F
HG
I
KJ = −

+F
HG

I
KJ + +

+F
HG

I
KJ

L
N
MM=

−
−

− −1 1
2 2

1
12

1
12 20

2
1

2
0 3

1

4
2

4
1Δ

Δ Δ
Δ

Δ Δ

– 
1

120 60 2
5

2

6
3

6
2Δ

Δ Δ
y

y y
−

− −− 1 +F
HG

I
KJ +
O
Q
PP... ...(31)

Differentiating eqn. (30) with respect to x, we get

 d y
dx

d
dx

dy
dx

2

2 = F
HG
I
KJ  = 

d
du

dy
dx

du
dx

F
HG
I
KJ

 = 
1

2
2 1

2
6 6 1

122

2
1

2
0 3

1

2

h

y y u
y

u uΔ Δ
Δ−

−
+F

HG
I
KJ + −F
HG

I
KJ + − −F

HG
I
KJ

L
N
MM  

Δ Δ4 4
1

2
y y–2 +F

HG
I
KJ

−

 + 
4 6 1

24

3 2u u− +F
HG

I
KJ  Δ

5y–2

+ 
15 30 30 45 4

360 2

4 3 2 6
3

6
2u u u u y y− − + +F

HG
I
KJ

+F
HG

I
KJ +
O
Q
PP

− −Δ Δ
... ...(32)

Putting u = 0 in eqn. (32), we get

 
d y
dx h

y y
y

y y

x a

2

2 2

2
1

2
0 3

1

4
2

4
11

2 2
1

12 2

F
HG
I
KJ =

+F
HG

I
KJ − 1 −

+F
HG

I
KJ

L
N
MM=

−
−

− −Δ Δ
Δ

Δ Δ

+ 
1

24
1

90 2
5

2

6
3

6
2Δ

Δ Δ
y

y y
−

− −+
+F

HG
I
KJ +
O
Q
PP... ...(33)

and so on.
(5) For unequally spaced values of the argument

(i) Newton’s divided difference formula is
 f(x) = f(x0) + (x – x0) f(x0) + (x – x0)(x – x1) 

2f(x0) + (x – x0)(x – x1)

(x – x2) 
3f(x0) + (x – x0)(x – x1) (x – x2)(x – x3) 

4f(x0) + ... ...(34)
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f ′(x) is given by

 f ′(x) = f(x0) + {2x – (x0 + x1)} 
2f(x0) + {3x2 – 2x(x0 + x1 + x2)

+ (x0x1 + x1x2 + x2x0)} 
3f(x0) + ... ...(35)

(ii) Lagrange’s interpolation formula is

 f(x) = 
( )( ) ... ( )

( )( ) ... ( )
x x x x x x

x x x x x x
n

n

− − −
− − −

1 2

0 1 0 2 0
 f(x0) + 

( )( ) ... ( )
( )( ) ... ( )

x x x x x x
x x x x x x

n

n

− − −
− − −

0 2

1 0 1 2 1
 f(x1) + ...

...(36)

f ′(x) can be obtained by differentiating f(x) in eqn. (36).

Note 1. Formula (8) can be extended as

 
d y

dx h
x a

2

2 2
2 3 4 5 6 7 81 11

12
5
6

137
180

7
10

363
560

F
HG
I
KJ = − + − + − + +F

HG
I
KJ

=

Δ Δ Δ Δ Δ Δ Δ ...  y0

2. Formula (17) can be extended as

d y

dx h
x xn

2

2 2
2 3 4 5 6 7 81 11

12
5
6

137
180

7
10

363
560

F
HG
I
KJ = ∇ + ∇ + ∇ + ∇ + ∇ + ∇ + ∇ +F

HG
I
KJ

=

...  yn.

5.11 MAXIMA AND MINIMA OF A TABULATED FUNCTION

Since maxima and minima of y = f(x) can be found by equating 
dy
dx

 to zero and solving the

equation for the argument x, the same method can be used to determine maxima and minima
of tabulated function by differentiating the interpolating polynomial.

e.g., if Newton’s forward difference formula is used, we have

y = y0 + u Δy0 + 
u u

y
u u u( )

!
( )( )

!
− + − −1

2
1 2
3

2
0Δ  Δ3y0 + ... ...(1)

Differentiating eqn. (1) with respect to u, we get

dy
du

y
u

y
u u= + − + − +Δ Δ0

2
0

22 1
2

3 6 2
3! !

 Δ3y0 + ...

For maxima or minima,

  
dy
du

 = 0

⇒ Δy0 + 
2 1

2
3 6 2

3
2

0

2u
y

u u− + − +
! !

Δ  Δ3y0 + ... = 0 ...(2)

If we terminate LHS series after third differences for convenience, eqn. (2) being a
quadratic in u gives two values of u.

Corresponding to these values, x = a + uh will give the corresponding x at which function
may be maximum or minimum.

For maximum, 
d y
du

2

2  = (–)ve; For minimum, 
d y
du

2

2  = (+)ve.
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EXAMPLES

Example 1. Find 
dy
dx

 at x = 0.1 from the following table:

x : 0.1 0.2 0.3 0.4

y: 0.9975 0.9900 0.9776 0.9604.

Sol. Take a = 0.1. The difference table is

x y Δy Δ2y Δ3y

0.1 0.9975

– 0.0075

0.2 0.9900 – 0.0049

– 0.0124 0.0001

0.3 0.9776 – 0.0048

– 0.0172

0.4 0.9604

Here h = 0.1 and y0 = 0.9975

 
dy
dx h

y y y
x

L
NM
O
QP = − +L

NM
O
QP= 0.1

0
2

0
3

0
1 1

2
1
3

Δ Δ Δ

= 
1

0
0 0075

1
2

0 0049
1
3

0 0001
.1

− − − +L
NM

O
QP. ( . ) ( . )  = – 0.050167.

Example 2. The table given below reveals the velocity ‘v’ of a body during the time ‘t’
specified. Find its acceleration at t = 1.1. (U.P.T.U. 2014)

t: 1.0 1.1 1.2 1.3 1.4

v: 43.1 47.7 52.1 56.4 60.8.

Sol. The difference table is

t v Δv Δ2v Δ3v Δ4v

1.0 43.1
4.6

1.1 47.7 – 0.2
4.4 0.1

1.2 52.1 – 0.1 0.1
4.3 0.2

1.3 56.4 0.1
4.4

1.4 60.8
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Let   a = 1.1,

∴  v0 = 47.7 and h = 0.1

Acceleration at t = 1.1 is given by

dv
dt h

v v v
t

L
NM
O
QP = − +L

NM
O
QP = − − +L
NM

O
QP= 1.1

1
0.1

4.4
1
2

( 0.1)
1
3

(0.2)
1 1

2
1
30

2
0

3
0Δ Δ Δ  = 45.1667

Hence the required acceleration is 45.1667.

Example 3. Find f ′(1.1) and f ″(1.1) from the following table:

  x: 1.0 1.2 1.4 1.6 1.8 2.0

f(x): 0.0 0.1280 0.5540 1.2960 2.4320 4.000.

(G.B.T.U. 2010)

Sol. Since we are to find f ′(x) and f ″(x) for non-tabular value of x, we proceed as follows :
Newton’s forward difference formula is

y = y0 + u Δy0 + 
u u

y
u u u( )

!
( )( )

!
− + − −1

2
1 2
3

2
0Δ  Δ3y0

+ 
u u u u( )( )( )

!
− − −1 2 3

4
 Δ4y0 + ...        ...(1)

where  u = 
x a

h
−

...(2)

Differentiating eqn. (1) with respect to u, we get

  dy
du

y
u

y
u u= + −F

HG
I
KJ + − +F

HG
I
KJΔ Δ0

2
0

22 1
2

3 6 2
6

 Δ3y0 + 
2 9 11 3

12

3 2u u u− + −F
HG

I
KJ  Δ

4y0 + ... ...(3)

Differentiating eqn. (2) with respect to x
du
dx h

= 1
...(4)

∴   
dy
dx

dy
du

du
dx

= .

= 
1 2 1

2
3 6 2

60
2

0

2

h
y

u
y

u uΔ Δ+ −F
HG

I
KJ + − +F

HG
I
KJ

L
N
MM Δ3

0y

+ − + −F
HG

I
KJ +

O
Q
PP

2 9 11 3
12

3 2
4

0
u u u

yΔ ... ...(5)

Also, at x = 1.1, u = 
1.1 1.0

0.2
− = 1

2
Here 1.0

and 0.2
a
h

=
=
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Forward difference table is as follows:

x f(x) = y Δy Δ2y Δ3y Δ4y Δ5y

1.0 0.0

0.1280

1.2 0.1280 0.298

0.4260 0.018

1.4 0.5540 0.316 0.06

0.7420 0.078 – 0.1

1.6 1.2960 0.394 – 0.04

1.1360 0.038

1.8 2.4320 0.432

1.5680

2.0 4.000

From eqn. (5),

  dy
dx h

y
u

y
u u

y
u u u= + −F

HG
I
KJ + − +F

HG
I
KJ + − + −F

HG
I
KJ

L
N
MM

1 2 1
2

3 6 2
6

2 9 11 3
120

2
0

2
3

0

3 2

Δ Δ Δ  Δ4y0

+ 
5 40 105 100 24

120

4 3 2
5

0
u u u u

y
− + − +F

HG
I
KJ +

O
Q
PPΔ ... ...(6)

At x = 1.1, we get

f ′(1.1) = 
dy
dx x

F
HG
I
KJ = 1.1

 = 
1

0.2
 

L

N

MMM0.1280 + 
2

1
2

1

2

F
HG
I
KJ −

R
S|
T|

U
V|
W| (0.298)

+ 

3
1
2

6
1
2

2

6

2F
HG
I
KJ − FHG

I
KJ +

R
S|
T|

U
V|
W|  (0.018) + 

2
1
2

9
1
2

11
1
2

3

12

3 2F
HG
I
KJ − FHG

I
KJ + FHG

I
KJ −

R
S|
T|

U
V|
W| (0.06)

+ 
5

1
2

40
1
2

105
1
2

100
1
2

24

120

4 3 2F
HG
I
KJ − F

HG
I
KJ + F

HG
I
KJ − F

HG
I
KJ +

R
S|
T|

U
V|
W|
 (– 0.1)

O

Q

PPP
= 0.66724.

Differentiating eqn. (6), with respect to x, we get

d y
dx

d
du

dy
du

du
dx

2

2 = F
HG
I
KJ  = 

1
1

6 18 11
122

2
0

3
0

2
4

0h
y u y

u u
yΔ Δ Δ+ − + − +F

HG
I
KJ

L
N
MM ( )

+ 
2 12 21 10

12

3 2
5

0
u u u

y
− + −F

HG
I
KJ +

O
Q
PPΔ ...
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At x = 1.1, we get

  f ″(1.1) = 
d y
dx x

2

2

F
HG
I
KJ = 1.1

 = 8.13125.

Example 4. The distance covered by an athlete for the 50 metre race is given in the
following table:

Time (sec): 0 1 2 3 4 5 6

Distance (metre): 0 2.5 8.5 15.5 24.5 36.5 50

Determine the speed of the athlete at t = 5 sec correct to two decimals. (U.P.T.U. 2009)

Sol. Here we are to find derivative at t = 5 which is near the end of the table hence we
shall use formula obtained from Newton’s backward difference formula. Backward difference
table is as follows:

t s ∇s ∇2s ∇3s ∇4s ∇5s ∇6s

0 0
2.5

1 2.5 3.5
6 – 2.5

2 8.5 1 3.5
7 1 – 3.5

3 15.5 2 0 1
9 1 – 2.5

4 24.5 3 – 2.5
12 – 1.5

5 36.5 1.5
13.5

6 50

Speed of athlete at t = 5 sec is given by

  ds
dt h

s s s s s
t

F
HG
I
KJ = ∇ + ∇ + ∇ + ∇ + ∇L

NM
O
QP= 5

5
2

5
3

5
4

5
5

5
1 1

2
1
3

1
4

1
5

= 
1
1

12
1
2

3
1
3

1
1
4

0
1
5

+ + + + −L
NM

O
QP( ) ( ) ( ) ( )3.5

= 13.1333 ≈ 13.13 metre/sec.

Example 5. A rod is rotating in a plane. The following table gives the angle θ (in radians)
through which the rod has turned for various values of time t (in seconds)

t: 0 0.2 0.4 0.6 0.8 1.0 1.2

θ: 0 0.12 0.49 1.12 2.02 3.20 4.67.

Calculate the angular velocity and angular acceleration of the rod at t = 0.6 sec.

[G.B.T.U. (C.O.) 2011]
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Sol. Forward difference table is

t θ Δθ Δ2θ Δ3θ Δ4θ

0 0
0.12

0.2 0.12 0.25
0.37 0.01

0.4 0.49 0.26 0
0.63 0.01

0.6 1.12 0.27 0
0.9 0.01

0.8 2.02 0.28 0
1.18 0.01

1.0 3.20 0.29
1.47

1.2 4.67

Here a = 0.6

∴ θ0 = 1.12 and h = 0.2

Since we are to find derivatives at t = 0.6 sec which is in the middle of the table, hence
we shall use formula obtained from Stirling’s or Bessel’s central difference formula.

Let us choose formula obtained from Bessel’s central difference formula.
Angular velocity at t = 0.6 sec is given by

 
d
dt ht

θ θ θ
θF

HG
I
KJ = −

+F
HG

I
KJ +

L
N
MM

O
Q
PP=

−
−

0.6

1 1
2 2

1
120

2
1

2
0 3

1Δθ
Δ Δ

Δ

= 
1 1

2 2
1

120.2
0.9

0.27 0.28
0.01− +F

HG
I
KJ +

L
NM

O
QP( )  = 3.81667 rad./sec.

Angular acceleration at t = 0.6 sec is given by

 
d
dt ht

2

2 2

2
1

2
0 3

1
1

2
1
2

θ θ θ
θ

F
HG
I
KJ =

+F
HG

I
KJ −

L
N
MM

O
Q
PP=

−
−

0.6

Δ Δ
Δ

= 
1

2
1
22( )

( )
0.2

0.27 0.28
0.01

+F
HG

I
KJ −

L
NM

O
QP  = 6.75 rad./sec2.

Note. In case we choose formula obtained from Stirling’s formula, at t = 0.6 sec.,

angular velocity  d
dt h

θ θ θF
HG
I
KJ = +F
HG

I
KJ − +F
HG

I
KJ

L
N
MM

O
Q
PP

− − −1
2

1
6 2

0 1
3

1
3

2Δθ Δθ Δ Δ

     = 
1

0.2
0.9 + 0.63

2
1
6

0.01 0.01
2

F
HG

I
KJ − +F
HG

I
KJ

L
NM

O
QP  = 3.81667 rad./sec.

and angular acceleration 
d

dt h

2

2 2
2

1 2
1 1θ θ

F
HG
I
KJ = =−( )

( )
Δ

0.2
 (0.27) = 6.75 rad./sec2.
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Example 6. From the following table of values of x and y, obtain 
dy
dx

 and 
d y
dx

2

2
 for x = 1.2,

2.2 and 1.6.
x: 1.0 1.2 1.4 1.6 1.8 2.0 2.2
y: 2.7183 3.3201 4.0552 4.9530 6.0496 7.3891 9.0250.
Sol. The forward difference table is

x y Δy Δ2y Δ3y Δ4y Δ5y Δ6y

1.0 2.7183
0.6018

1.2 3.3201 0.1333
0.7351 0.0294

1.4 4.0552 0.1627 0.0067
0.8978 0.0361 0.0013

1.6 4.9530 0.1988 0.0080 0.0001
1.0966 0.0441 0.0014

1.8 6.0496 0.2429 0.0094
1.3395 0.0535

2.0 7.3891 0.2964
1.6359

2.2 9.0250

(i) Here   a = 1.2
∴  y0 = 3.3201; h = 0.2

 
dy
dx x

L
NM
O
QP = − + − +L

NM
O
QP= 1.2

1
0.2

0.7351
1
2

(0.1627)
1
3

(0.0361)
1
4

(0.008)
1
5

(0.0014)

= 3.3205

   
d y
dx x

2

2
1

2
1

0

L
NM
O
QP

= − + −L
NM

O
QP= .2 ( ).2

0.1627 0.0361
11
12

(0.0080)
5
6

(0.0014)  = 3.318

(ii) Here a = 2.2,

∴   yn = 9.02 and h = 0.2

dy
dx x

L
NM
O
QP = + + +L

NM= 2.2

1
0.2

1.6359
1
2

(0.2964)
1
3

(0.0535)
1
4

(0.0094)

+ O
QP

1
5

(0.0014) +
1
6

(0.0001)  = 9.0229

d y
dx x

2

2
1L

NMM
O
QPP

= + + +L
NM

O
QP= 2.2

0.04
0.2964 0.0535

11
12

(0.0094)
5
6

(0.0014) +
137
180

0.0001( )  = 8.9939.

(iii) Here a = 1.6

∴  y0 = 4.9530, y–1 = 4.0552, y–2 = 3.3201, y–3 = 2.7183 and h = 0.2
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By using Stirling formula for derivatives, we get

 
dy
dx x

L
NM
O
QP = +F

HG
I
KJ −

+F
HG

I
KJ

L
NM= 1.6

1
0.2

1.0966 0.8978
2

1
6

0.0441 0.0361
2

+ +F
HG

I
KJ
O
QP

1
30

0.0014 0.0013
2

 = 4.9530

and
d y
dx x

2

2

L
NMM
O
QPP

= − +L
NM

O
QP= 1.6

1
0.04

0.1988
1
12

(0.0080)
1
90

(0.0001)  = 4.9525.

Example 7. The table below gives the result of an observation. θ is the observed tem-
perature in degrees centigrade of a vessel of cooling water, t is the time in minutes from
the beginning of observations:

t: 1 3 5 7 9

θ : 85.3 74.5 67.0 60.5 54.3

Find the approximate rate of cooling at t = 3 and 3.5.
Sol. Forward difference table is

t θ Δθ Δ2θ Δ3θ Δ4θ

1 85.3
– 10.8

3 74.5 3.3
– 7.5 – 2.3

5 67.0 1.0 1.6
– 6.5 – 0.7

7 60.5 0.3
– 6.2

9 54.3

(i) When t = 3, θ0 = 74.5. Here h = 2

Rate of cooling = 
d
dt

θ

∴  
d
dt ht

θ θ θ θF
HG
I
KJ = − + −L

NM
O
QP= 3

0
2

0
3

0
4

0
1 1

2
1
3

1
4

Δθ Δ Δ Δ

  = 
1
2

1
1
3

− − + −L
NM

O
QP7.5

1
2

0.7( ) ( )  = – 4.11667°C/min.

(ii) t = 3.5 is the non-tabular value of t so, we have from Newton’s forward difference
formula,

 
d
dt h

u u uθ θ θ= + −F
HG

I
KJ + − +F

HG
I
KJ

L
N
MM

1 2 1
2

3 6 2
60

2
0

2
3

0Δθ Δ Δ

+ 
2 9 11 3

12

3 2
4

0
u u u− + −F
HG

I
KJ +

O
Q
PPΔ θ ... ...(1)
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At t = 3.5, u = 
3.5 3.0 0.5− =

2 2
 = 0.25 | Here a = 3.0 and h = 2

From (1),

 
d
dt t

θF
HG
I
KJ = − +

−RST
UVW +

− +RS|T|
UV|W|

−
L
N
MM

O
Q
PP= 3.5

0.25 0.25 0.25
.7

1
2

7 5
2 1

2
1

3 6 2
6

0
2

.
( )

( )
( ) ( )

( )

= – 3.9151°C/min.

Example 8. Find x for which y is maximum and find this value of y
x: 1.2 1.3 1.4 1.5 1.6
y: 0.9320 0.9636 0.9855 0.9975 0.9996.
Sol. The difference table is as follows:

x y Δy Δ2y Δ3y Δ4y

1.2 0.9320
0.0316

1.3 0.9636 – 0.0097
0.0219 – 0.0002

1.4 0.9855 – 0.0099 0.0002
0.0120 0

1.5 0.9975 – 0.0099
0.0021

1.6 0.9996

Let y0 = 0.9320 and a = 1.2

By Newton’s forward difference formula,

y = y0 + u Δy0 + 
u u

y
( )

...
− +1

2
2

0Δ

= 0.9320 + 0.0316 u + 
u u( )

(– )
− 1

2
0.0097 | Neglecting higher differences

dy
du

u= + −F
HG

I
KJ −0.0316 0.0097

2 1
2

( )

At a maximum,
dy
du

 = 0

⇒   0.0316 = u −FHG
I
KJ

1
2

 (0.0097) ⇒ u = 3.76

∴ x = a + hu = 1.2 + (0.1) (3.76) = 1.576

To find ymax., we use backward difference formula,

 x = xn + hu

⇒  1.576 = 1.6 + (0.1)u ⇒ u = – 0.24

 y(1.576) = yn + u ∇yn + u u
y

u u u
yn n

( ) ( )( )
!

+ ∇ + + + ∇1
2

1 2
3

2 3
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= 0.9996 – (0.24 × 0.0021) + 
( 0.24)(1 0.24)

2
− −

 (– 0.0099)

= 0.9999988 = 0.9999 nearly

∴ Maximum y = 0.9999 approximately.
Example 9. Derive the formula y0′ = (y–2 – 8y–1 + 8y1 – y2)/12h

for numerical differentiation at mid-point of a table. (U.P.T.U. 2009)

Sol. Take a = 0 Difference table is

x y Δy Δ2y Δ3y Δ4y

– 2 y–2

y–1 – y–2

– 1 y–1 y0 – 2y–1 + y–2

y0 – y– 1 y1 – 3y0 + 3y–1 – y–2

0 y0 y1 – 2y0 + y–1 y2 – 4y1 + 6y0 – 4y–1 + y–2

y1 – y0 y2 – 3y1 + 3y0 – y–1

1 y1 y2 – 2y1 + y0

y2 – y1

2 y2

By using Stirling’s formula for first derivative, we get

   y0′ = 
1

2
1
6 2

0 1
3

1
3

2

h
y y y yΔ Δ Δ Δ+F
HG

I
KJ −

+F
HG

I
KJ +

L
N
MM

O
Q
PP

− − − ...

= 
1

2
1

12
3 3 3 31 0 0 1

2 1 0 1 1 0 1 2h
y y y y

y y y y y y y y
− + −F

HG
I
KJ − − + − + − + −

L
NM

O
QP

−
− − −( )

= 
1

2
1

12
2 21 1

2 1 1 2h
y y

y y y y
−F

HG
I
KJ − − + −

L
NM

O
QP

−
− −( )

⇒   y0′ = 
1

12
8 81 1 2 2h

y y y y− − +− −

Example 10. State the three different finite difference approximations to the first
derivative f ′(x0) together with the order of their truncation errors. Derive the forward difference
approximation and its leading error term.

Sol. (i) Newton’s forward difference approximation is given by

 f(x) = f0 + u Δf0 + 
u u( )− 1

2
 Δ2f0

where u = 
x x

h
− 0 and E = 

1
6

 u(u – 1) (u – 2) h3 f ′″(ξ)

We have, f ′(x) = 
df
du

du
dx

.  = 
1
h

 Δ Δf u f0
2

0
1
2

2 1+ −L
NM

O
QP( )

and |E′(x0)| = |E′(u = 0)| ≤ 
h2

3
 M3 where M3 = max| ( )|′′′

≤ ≤
f x

x x x0 2
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(ii) Newton’s backward difference approximation is given by

  f(x) = f2 + u ∇f2 + 
1
2

 u(u + 1) ∇2 f2

where u = 
x x

h
− 2   and E = 

1
6

 u (u + 1) (u + 2) h3 f ′″(ξ)

We have,  f ′(x) = 
1 1

2
2 12

2
2h

f u f∇ + + ∇L
NM

O
QP( )

and  |E′(x2)| = |E′ (u = 0)| ≤ 
h2

3
 M3

(iii) Central difference approximation is given by

f(x) = f0 + 
u
2

 (δf1/2 + δf–1/2) where u = 
x x

h
− 0 .

We have f ′(x) = 
1

2h
(δf1/2 + δf–1/2) = 

1
2h

[(f1 – f0) + (f0 – f–1)] = 
1

2h
(f1 – f–1)

and |E′(x)| ≤ 
h2

6
 M3.

ASSIGNMENT

1. (i) Find y′(0) and y″(0) from the given table:
x: 0 1 2 3 4 5
y: 4 8 15 7 6 2

(ii) Find the first and second derivatives for the function tabulated below at the point x = 3.0:
x:  3 3.2 3.4 3.6 3.8 4.0
y: –14 –10.032 –5.296 0.256 6.672 14

2. (i) From the following table, estimate y′ (1.05):
x: 1 1.05 1.10 1.15 1.20 1.25
y: 1.1 1.1347 1.1688 1.1564 1.2344 1.2345 (G.B.T.U. 2013)

(ii) Find the derivative of f(x) at x = 0.4 from the following table:
x: 0.1 0.2 0.3 0.4
f(x): 1.10517 1.22140 1.34986 1.49182 (M.T.U. 2013)

3. Find 
d
dx

( )J0  and 
d

dx

2

2  (J0) at x = 0.1 from the following table:

x: 0.0 0.1 0.2 0.3 0.4
J0(x): 1 0.9975 0.99 0.9776 0.9604.

4. (i) Find the numerical value of y′(10°) for y = sin x given that:
sin 0° = 0.000, sin 10° = 0.1736, sin 20° = 0.3420, sin 30° = 0.5000, sin 40° = 0.6428.

(ii) Compute y′ (1.1) from the following table:
x: 1.0 1.1 1.2 1.3 1.4 1.5
y (x): 7.989 8.403 8.781 9.129 9.451 9.750 (G.B.T.U. 2012)

5. (i) Find f ′(1.5) and f ″(1.5) from the following table:
x: 0.0 0.5 1.0 1.5 2.0
f(x): 0.3989 0.3521 0.2420 0.1245 0.0540 [U.P.T.U. (MCA) 2006]
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(ii) The population of a certain town is given below. Find the rate of growth of the population in
1961:
Year: 1931 1941 1951 1961 1971
Population: 40.62 60.80 71.95 103.56 132.65 (M.T.U. 2012)
(in lacs)

6. Find first and second derivative of the function tabulated below at x = 0.6
[G.B.T.U. (C.O.) 2010]

x: 0.4 0.5 0.6 0.7 0.8
y: 1.5836 1.7974 2.0442 2.3275 2.6511.

7. Find the values of f ′(5), f ″(5) and f ″(0.5) from the following table:
(G.B.T.U. 2012, U.P.T.U. 2007)

x: 0 1 2 3 4 5
f(x): 4930 5026 5122 5217 5312 5407

8. (i) A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given
below for various values of the time t seconds. Find the velocity of the slider and its accelera-
tion when t = 0.3 second.
t : 0 0.1 0.2 0.3 0.4 0.5 0.6
x : 30.13 31.62 32.87 33.64 33.95 33.81 33.24.

(ii) A slider in a machine moves along fixed straight rod. Its distances x (m.) along the rod are
given at various times (sec.)
t : 1 1.1 1.2 1.3 1.4 1.5
x : 16.40 19.01 21.96 25.29 29.03 33.21

Find the velocity of the slider at t = 1.1 sec.
9. A slider in a machine moves along a fixed straight rod. Its distance x(in cm) along the rod is given

at various times t (in secs).
t : 0 0.1 0.2 0.3 0.4 0.5 0.6
x: 30.28 31.43 32.98 33.54 33.97 33.48 32.13

Evaluate
dx
dt

 at t = 0.1 and at t = 0.5.

10. Given the following table:
x: 1 1.05 1.1 1.15 1.2 1.25 1.3

f(x) = x : 1 1.0247 1.04881 1.07238 1.09544 1.11803 1.14014
Apply the above results to find f ′(1), f ″(1) and f ″′(1).

11. (i) Using Newton’s divided difference formula, find f ′(10) from the following data:
  x:   3 5 11 27 34
f(x): – 13 23 899 17315 35606

(ii) Given the following data, find y′(6):
x: 0 2 3 4 7 8

f(x): 4 26 58 112 466 922
(U.P.T.U. 2008)

(iii) Find f ′(6) from the following table:
x: 0 1 3 4 5 7 9

f(y): 150 108 0 –54 –100 –144 –84
12. (i) From the table below, for what value of x, y is minimum? Also find this value of y.

x: 3 4 5 6 7 8
y: 0.205 0.240 0.259 0.262 0.250 0.224.
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(ii) Find the minimum value of y from the following table:
x: 0.2 0.3 0.4 0.5 0.6 0.7
y: 0.9182 0.8975 0.8873 0.8862 0.8935 0.9086

13. If y = f (x) and yn denotes f(x0 + nh), prove that, if powers of h above h6 be neglected,

 
dy
dx h

y y y y y y
x x

F
HG
I
KJ = − − − + −L

NM
O
QP=

− − −
0

3
4

1
5

1
451 1 2 2 3 3( ) ( ) (U.P.T.U. 2006)

14. The following table gives values of pressure P and specific volume V of saturated steam:
P : 105 42.7 25.3 16.7 13
V : 2 4 6 8 10
Find
(a) the rate of change of pressure w.r.t. volume at V = 2
(b) the rate of change of volume w.r.t. pressure at P = 105.

15. y is a function of x satisfying the equation xy″ + ay′ + (x – b) y = 0, where a and b are integers. Find
the values of constants a and b if y is given by the following table:
x: 0.8 1 1.2 1.4 1.6 1.8 2 2.2
y: 1.73036 1.95532 2.19756 2.45693 2.73309 3.02549 2.3333 3.65563.

16. (a) When does the need of numerical differentiation arise? (U.P.T.U. 2008)

(b) Prove that D = 
1

2 3

2 3

h
Δ Δ Δ− + −
F
HG

I
KJ... , the symbols used have usual meanings.

[U.P.T.U. (MCA) 2007]

Answers
1. (i) – 27.9, 117.67 (ii) 18, 18
2. (i) 3.5856 (ii) 1.4913 3. – 0.05, – 0.5
4. (i) 0.9848 (ii) 3.945833
5. (i) – 0.2051, 0.194 (ii) 5.167 lacs/year 6. 2.64442, 3.6475
7. 94.15, – 3.4166, 1.6458 8. (i) 5.33 cm/sec, – 45.6 cm/sec2 (ii) 27.7 m/sec.

9. 32.44166 cm/sec., – 24.05833 cm/sec. 10. 0.50024, – 0.256, 0.4

11. (i) 232.869 (ii) 125.4744 (iii) – 23

12. (i) 5.6875, 0.2628 (ii) 0.4623

14. (a) – 52.4 (b) – 0.01908 15. a = 8, b = 6.

5.12 ERRORS IN NUMERICAL DIFFERENTIATION

In numerical differentiation, the error in the higher order derivatives occurs due to the reason
that, although the tabulated function and its approximating polynomial would agree at the
set of data points, their slopes at these points may vary considerably. Numerical differentia-
tion is, therefore, an unsatisfactory process and should be used only in rare cases.

The numerical computation of derivatives involves two types of errors: truncation
errors and rounding errors.

The truncation error is caused by replacing the tabulated function by means of an inter-
polating polynomial.

Truncation error in first derivative is

= 
1

6 2

3
2

3
1

h
y yΔ Δ− −+

.
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Truncation error in second derivative is

= 
1

12 2
4

2
h

y| |Δ − .

The rounding error is ∝ 
1
h

 in case of first derivatives while it is ∝ 
1
2h

 in case of second

derivatives, and so on.

Max. Rounding error in first derivative is = 
3
2

ε
h

Max. Rounding error in second derivative is = 
4

2
ε

h
where ε is the maximum error in the value of yi.

Example. Assume the table of values given in previous. Example 6 and the function

values are correct to the accuracy given, estimate the errors in 
dy
dx

 at x = 1.6.

Sol. Since the values are correct to four decimals, it follows that  ε = 0.5 × 10–4

Truncation error = 
1

6 2

3
1

3
0

h
y yΔ Δ− +

= 
1

21.2
0.0361 0.0441+F
HG

I
KJ | See difference table in Example 6

= 0.03342

Rounding error = 
3
2

ε
h

= × ×
×

−3 0.5 10
2 0.2

4

 = 0.00038.

5.13 NUMERICAL INTEGRATION

Given a set of tabulated values of the integrand

f(x), to determine the value of 
x

xn
f x dx

0
z ( )  is

called numerical integration. We subdivide the
given interval of integration into a large number
of subintervals of equal width h and replace the
function tabulated at the points of subdivision
by any one of the interpolating polynomials like
Newton-Gregory’s, Stirling’s, Bessel’s over each
of the subintervals and evaluate the integral.
We have several formulae for numerical
integration which we shall derive in the sequel.
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5.14 NEWTON-COTE’S QUADRATURE FORMULA
[M.T.U. 2013, U.P.T.U. (MCA) 2009]

Let I = y dx
a

bz , where y takes the values y0, y1, y2, ......., yn for x = x0, x1, x2, ......, xn.

Let the interval of integration (a, b) be divided into n equal sub-intervals, each of width

h =
b a

n
−

 so that x0 = a, x1 = x0 + h, x2 = x0 + 2h, ..., xn = x0 + nh = b.

∴ I = f x dx
x

x nh
( )

0

0 +z
Since any x is given by x = x0 + rh and dx = hdr

∴ I = h f x rh dr
n

( )0
0

+z
= h y r y

r r
y

r r r
y dr

n

0 0
2

0
3

0
0

1
2

1 2
3

+ + − + − − +
L
NM

O
QPz Δ Δ Δ( )

!
( )( )

!
...

[By Newton’s forward interpolation formula]

= h ry
r

y
r r

y
r

r r y

n

0

2

0

3 2
2

0

4
3 2 3

0

0
2

1
2 3 2

1
6 4

+ + −
F
HG

I
KJ + − +

F
HG

I
KJ +

L
N
MM

O
Q
PPΔ Δ Δ ...

I = nh y
n

y
n n

y
n n

y0 0
2

0

2
3

02
2 3
12

2
24

+ + − + − +
L
NM

O
QP

Δ Δ Δ( ) ( )
... ...(1)

This is a general quadrature formula and is known as Newton-Cote’s quadrature
formula. A number of important deductions viz. Trapezoidal rule, Simpson’s one-third and
three-eighth rules, can be immediately deduced by putting n = 1, 2 and 3 respectively, in
formula (1).

5.15 TRAPEZOIDAL RULE     (n = 1) [U.P.T.U. MCA (SUM) 2008]

Putting n = 1 in formula (1) and taking the curve through (x0, y0) and (x1, y1) as a polynomial
of degree one so that differences of order higher than one vanish, we get

 f x dx h y y
h

y y y
h

y y
x

x h
( ) [ ( )] ( )= +FHG

I
KJ = + − = +

+z 0 0 0 1 0 0 1
1
2 2

2
20

0
Δ

Similarly, for the next sub-interval (x0 + h, x0 + 2h), we get

 f x dx
h

y y
x h

x h
( ) ( ) , ......,= +

+

+z 2 1 2

2

0

0
 f x dx

h
y yn n

x n h

x nh
( ) ( )

( )
= +−

+ −

+z 2 1
10

0

Adding the above integrals, we get

f(x) dx
h
2

[(y y ) 2(y y .. . . . . y )]0 n 1 2 n 1
x

x nh

0

0
= + + + + + −

+z
which is known as Trapezoidal rule. By increasing the number of subintervals, thereby
making h very small, we can improve the accuracy of the value of the given integral.
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5.16 SIMPSON’S ONE-THIRD RULE (n = 2) (G.B.T.U. 2013)

Putting n = 2 in formula (1) and taking the curve through (x0, y0), (x1, y1) and (x2, y2) as a
polynomial of degree two so that differences of order higher than two vanish, we get

 f x dx h y y y
x

x h
( ) = + +L

NM
O
QP

+z 2
1
60 0

2
0

2

0

0
Δ Δ

= 
2
6

6 20 1 0 2 1 0
h

y y y y y y[6 ( ) ( )]+ − + − +  = 
h

y y y
3

40 1 2( )+ +

Similarly, f x dx
h

x h

x h
( ) =

+

+z 30

0

2

4
 (y2 + 4y3 + y4), ...... ,

  f x dx
h

y y yn n n
x n h

x nh
( ) ( )

( )
= + +− −

+ −

+z 3
42 1

20

0

Adding the above integrals, we get

 f(x) dx
h
3x

x nh

0

0
=

+z  [(y0 + yn) + 4(y1 + y3 + ... + yn–1) + 2(y2 + y4 + ... + yn–2)]

which is known as Simpson’s one-third rule.
While using this formula, the given interval of integration must be divided

into an even number of sub-intervals, since we find the area over two sub-intervals at a
time.

5.17 SIMPSON’S THREE-EIGHTH RULE (n = 3) (U.P.T.U. 2015)

Putting  n = 3 in formula (1) and taking the curve through (x0, y0), (x1, y1), (x2, y2) and (x3, y3) as
a polynomial of degree three so that differences of order higher than three vanish, we get

f x dx h y y y y
x

x h
( ) = + + +F

HG
I
KJ

+z 3
3
2

3
4

1
80 0

2
0

3
0

3

0

0
Δ Δ Δ

= 
3
8
h

 [8y0 + 12(y1 – y0) + 6(y2 – 2y1 + y0) + (y3 – 3y2 + 3y1 – y0)]

= 
3
8
h

 [y0 + 3y1 + 3y2 + y3]

Similarly, f x dx
h

x h

x h
( ) =

+

+z 3
80

0

3

6
 [y3 + 3y4 + 3y5 + y6], ...

f x dx
h

x n h

x h
( )

(
=

+ −

+z 3
80

0

3)

6
 [yn–3 + 3yn–2 + 3yn–1 + yn]

Adding the above integrals, we get

f(x) dx
3h
8x

x nh

0

0
=

+z  [(y0 + yn) + 3(y1 + y2 + y4 + y5 + ..... + yn–2 + yn–1)

 + 2(y3 + y6 + ...... + yn–3)]

which is known as Simpson’s three-eighth rule.
While using this formula, the given interval of integration must be divided

into sub-intervals whose number n is a multiple of 3.
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5.18 ERRORS IN QUADRATURE FORMULAE

If yp is a polynomial representing the function y = f(x) in the interval [a, b] then error in the
quadrature formulae is given by

E = 
a

bz  f(x) dx – 
a

bz  yp dx ...(1)

5.18.1. Error in Trapezoidal Rule [U.P.T.U. (MCA) 2006, U.P.T.U. MCA (SUM) 2008]
Expanding y = f(x) in the neighbourhood of x = x0 by Taylor’s series, we get

 y = y0 + (x – x0) y0′ + 
( )

!
x x− 0

2

2
 y0″ + ... ...(2)

∴   
x

x

0

1z y dx = y x x y
x x

y
x

x h

0 0 0
0

2

020

0
+ − ′ +

−
″ +

L
NMM

O
QPP

+z ( )
( )

!
...  dx

= hy0 + 
h2

2 !
 y0″ + 

h3

3 !
 y0″′ + ... ...(3)

Now, area of the first trapezium in the interval [x0, x1] = A1 = 
h
2

 (y0 + y1) ...(4)

Putting x = x0 + h, y = y1 in (2),

  y1 = y0 + hy0′ + 
h2

2 !
 y0″ + ... ...(5)

From (4) and (5), we get

 A1 = 
h

y y hy
h

y
2 20 0 0

2

0+ + ′ + ″ +
L
NMM

O
QPP!

...  = hy0 + 
h2

2 !
 y0′ + 

h3

2 2 !
 y0″ + ... ...(6)

Subtracting eqn. (6) from eqn. (3) gives the error in [x0, x1],

x

x

0

1z y dx – A1 = 
1
3

1
2 2! !

−
F
HG

I
KJ  h3 y0″ + ... ≈ – 

h3

12
 y0″ | Neglecting other terms

Similarly, the error in [x1, x2] is – 
h3

12
 y1″ and in [xn–1, xn] is 

− h3

12
 y″n–1.

Hence the total error is

  E = 
− h3

12
 (y0″ + y1″ + ··· + y″n–1)

Let y″(ξ), a < ξ < b  be the maximum of | y0″ |, | y1″ |,..., | y″n–1 | then, we have

E < 
− nh3

12
 y″(ξ) = – 

( )b a−
12

h2 y″(ξ) |∵ b – a = nh

Hence the error in the Trapezoidal rule is of order h2.
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5.18.2. Error in Simpson’s 1/3rd Rule. (U.P.T.U. 2008)

Integrating eqn. (2) w.r.t. x between the limits x0 and x2.

   
x

x

0

2z  y dx = 
x

x h
y x x y

x x
y

0

0 2

0 0 0
0

2

02

+z + − ′ +
−

″ +
L
NMM

O
QPP

( )
( )

!
...  dx

= 2hy0 + 2h2y0′ + 
8
3

16
4

32
5

3

0

4

0

5h
y

h
y

h
! ! !

″ + ″′ +  y0
(iv) + ... ...(7)

Now,  A1 = 
h
3

 (y0 + 4y1 + y2) ...(8)

where A1 is the area of the curve in the interval [x0, x2].
Putting x = x0 + h, y = y1 in (2), we get

 y1 = y0 + hy0′ + 
h

y
h2

0

3

2 3! !
″ +  y0″′ + ... ...(9)

Putting x = x0 + 2h, y = y2 in (2), we get

 y2 = y0 + 2h y0′ + 
4
2

8
3

2

0

3h
y

h
! !

″ +  y0″′ + ... ...(10)

Substituting eqns. (9) and (10) in eqn. (8), we get

  A1 = 2h y0 + 2h2 y0′ + 
4

3
2

3
5
18

3

0

4

0

5h
y

h
y

h″ + ″′ +  y0
(iv) + ... ...(11)

Now, the error in interval [x0, x2] is given by

  
x

x

0

2z y dx – A1 = 
4
15

5
18

−FHG
I
KJ  h5 y0

(iv) + ...

≈ – 
h5

90
 y0

(iv) | Neglecting terms of order h6, h7, ...

Similarly, the principal part of error in interval [x2, x4] is = – 
h5

90
 y2

(iv) and so on.

Hence total principal error is

  E = – 
h5

90
 [y0

(iv) + y2
(iv) + ... + y2

(iv)
(n–1)]

Let y(iv) (ξ) be the maximum of | y0
(iv) |, | y2

(iv) |,..., | y2
(iv)
n–1 |.

Then, we have, E < – 
h5

90
 y(iv) (ξ) = 

− −( )b a h4

180
 y(iv) (ξ)

Hence, the error in the Simpson’s (1/3)rd rule is of order h4.

Note. Similarly, the principal part of the error for Simpson’s (3/8)th rule is – 
3
80

5h
 y(iv) in the interval

[x0, x3].
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EXAMPLES

Example 1. Evaluate 
0.6

2
y dxz , where y is given by the following table:

x: 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

y: 1.23 1.58 2.03 4.32 6.25 8.36 10.23 12.45.

Sol. Here the no. of sub-intervals is 7 which is neither even nor a multiple of 3. Also this
number is neither a multiple of 4 nor a multiple of 6 hence using Trapezoidal rule, we get

0.6

2

2z =y dx
h

 [(y0 + y7) + 2(y1 + y2 + y3 + y4 + y5 + y6)]

= 
0.2
2

 [(1.23 + 12.45) + 2(1.58 + 2.03 + 4.32 + 6.25 + 8.36 + 10.23)]

| Here h = 0.2

= 7.922.

Example 2. Find, from the following table, the area bounded by the curve and the x-axis
from x = 7.47 to x = 7.52.

 x: 7.47 7.48 7.49 7.50 7.51 7.52

f(x): 1.93 1.95 1.98 2.01 2.03 2.06.

Sol. We know that

Area = 
7.47

7.52z f x dx( )  with h = 0.01, the trapezoidal rule gives,

Area = 
0.01

2
 [(1.93 + 2.06) + 2(1.95 + 1.98 + 2.01 + 2.03)] = 0.09965.

Example 3. Use Simpson’s rule for evaluating 
−z 0.6

0.3
f(x) dx  from the table given below:

x: – 0.6 – 0.5 – 0.4 – 0.3 – 0.2 – 0.1 0 0.1 0.2 0.3

f(x): 4 2 5 3 – 2 1 6 4 2 8

Sol. Since the no. of sub-intervals is 9(a multiple of 3) hence we will use Simpson’s 3/8th

rule here.

∴
−z =
0.6

0.3 0.1
f x dx( )

( )3
8

 [(4 + 8) + 3{2 + 5 + (– 2) + 1 + 4 + 2} + 2(3 + 6)] = 2.475.

Example 4. A river is 80 m wide. The depth ‘y’ of the river at a distance ‘x’ from one bank
is given by the following table:

x: 0 10 20 30 40 50 60 70 80
y: 0 4 7 9 12 15 14 8 3
Find the approximate area of cross section of the river using Simpson’s 1/3rd rule.

Sol. The required area of the cross section of the river = 
0

80z y dx ...(1)
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Here no. of sub-intervals is 8. By Simpson’s 1/3rd rule,

 
0

80

3z =y dx
h [(y0 + y8) + 4(y1 + y3 + y5 + y7) + 2(y2 + y4 + y6)]

= 
10
3

[(0 + 3) + 4(4 + 9 + 15 + 8) + 2(7 + 12 + 14)] = 710

Hence the required area of the cross section of the river = 710 sq. m.
Example 5. The speed, v metres per second, of a car, t seconds after it starts, is shown in

the following table:

t 0 12 24 36 48 60 72 84 96 108 120

v 0 3.60 10.08 18.90 21.60 18.54 10.26 5.40 4.50 5.40 9.00

Using Simpson’s 
1
3

rdF
HG
I
KJ  rule, find the distance travelled by the car in 2 minutes.

Sol. If s metres is the distance covered in t seconds, then

ds
dt

 = v

∴ s v dt
t

tL
NM
O
QP =

=

= z
0 0

120120

Since the number of sub-intervals is 10 (even), hence, by using Simpson’s 1/3rd rule,

 
0

120

3z =v dt
h  [(v0 + v10) + 4(v1 + v3 + v5 + v7 + v9) + 2(v2 + v4 + v6 + v8)]

= 
12
3

 [(0 + 9) + 4(3.6 + 18.9 + 18.54 + 5.4 + 5.4)

+ 2(10.08 + 21.6 + 10.26 + 4.5)]
= 1236.96 metres.

Hence, the distance travelled by car in 2 minutes is 1236.96 metres.
Example 6. A train is moving at the speed of 30 m/sec. Suddenly brakes are applied.

The speed of the train per second after t seconds is given by
Time (t): 0 5 10 15 20 25 30 35 40 45
Speed (v): 30 24 19 16 13 11 10 8 7 5

Apply Simpson’s three-eighth rule to determine the distance moved by the train in
45 seconds.

Sol. If s metres is the distance covered in t seconds, then

  
ds
dt

v=

⇒  s v dt
t

tL
NM
O
QP =

=

= z
0 0

4545

...(1)

Since the no. of sub-intervals is 9 (a multiple of 3) hence by using Simpson’s 
3
8
F
HG
I
KJ

th

 rule,
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0

45 3
8z =v dt
h  [(v0 + v9) + 3(v1 + v2 + v4 + v5 + v7 + v8) + 2(v3 + v6)]

   = 
15
8

 [(30 + 5) + 3(24 + 19 + 13 + 11 + 8 + 7) + 2(16 + 10)]

= 624.375 metres.

Hence the distance moved by the train in 45 seconds is 624.375 metres.

Example 7. Evaluate 
dx

1 x20

1

+z  using

(i) Simpson’s 
1
3

 rule taking h = 
1
4

[U.P.T.U. (MCA) 2007]

(ii) Simpson’s 
3
8

 rule taking h = 
1
6

[G.B.T.U. 2010, U.P.T.U. (MCA) 2006]

Hence compute an approximate value of π in each case.

Sol. (i) The values of f(x) = 
1

1 2+ x
 at x = 0, 

1
4

2
4

3
4

1, , ,  are given below:

x : 0
1
4

1
2

3
4

1

f(x): 1
16
17

0.8 0.64 0.5

y0 y1 y2 y3 y4

By Simpson’s 
1
3

 rule,

   dx
x

h
1 320

1

+
=z  [(y0 + y4) + 4( y1 + y3) + 2y2]

= 
1

12
1 4

16
17

2( ) ( )+ + +RST
UVW +

L
NM

O
QP0.5 0.64 0.8  = 0.785392156

Also  
dx

x
x

1
1

420

1

0

1

+
=
L
N
MM

O
Q
PP = =z tan tan–1 –1 π

∴  
π
4

~– 0.785392156 ⇒ π ~–  3.1415686

(ii) The values of f(x) = 
1

1 2+ x
 at x = 0, 

1
6

2
6

3
6

4
6

5
6

1, , , , ,  are given below:

  x: 0
1
6

2
6

3
6

4
6

5
6

1

f(x): 1
36
37

9
10

4
5

9
13

36
61

1
2

y0 y1 y2 y3 y4 y5 y6
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By Simpson’s 
3
8

 rule,

 
0

1

21
3
8z +

=dx
x

h
 [(y0 + y6) + 3(y1 + y2 + y4 + y5) + 2y3]

= 
3

1
6

8
1

1
2

3
36
37

9
10

9
13

36
61

2
4
5

F
HG
I
KJ

+FHG
I
KJ + + + +RST

UVW + FHG
I
KJ

L
NM

O
QP  = 0.785395862

Also,    
0

1

21 4z +
=dx

x
π

∴
π
4

 = 0.785395862 ⇒ π = 3.141583

Example 8. Evaluate 
0

6

2
dx

1 xz +
 by using

(i) Simpson’s one-third rule [M.T.U. (MCA) 2012]
(ii) Simpson’s three-eighth rule

(iii) Trapezoidal rule.
Sol. Divide the interval (0, 6) into six parts each of width h = 1.

The values of f(x) = 
1

1 2+ x
 are given below:

  x: 0 1 2 3 4 5 6

f(x): 1 0.5 0.2 0.1
1

17
1

26
1

37
y0 y1 y2 y3 y4 y5 y6

(i) By Simpson’s one-third rule,

 
0

6

21 3z +
=dx

x
h

 [(y0 + y6) + 4(y1 + y3 + y5) + 2(y2 + y4)]

= 
1
3

1
1

37
4 2

1
17

+FHG
I
KJ + + +F
HG

I
KJ + +F
HG

I
KJ

L
NM

O
QP0.5 0.1

1
26

0.2  = 1.366173413.

(ii) By Simpson’s three-eighth rule,

0

6

21
3
8z +

=dx
x

h
 [(y0 + y6) + 3(y1 + y2 + y4 + y5) + 2y3]

= 
3
8

1
1

37
3 0

1
17

1
26

2 0+FHG
I
KJ + + + +F
HG

I
KJ +

L
NM

O
QP0.5 .2 .1( )  = 1.357080836.

(iii) By Trapezoidal rule,

0

6

21 2z +
=dx

x
h

 [(y0 + y6) + 2(y1 + y2 + y3 + y4 + y5)]

= 
1
2

1
1

37
2 0 0

1
17

1
26

+FHG
I
KJ + + + + +F
HG

I
KJ

L
NM

O
QP0.5 .2 .1  = 1.410798581.

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com


514 A TEXTBOOK OF ENGINEERING MATHEMATICS

Example 9. Evaluate 
dx

1 x0

1

+z  by dividing the interval of integration into 8 equal parts.

Hence find loge 2 approximately. [U.P.T.U. (MCA) 2008]
Sol. Since the interval of integration is divided into an even number of sub-intervals,

we shall use Simpson’s one-third rule.

Here, y = 
1

1 + x
 = f(x)

y0 = f(0) = 
1

1 0+
 = 1, y1 = f 1

8
1

1
1
8

8
9

F
HG
I
KJ =

+
= ,   y2 = f 

2
8

4
5

F
HG
I
KJ =

y3 = f 
3
8

8
11

F
HG
I
KJ =  ,  y4 = f 

4
8

2
3

F
HG
I
KJ = , y5 = f 

5
8

8
13

F
HG
I
KJ =

y6 = f 
6
8

4
7

F
HG
I
KJ = , y7 = f 

7
8

8
15

F
HG
I
KJ =  and y8 = f(1) = 

1
2

Hence the table of values is

x: 0
1
8

2
8

3
8

4
8

5
8

6
8

7
8

1

y: 1
8
9

4
5

8
11

2
3

8
13

4
7

8
15

1
2

y0 y1 y2 y3 y4 y5 y6 y7 y8

By Simpson’s 1/3rd rule,

0

1

1 3z +
=dx

x
h

 [(y0 + y8) + 4(y1 + y3 + y5 + y7) + 2(y2 + y4 + y6)]

= 
1

24
1

1
2

4
8
9

8
11

8
13

8
15

2
4
5

2
3

4
7

+FHG
I
KJ + + + +F
HG

I
KJ + + +F
HG

I
KJ

L
NM

O
QP   | Here h = 1/8

= 0.69315453

Since,   
0

1

0

1

1
1z +

= +
L
NMM

O
QPP

dx
x

xelog ( )  = loge 2

∴   loge 2 = 0.69315453.

Example 10. Using Simpson’s 3/8th rule on integration, evaluate

0

6 1
1 x

dxz +
[G.B.T.U. 2009; G.B.T.U. (M.Tech.) 2011]

Sol. The table of values is as follows: (Here h = 1)
x : 0 1 2 3 4 5 6

f (x) = 
1

1 x+
: 1

1
2

1
3

1
4

1
5

1
6

1
7

y0 y1 y2 y3 y4 y5 y6
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By Simpson’s 3/8th rule,

 
0

6 1
1z + x

dx  = 
3
8
h

 [(y0 + y6) + 3 (y1 + y2 + y4 + y5) + 2y3]

= 
3
8

1
1
7

3
1
2

1
3

1
5

1
6

2
1
4

+FHG
I
KJ + + + +F
HG

I
KJ + FHG

I
KJ

L
NM

O
QP  = 1.96607.

Example 11. Find 
e

1 x
dx

x

0

6

+z  approximately using Simpson’s 3/8th rule on integration.

[U.P.T.U. (MCA) 2009, U.P.T.U. 2006, 2014]

Sol. Divide the given integral of integration into 6 equal sub-intervals, the arguments
are 0, 1, 2, 3, 4, 5, 6; h = 1.

f(x) = e
x

x

1 +
 ;  y0 = f(0) = 1

  y1 = f(1) = 
e
2

,  y2 = f(2) = 
e2

3
, y3 = f(3) = 

e3

4
,

  y4 = f(4) = 
e4

5
,  y5 = f(5) = 

e5

6
, y6 = f(6) = 

e6

7

The table is as below:

x: 0 1 2 3 4 5 6

y: 1
e
2

e2

3
e3

4
e4

5
e5

6
e6

7

y0 y1 y2 y3 y4 y5 y6

Applying Simpson’s three-eighth rule, we have

0

6

1
3
8z +

=e
x

dx
hx

 [(y0 + y6) + 3(y1 + y2 + y4 + y5) + 2y3]

= 
3
8

1
7

3
2 3 5 6

2
4

6 2 4 5 3

+
F
HG

I
KJ + + + +
F
HG

I
KJ +

L
N
MM

O
Q
PP

e e e e e e

= 
3
8

 [(1 + 57.6327) + 3(1.3591 + 2.463 + 10.9196 + 24.7355 + 2(5.0214)]

= 70.1652.

Note. It is not possible to evaluate 
0

6

1z +
e

x
dx

x
 by using usual calculus method. Numerical integration

comes to our rescue in such situations.
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Example 12. Evaluate 
1

2 1
2

x
e dxz −

 using four intervals.

Sol. The table of values is:
x : 1 1.25 1.5 1.75 2

y = e–x/2: 0.60653 0.53526 0.47237 0.41686 0.36788
y0 y1 y2 y3 y4

Since we have four (even) sub-intervals here, we will use Simpson’s 1/3rd rule.

∴  
1

2 1
2

3z −
=e dx

hx
 [(y0 + y4) + 4(y1 + y3) + 2y2]

= 
0.25

3
 [(0.60653 + 0.36788) + 4(0.53526) + 0.41686) + 2(0.47237)]

= 0.4773025.

Example 13. Compute Ip = 
0

1 p

3
x

x 10z +
 dx for p = 0, 1.

Use Trapezoidal rule with number of points 3, 5 and 9.
Sol. For p = 0

I0 = 
0

1

3
1

10z +x
 dx

(i) Dividing the interval (0, 1) into 2 equal parts, each of width h = 
1 0

2
1
2

− = , the values

of f(x) = 
1

103x +
 are given below:

x : 0
1
2

1

f(x):
1

10
8
81

1
11

By Trapezoidal rule,

 I0 = 
h
2

 [(y0 + y2) + 2y1] = 
1
4

1
10

1
11

16
81

+FHG
I
KJ +

L
NM

O
QP  = 0.0971099

(ii) Dividing the interval (0, 1) into 4 equal parts, each of width h = 
1 0

4
1
4

− = , the values

of f(x) = 
1

103x +
 are given below:

x: 0
1
4

1
2

3
4

1

f(x):
1

10
64
641

8
81

64
667

1
11

By Trapezoidal rule,

 I0 = 
h
2

 [(y0 + y4) + 2(y1 + y2 + y3)]

= 
1
8

1
10

1
11

2
64
641

8
81

64
667

+FHG
I
KJ + + +F
HG

I
KJ

L
NM

O
QP  = 0.0975039
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(iii) Dividing the interval (0, 1) into 8 equal parts, each of width h = 
1
8

, the values of

f(x) = 
1

103x +
 are given below:

x: 0
1
8

1
4

3
8

1
2

5
8

3
4

7
8

1

f(x):
1

10
512
5121

64
641

512
5147

8
81

512
5245

64
667

512
5463

1
11

By Trapezoidal rule,

    I0 = 
h
2

 [(y0 + y8) + 2 (y1 + y2 + y3 + y4 + y5 + y6 + y7)]

= 
1

16
1

10
1
11

2
512
5121

64
641

512
5147

8
81

512
5245

64
667

512
5463

+FHG
I
KJ + + + + + + +F
HG

I
KJ

L
NM

O
QP

= 0.0976012

Repeating the above process for p = 1 so that

  I1 = 
0

1

3 10z +
x

x
 dx

and dividing the interval (0, 1) into 2, 4 and 8 equal parts respectively, we get I1 as 0.0480733,
0.0481145 and 0.0481164 respectively.

Example 14. A solid of revolution is formed by rotating about x-axis, the lines x = 0 and
x = 1 and a curve through the points with the following co-ordinates.

x: 0 0.25 0.5 0.75 1
y: 1 0.9896 0.9589 0.9089 0.8415

Estimate the volume of the solid formed using Simpson’s rule.
Sol. If V is the volume of the solid formed then we know that

 V = π y dx2

0

1z
Hence we need the values of y2 and these are tabulated below correct to four decimal

places

x 0 0.25 0.5 0.75 1

y2 1 0.9793 0.9195 0.8261 0.7081

With h = 0.25, Simpson’s rule gives

V = π ( . )0 25
3

 [(1 + 0.7081) + 4(0.9793 + 0.8261) + 2(0.9195)] = 2.8192.
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Example 15. A tank is discharging water through an orifice at a depth of x metre below
the surface of the water whose area is A m2. Following are the values of x for the corresponding
values of A.

A: 1.257 1.39 1.52 1.65 1.809 1.962 2.123 2.295 2.462 2.650 2.827
x: 1.5 1.65 1.8 1.95 2.1 2.25 2.4 2.55 2.7 2.85 3

Using the formula (0.018) T = 
1.5

3.0 A

x
dxz , calculate T, the time (in seconds) for the level

of the water to drop from 3.0 m to 1.5 m above the orifice.

Sol. Here h = 0.15

The table of values of x and the corresponding values of 
A

x
 is

x 1.5 1.65 1.8 1.95 2.1 2.25 2.4 2.55 2.7 2.85 3

y = 
A

x
1.025 1.081 1.132 1.182 1.249 1.308 1.375 1.438 1.498 1.571 1.632

Using Simpson’s 1/3rd rule, we get

1 5

3 0 15
3.

.z =A

x
dx [(1.025 + 1.632) + 4(1.081 + 1.182 + 1.308 + 1.438 + 1.571)

+ 2(1.132 + 1.249 + 1.375 + 1.498)]
= 1.9743

Using the formula

(0.018)T = 
1 5

3

.z A

x
dx

We get 0.018T = 1.9743 ⇒ T = 110 sec. (approximately).

ASSIGNMENT

1. (i) Evaluate 
1

2 1z x
dx  by Simpson’s 1/3rd rule with four strips and determine the error by direct

integration. [G.B.T.U. (MCA) 2010]

(ii) Evaluate the integral 
0

1
1z +e dxx  using Simpson’s 1/3 rule by dividing the interval of

integration into 8 equal parts. (G.B.T.U. 2013, 2011)

2. Compute 
0

2π /z  sin x dx using Simpson’s three-eighth rule of integration, taking h = 
π

18
.

(U.P.T.U. 2007)

3. Evaluate log
.

e x dx
4

5 2z  by Simpson’s 3/8th rule. [G.B.T.U. (C.O.) 2011]

4. (i) Find the value of  
0

2
21 0 162

π /
. sinz − x  dx using Simpson’s one-third rule taking 6 sub-

intervals. (U.P.T.U. 2007)
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(ii) Find the approximate value of the following integral using Simpson’s rule by dividing the

interval into six equal parts: 
0

21 3
πz + cos x dx . (M.T.U. 2012)

5. (i) Use Simpson’s 1/3 rule to evaluate the integral of f(x) = 
sin ( )x

x
 with respect to x between

x = 0 and x = 1 with a value of h = 0.25. [G.B.T.U. MCA (SUM) 2010]

(ii) Evaluate 
0

8z x x dxsec  using eight intervals by Trapezoidal rule. (U.P.T.U. 2009)

(iii) State the need and scope of numerical integration. Use the Trapezoidal rule to estimate the

integral 
0

2 2z e dxx  taking the number of intervals 10. [G.B.T.U. (C.O.) 2010, U.P.T.U. 2008]

6. (a) Evaluate using Trapezoidal rule

(i) t t dtsin
0

πz (ii) t dt
t5 22

2

+−z
(b) Evaluate the integral 

0

2
10

πz −e t dtt sin  using

(i) Simpson’s 3/8 rule. (M.T.U. 2012)
(ii) Simpson’s rule with eight intervals. (U.P.T.U. 2014)

7. (i) Evaluate 
0

4z  ex dx by Simpson’s rule, given that e = 2.72, e2 = 7.39, e3 = 20.09, e4 = 54.6 and

compare it with the actual value.

(ii) Using Simpson’s 1/3 rule, evaluate 
0

3
22z −( )x x dx  by taking n = 6. (G.B.T.U. 2013)

8. (i) The velocities of a car running on a straight road at intervals of 2 minutes are given below:
Time (in minutes: 0 2 4 6 8 10 12
Velocity (in km/hr: 0 22 30 27 18 7 0
Apply Simpson’s rule to find the distance covered by the car. (G.B.T.U. 2011)

(ii) The velocity v of a particle at distance s from a point on its path is given by the table below:
s (in meter): 0 10 20 30 40 50 60
v (m/sec): 47 58 64 65 61 52 38

Estimate the time taken to travel 60 meters by using Simpson’s 
1
3

 rule. Compare the result

with Simpson’s 3/8 rule. (U.P.T.U. 2007, 2015 ; G.B.T.U. (C.O.) 2011]
(iii) The velocity ‘v’  of a particle at distance ‘s’ from a point on its linear path is given in the

following table:
s (m): 0 2.5 5 7.5 10 12.5 15 17.5 20
v (m/sec): 16 19 21 22 20 17 13 11 9
Apply Simpson’s rule to estimate the time taken by the particle to traverse the distance of 20
meters. (G.B.T.U. 2011)

9. The velocity of a train which starts from rest is given by the following table, time being reckoned
in minutes from the start and speed in kilometres per hour:
Minutes: 0 2 4 6 8 10 12 14 16 18 20
Speed (km/hr): 0 10 18 25 29 32 20 11 5 2 0

Estimate the total distance in 20 minutes. Hint.  Here step-size h =L
NM

O
QP

2
60

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com


520 A TEXTBOOK OF ENGINEERING MATHEMATICS

10. A rocket is launched from the ground. Its acceleration is registered during the first 80 seconds
and  is  given  in  the table below. Using Simpson’s 1/3rd rule, find the velocity of the rocket at
t = 80 seconds. (G.B.T.U. 2012)
t(sec): 0 10 20 30 40 50 60 70 80

f(cm/sec 2 ): 30 31.63 33.34 35.47 37.75 40.33 43.25 46.69 50.67.

11. (i) Find an approximate value of loge 5 by calculating to 4 decimal places, by Simpson’s 1/3rd

rule, 
0

5

4 5z +
dx
x

 dividing the range into 10 equal parts.

(ii) Find the value of loge 2 from 
0

1 2

31

.z +
x

x
dx  using Simpson’s 1/3rd rule by dividing the range of

integration into four equal parts. Also find the error.

12. In an experiment, a quantity G was measured as follows:

G(20) = 95.9, G(21) = 96.85, G(22) = 97.77, G(23) = 98.68, G(24) = 99.56, G(25) = 100.41,
G(26) = 101.24.

Compute 
20

26z G(x dx)  by Simpson’s rule.

13. Using the data of the following table, compute the integral 
0 5

1 1

.

.z xy dx  by Simpson’s rule:

x: 0.5 0.6 0.7 0.8 0.9 1.0 1.1

y: 0.4804 0.5669 0.6490 0.7262 0.7985 0.8658 0.9281

14. Apply Simpson’s 1/3rd rule to evaluate the integral I = 
0

1z e dxx  by choosing step size h = 0.1

Show that this step size is sufficient to obtain the result correct to five decimal places.

15. (i) Use Simpson’s rule dividing the range into ten equal parts to show that:

0

1 2

2
1

1z +
+

log ( )x

x
dx  = 0.173

(ii) Evaluate 
0

2

2 1z + +
dx

x x
 to three decimals, dividing the range of integration into 8 equal parts.

(U.P.T.U. 2007)

(iii) Compute I = 
0 2

1 5 2

.

.z −e dxx  using Simpson’s 1
3
F
HG
I
KJ

rd rule with four subdivisions.

(iv) Using Simpson’s 1/3rd formula, evaluate 
0

1

3 1z + +
dx

x x
 choose with steplength 0.25.

(U.P.T.U. 2009)

16. (i) Using 3/8th Simpson’s rule, Evaluate: 
0

6

41z +
dx

x
.

(ii)  Evaluate 
0

9

3
1

1z + x
dx  by using Simpson’s three-eighth rule. [G.B.T.U. (M.Tech.) 2010]
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(iii) State Simpson’s three-eighth rule. Using this rule, evaluate the following integral

0

6

51z +
x

x
 dx (U.P.T.U. 2015)

17. A solid of revolution is formed by revolving the area y = f(x) from x = 1 to x = 3 about the x-axis.
The following table gives relation between x and y for this curve:
x: 1 1.5 2 2.5 3

y: 1 0.9896 0.9589 0.9089 0.8415

Using Simpson’s one-third rule, estimate the volume of the solid formed. (M.T.U. 2013)
18. (i) Find the distance between two stations from the following data consisting of the speeds v(t) of

an electric train at various times t after leaving one station until it stops at the next station.
Apply Simpson’s rule:
v (miles/hr): 0 13 33 39.5 40 40 36 15 0
t (min): 0 0.5 1 1.5 2 2.5 3 3.5 4

Hint. Here h =L
NM

O
QP

1
120

(G.B.T.U. 2012)

(ii) The speed of a train at various times after leaving one station until it stops at another station
are given in the following table:
Speed (in mph): 0 13 33 39.5 40 40 36 15 0
Time (in minutes): 0 0.5 1 1.5 2 2.5 3 3.25 3.5

Find the distance between the two stations using trapezoidal rule, Simpson’s 
1
3

 rule and

Simpson’s 
3
8

 rule. (M.T.U. 2013)

Hint. Since time interval is not same, hence,

taking ands v dt v dt v dt h= = + =

L

N
MMM

O

Q
PPPz z z0

3 5

0

3

3

3 5
0 5 0 25

. .
( . . )

19. A curve is drawn to pass through the points given by the following table:

x : 1 1.5 2 2.5 3 3.5 4

y : 2 2.4 2.7 2.8 3 2.6 2.1

Find

(i) Centre of gravity of the area. (ii) Volume of the solid of revolution.

(iii) The area bounded by the curve, the x-axis and lines x = 1, x = 4.

20. (i) Obtain the global truncation error term of trapezoidal method of integration.

(ii) Derive an expression for error estimation in Simpson’s one-third rule. (U.P.T.U. 2008)

(iii) Derive Simpson’s 3/8th rule. [U.P.T.U. (MCA) 2009; U.P.T.U. 2009]

Answers
1. (i) 0.69325 ; 0.0001 (ii) 4.67078 2. 0.974353 3. 1.8278

4. (i) 1.505103 (ii) 5.4059

5. (i) 0.946058 (ii) – 6.435936 (iii) 17.1702

6. (a) (i) 3.14 (ii) – 0.747 (b) (i) – 0.24245 (ii) 0.39466
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7. (i) 53.87, 53.60 (ii) 0

8. (i) 3
5
9

km (ii) 1.063521 sec, 1.0643752 sec (iii) 1.26164 sec

9. 5.156 km 10. 30.87 m/sec 11. (i) 1.61 (ii) 0.693255; 0.0001078

12. 591.85333 13. 0.358487 14. 1.718282782

15. (ii) 0.824 (iii) 0.658596 (iv) 0.6305

16. (i) 1.019286497 (ii) 1.124955 (iii) 0.646382112

17. 5.638478 18. (i) 1.8 miles (ii) 1.666 miles, 1.666 miles, 1.6671875 miles

19. (i) (2.53, 1.31) (ii) 64.07 (iii) 7.7833

5.19 INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS

A physical situation that concerns with the rate of change of one quantity with respect to
another gives rise to a differential equation.

Consider the first order ordinary differential equation

dy
dx

 = f (x, y) ...(1)

with the initial condition y(x0) = y0 ...(2)
Many analytical techniques exist for solving such equations. But these methods can be

applied to solve only a selected class of differential equations.
However, a majority of differential equations appearing in physical problems cannot be

solved  analytically.  Thus  it  becomes  imperative  to  discuss  their  solution  by  numerical
methods.

In  numerical  methods,  we  donot  proceed  in  the  hope  of  finding  a  relation  between
variables but we find the numerical values of the dependent variable for certain values of
independent variable.

5.20 INITIAL-VALUE AND BOUNDARY-VALUE PROBLEMS (M.T.U. 2012)

Problems in which all the conditions are specified at the initial point only are called initial-
value problems. For example, the problem given by eqns. (1) and (2) is an initial value
problem.

Problems involving second and higher order differential equations, in which the condi-
tions at two or more points are specified, are called boundary-value problems.

To obtain a unique solution of nth order ordinary differential equation, it is necessary to
specify n values of the dependent variable and/or its derivative at specific values of independ-
ent variable.

5.21 SINGLE-STEP AND MULTI-STEP METHODS

The numerical  solutions  are obtained step-by-step through a series of equal intervals in the
independent variable so that as soon as the solution y has been obtained at x = xi , the next
step consists of evaluating yi+1 at x = xi+1. The methods which require only  the numerical
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value yi in order to compute the next value yi+1  for solving equation (1) given above are termed
as single-step methods.

The methods which require not only the numerical value yi but also  at least one of the
past values yi–1, yi–2, ...... are termed as multi-step methods.

5.22 COMPARISON OF SINGLE-STEP AND MULTI-STEP METHODS

The single-step method has obvious advantages over the multi-step methods that use several
past values (yn, yn–1, ......, yn–p) and that require initial values (y1, y2, ......, yn) that have to be
calculated by another method.

The major disadvantage of single-step method is that they use many more evaluations
of the derivative to attain the same degree of accuracy compared with the multi-step methods.

5.23 NUMERICAL METHODS OF SOLUTION OF O.D.E.

Here, we will discuss various numerical methods of solving ordinary differential equations.
We must know that these methods will yield the solution in one of the two forms:
(a) A series for y in terms of powers of x from which the value of y can be obtained by

direct substitution.
(b) A set of tabulated values of x and y.
Picard’s method belong to class (a) while those of Euler’s, Runge-Kutta, etc., belong to

class (b). Methods which belong to class (b) are called step-by-step methods or marching
methods because the values of y are computed by short steps ahead for equal intervals of  the
independent variable.

In Euler’s and Runge-Kutta methods, the interval range h should be kept small hence
they can be applied  for tabulating y only over a limited range.

5.24 PICARD’S METHOD OF SUCCESSIVE APPROXIMATIONS

Emile Picard (1856–1941) was a distinguished Professor of Mathematics at the University
of Paris, France. He was famous for his researches on the Theory of Functions.

Consider the differential equation

dy
dx

 = f (x, y); y(x0) = y0 ...(1)

Integrating eqn. (1) between the limits x0 and x and the corresponding limits y0 and y,
we get

 
y

y

x

x
dy f x y dx

0 0
z z= ( , )

⇒ y – y0 = 
x

x
f x y dx

0
z ( , )

or, y = y0 + 
x

x
f x y dx

0
z ( , ) ...(2)

In equation (2), the  unknown function y appears under the integral sign. Such type of
equation is called  integral equation.
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This equation can be solved by the method of successive approximations or iterations.
To obtain the first approximation, we replace y by y0 in the RHS of eqn. (2).
Now, the first approximation is

 y(1) = y0 + 
x

x
f x y dx

0
0z ( , ) ...(3)

The integrand is a function of x alone and can be integrated.
For a second approximation, replace y0 by y(1) in f (x, y0) which gives

 y(2) = y0 + 
x

x
f x y dx

0
z { , }(1) ...(4)

Proceeding in this way,  we obtain y(3), y(4), ......., y(n–1) and y(n) where

 y(n) = y0 + 
x

x
nf x y dx

0

1z −{ , }( )  with y(x0) = y0

As a matter of fact, the process is stopped when the two values of y viz. y(n–1) and y(n) are
same to the desired degree of accuracy.

Picard’s method is of theoretical value considerably. Practically, it is unsatisfactory
because of the difficulties which arise in performing the necessary integrations. However,
each step gives a better approximation of the required solution than the preceding one.

EXAMPLES

Example 1. Use Picard’s method to obtain y for x = 0.2. Given:

 
dy
dx

 = x – y with initial  condition y = 1 when x = 0.

Sol.  Here  f(x, y) = x – y, x0 = 0, y0 = 1
We have first  approximation,

  y(1) = y0 + f x y dx
x

( , )0
0z  = 1 + ( )x dx

x
−z 1

0
 = 1 – x + 

x2

2
Second  approximation,

  y(2) = y0 + 
0

1
x

f x y dxz { , }( )  = 1 + 
0

x
x y dxz −{ }(1)

= 1 + 
0

2

1
2

x
x x

x
dxz − + −

F
HG

I
KJ  = 1 – x + x2 – 

x3

6

Third approximation,

  y(3) = y0 + 
0

2
x

f x y dxz { , }( )  = 1 + 
0

2
x

x y dxz −{ }( )

= 1 + 
0

2
3

1
6

x
x x x

x
dxz − + − +

F
HG

I
KJ  = 1 – x + x2 – 

x x3 4

3 24
+
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Fourth approximation,

 y(4) = y0 + 
0

3)
x

f x y dxz { , }(  = 1 + 
0

3)
x

x y dxz −{ }(

= 1 + 
0

2
3 4

1
3 24

x
x x x

x x
dxz − + − + −

F
HG

I
KJ

= 1 – x + x2 – 
x x x3 4 5

3 12 120
+ −

When x = 0.2, we get

  y(1) = 0.82, y(2) = 0.83867, y(3) = 0.83740, y(4) = 0.83746

Since y(3) and y(4) are same upto four decimal places, therefore,

 y(0.2) = 0.8374.

Example 2. Using Picard’s method of successive approximations, obtain a solution up

to fifth approximation of the equation 
dy
dx

 = y + x such that y = 1 when x = 0.

Sol. We have,

 f(x, y) = y + x, x0 = 0, y0 = 1

First approximation,

  y(1) = y0 + 
x

x

0
z  f(x, y0) dx = y0 + 

0

xz  (x + y0) dx

= 1 + 
0

xz  (x + 1) dx = 1 + x + 
x2

2
Second approximation,

 y(2) = y0 + 
0

xz  f{x, y(1)} dx = 1 + 
0

xz  {x + y(1)} dx

= 1 + 
0

2

1
2

x
x x

xz + + +
F
HG

I
KJ  dx = 1 + x + x2 + 

x3

6
Third approximation,

  y(3) = y0 + 
0

xz  f{x, y(2)} dx = 1 + 
0

xz  {x + y(2)} dx

= 1 + 
0

2
3

1
6

x
x x x

xz + + + +
F
HG

I
KJ  dx = 1 + x + x2 + 

x x3 4

3 24
+

Fourth approximation,

  y(4) = y0 + 
0

3)
x

f x y dxz { , }(

= 1 + 
0

2
3 4

1
3 24

x
x x x

x x
dxz + + + + +

F
HG

I
KJ

= 1 + x + x2 + 
x x x3 4 5

3 12 120
+ +
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Fifth approximation,

  y(5) = y0 + 
0

4
x

f x y dxz { , }( )

= 1 + 
0

2
3 4 5

1
3 12 120

x
x x x

x x x
dxz + + + + + +

F
HG

I
KJ

= 1 + x + x2  + 
x x x x3 4 5 6

3 12 60 720
+ + +

Example 3. If dy
dx

y x
y x

= −
+

, find the value of y at x = 0.1 using Picard’s method. Given

that y(0) = 1.

Sol. First approximation,

 y(1) = y0 + 
y x
y x

dx
x

0

00

−
+z  = 1 + 

0

1
1

x x
x

dxz −
+
F
HG
I
KJ

= 1 + 
0

2
1

1
x

x
dxz +

−
F
HG

I
KJ  = 1 – x + 2 log (1 + x)

Second approximation,

  y(2) = 1 + x – 2 
0 1 2 1

x x dx
xz + +log ( )

which is difficult to integrate.
Thus, when x = 0.1, y(1) = 1 – 0.1 + 2 log (1.1) = 1.09062
Here in this example, only I approximation can be obtained and so it gives the approxi-

mate value of y for x = 0.1.

Example 4. Given the differential equation 
dy
dx

x

y 1

2

2
=

+
 with the initial condition y = 0

when x = 0. Use Picard’s method to obtain y for x = 0.25, 0.5 and 1.0 correct to three decimal
places.

Sol. The given initial value problem is

 
dy
dx

 = f(x, y) = 
x

y

2

2 1+
where y0 = 0 at x0 = 0

We have first approximation,

 y(1) = y0 + 
x

x
f x y dx

0
0z ( , )  = 0 + 

0

2

0 1

x xz +  dx = 
1
3

x3 ...(1)

Second approximation,

 y(2) = y0 + 
x

x
f x y dx

0

1z { , }( )
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= 0 + 
0

2

3 2

3
1

x x

x
dxz F

HG
I
KJ +

 = tan–1 x3

3

= 
1
3

x3 – 1
3

1
3

3
3

xFHG
I
KJ  + ... = 

1
3

x3 – 
1

81
 x9 + ... ...(2)

From (1) and (2), we see that y(1) and y(2) agree to the first term 
x3

3
. To find the range of

values of x so that  the series with the term 
1
3

x3 alone will give the result correct to three

decimal places, we put

 
1

81
x9 ≤ 0.0005

which gives, x9  ≤ 0.0405 or x ≤ 0.7

Hence,  y(0.25) = 
1
3

 (0.25)3 = 0.005 and y(0.5) = 
1
3

(0.5)3 = 0.042

To find y(1.0), we make use of eqn. (2) which gives,

 y(1.0) = 
1
3

 – 
1

81
 = 0.321.

5.25 PICARD’S METHOD FOR SIMULTANEOUS FIRST ORDER DIFFERENTIAL
EQUATIONS

Let
dy
dx

 = φ(x, y, z) and
dz
dx

 = f(x, y, z)

be the simultaneous differential equations with initial conditions y(x0) = y0; z(x0) = z0.

Picard’s method gives

 y(1) = y0 + 
x

x
x y z dx

0
0 0z φ( , , ) ; z(1) = z0 + 

x

x
f x y z dx

0
0 0z ( , , )

  y(2) = y0 + 
x

x
x y z dx

0

1 1z φ{ , , }( ) ( ) ; z(2) = z0 + 
x

x
f x y z dx

0

1 1z { , , }( ) ( )

and so on as successive approximations.

5.26 PICARD’S METHOD FOR SECOND ORDER DIFFERENTIAL EQUATIONS

Consider the second order differential equation

  
d y
dx

2

2  = f x y
dy
dx

, ,F
HG

I
KJ
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By putting 
dy
dx

 = z, it can be reduced to two first order simultaneous differential equa-

tions:

 
dy
dx

 = z and
dz
dx

 = f(x, y, z)

which can be solved easily as explained in art. 5.25.

EXAMPLES

Example 1. Approximate y and z by using Picard’s method for the particular solution of
dy
dx

 = x + z, 
dz
dx

 = x – y2 given that y = 2, z = 1 when x = 0. (G.B.T.U. 2011)

Sol. Let φ(x, y, z) = x + z, f(x, y, z) = x – y2

Here,    x0 = 0, y0 = 2, z0 = 1

We have,  
dy
dx

 = φ(x, y, z) ⇒ y = y0 + 
x

x
x y z dx

0
z φ( , , ) ...(1)

Also,  
dz
dx

 = f(x, y, z) ⇒ z = z0 + 
x

x
f x y z dx

0
z ( , , ) ...(2)

First approximation,

 y(1) = y0 + 
x

x
x y z dx

0
0 0z φ( , , )  = 2 + 

0
0

x
x z dxz +( )

= 2 + 
0

1
x

x dxz +( )  = 2 + x + 
x2

2

and   z(1) = z0 + 
x

x
f x y z dx

0
0 0z ( , , )  = 1 + 

0
0

2
x

x y dxz −( )

= 1 + 
0

4
x

x dxz −( )  = 1 – 4x + 
x2

2
Second approximation,

 y(2) = y0 + 
x

x
x y z dx

0

1 1z φ{ , , }( ) ( )
 = 2 + 

0

1
x

x z dxz +{ }( )

= 2 + 
0

2

1 4
2

x
x x

x
dxz + − +

F
HG

I
KJ  = 2 + x – 

3
2

 x2 + 
x3

6

  z(2) = z0 + 
x

x
f x y z dx

0
z { , , }(1) (1)

= 1 + 
0

2 2

2
2

x
x x

x
dxz − + +

F
HG

I
KJ

L

N
MM

O

Q
PP

= 1 – 4x – 
3
2

x2 – x3 – 
x4

4
 – 

x5

20
.
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Example 2. Solve by Picard’s method, the differential equations 
dy
dx

 = z,
dz
dx

 = x3 (y + z)

where y = 1, z = 
1
2

at x = 0. Obtain the values of y and z from III approximation when

x = 0.2 and x = 0.5.
Sol. Let φ(x, y, z) = z, f(x, y, z) = x3(y + z)

Here  x0 = 0, y0 = 1, z0 = 
1
2

First approximation,

  y(1) = y0 + 
0

0 0

x
x y z dxz φ( , , )  = 1 + 

0
0

x
z dxz  = 1 + 

1
2

 x

  z(1) = z0 + 
0

0 0
0

3
0 0

1
2

x x
f x y z dx x y z dxz z= + +( , , ) ( )  = 

1
2

3
8

4+ x .

Second approximation,

  y(2) = 1 + 
0

1
x

z dxz ( )  = 1 + 
0

41
2

3
8

x
x dxz +FHG
I
KJ  = 1 + 

x
2

3
40

+  x5

 z(2) = 
1
2 0

3 1 1+ +z x x y z dx{ }( ) ( )

= 
1
2

3
2 2

3
80

3 4+ + +F
HG

I
KJz x x

x
x dx  = 

1
2

3
8 10

3
64

4
5

8+ + +x
x

x

Third approximation,

 y(3) = 1 + z dx
x

( )2

0z  = 1 + 
0

4 5 81
2

3
8 10

3
64

x x x x
dxz + + +

F
HG

I
KJ

= 1 + 
x

x
x x

2
3
40 60 192

5
6 9

+ + +

  z(3) = 
1
2

3 2 2

0
+ +z x y z dx

x
{ }( ) ( )

= 
1
2

3
2 2

3
8

7
40

3
640

3 4 5 8+ + + + +RST
UVWzx x

x
x x x dx

= 
1
2

3
8

+ x4 + 
x5

10
3

64
+ x8 + 

7
360

x9 + 
1

256
x12

When x = 0.2

 y(3) = 1 + 0.1 + 
3
40

(0.2)5 + 
( . )0 2

60
1

192

6

+  (0.2)9

= 1.100024 (leaving higher terms)

z(3) = 
1
2

3
8

+ (0.2)4 + 
( . )0 2

10
3

64

5

+ (0.2)8 + 
7

360
(0.2)9 + 

1
256

 (0.2)12

= 0.500632 (leaving higher terms)
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When x = 0.5

 y(3) = 1 + 
0 5
2

3
40

. + (0.5)5 + 
( . )0 5

60
1

192

6

+  (0.5)9 = 1.25234375

 z(3) = 
1
2

3
8

+ (0.5)4 + 
( . )0 5

10
3

64

5

+ (0.5)8 + 
7

360
(0.5)9 + 

1
256

(0.5)12

= 0.5234375.

Example 3. Use Picard’s method to approximate y when x = 0.1 given that

  
d y
dx

2

2  + 2x 
dy
dx

+ y = 0 and y = 0.5, 
dy
dx

 = 0.1 when x = 0.

Sol. We have,  
d y
dx

2

2  + 2x 
dy
dx

 + y = 0 ...(1)

Let
dy
dx

 = z so that eqn. (1) becomes 
dz
dx

 + 2xz + y = 0

Now the equations to be solved are

 
dy
dx

 = f(x, y, z) = z ...(2)

 
dz
dx

 = φ(x, y, z) = – (2xz + y) ...(3)

with the conditions  y0 = 0.5, z0 = 0.1 at x0 = 0
First approximation

 y(1) = y0 + 
x

x

0
z  f(x, y0, z0) dx = 0.5 + 

0

xz  z0 dx = 0.5 + 0.1 x

  z(1) = z0 + 
x

x

0
z  φ(x, y0, z0) dx = 0.1 + 

0

xz  [– (2x z0 + y0)] dx

= 0.1 – 
0

xz  (0.2x + 0.5) dx = 0.1 – 0.5x – 0.1x2

Second approximation

  y(2) = y0 + 
0

xz  f{x, y(1), z(1)} dx = 0.5 + 
0

xz  z(1) dx

= 0.5 + 
0

xz  (0.1 – 0.5x – 0.1x2) dx

= 0.5 + 0.1x – 0.25x2 – 
0 1
3
.

 x3

  z(2) = z0 + 
0

xz  φ {x, y(1), z(1)} dx = 0.1 – 
0

xz  [2x z(1) + y(1)] dx

= 0.1 – 
0

xz  [2x(0.1 – 0.5x – 0.1x2) + (0.5 + 0.1x)] dx
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NUMERICAL TECHNIQUES–II 531

= 0.1 – 
0

xz  (0.3x – x2 – 0.2x3 + 0.5) dx

= 0.1 – 0.5x – 0.3 
x x x2 3 4

2 3
0 1

2
+ + .

Third approximation

 y(3) = y0 + 
0

xz  f{x, y(2), z(2)} dx = 0.5 + 
0

xz  z(2) dx

= 0.5 + 
0

2
3

40 1 0 5 0 15
3

0 05
x

x x
x

xz − − + +
F
HG

I
KJ. . . .  dx

= 0.5 + 0.1x – 0.25x2 – 0.05x3 + 
x4

12
 + 0.01x5

z(3) = z0 + 
0

xz  φ {x, y(2), z(2)} dx = 0.1 – 
0

xz  [2x z(2) + y(2)] dx

= 0.1 – 
0

xz 2 0 1 0 5 0 15
3

0 05 0 5 0 1 0 25
0 1
3

2
3

4 2 3x x x
x

x x x x. . . . . . .
.− − + +

F
HG

I
KJ + + − −F
HG

I
KJ

L
N
MM

O
Q
PPdx

= 0.1 – 0.5x + 0.15x2 – 
2 5
6
.

x3 + 0.2x4 + 
2
15

x5 + 
0 1
6
.

x6

Now when x = 0.1, y(1) = 0.51, y(2) = 0.50746667, y(3) = 0.50745933
Since y(2) and y(3) are same up to four decimal places hence y(0.1) = 0.5074.

ASSIGNMENT

1. Find the solution of 
dy
dx

 = 1 + xy, y (0) = 1 in the interval (0, 0.5) correct to 3 decimal places taking

h = 0.1.

2. Solve numerically 
dy
dx

 = 2x – y, y(0) = 0.9 at x = 0.4 by Picard’s method with three iterations and

compare the result with the exact value.

3. Apply Picard’s method to find the solution of the initial value problem 
dy
dx

 = y – x, y (0) = 2. Show

that the iterative solution approaches the exact solution. (M.T.U. 2012)
4. Use Picard’s method to approximate the value of y when x = 0.1 given that y = 1 when x = 0 and

dy
dx

 = 3x + y2. (M.T.U. 2013)

5. (i) For the differential equation 
dy
dx

 = x – y2, y(0) = 0, calculate y(0.2) by Picard’s method to

third approximations and round off the value at 4th place of decimals.

(ii) Find an approximate value of y when x = 0.1 if  
dy
dx

 = x – y2 and y = 1 at x = 0 using Picard’s

method.
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532 A TEXTBOOK OF ENGINEERING MATHEMATICS

6. Employ Picard’s method to find y (0.2) and y (0.4) given that  
dy
dx

 = 1 + y2 and y (0) =  0.

7. Employ Picard’s method to obtain the solution of 
dy
dx

 = x2 + y2 for x = 0.4 correct to four places

of decimal given that y = 0 when x = 0.

8. Find y(0.2) if 
dy
dx

 = log10 (x + y); y(0) = 1. Use Picard’s method.

9. Solve by Picard’s method: d y

dx
x

dy
dx

y
2

2
3= +F
HG

I
KJ  where y = 1, dy

dx
= 1

2
 when x = 0, obtain the results

up to third approximation.

Answers
1.  x : 0 0.1 0.2 0.3 0.4 0.5

y : 1 1.105 1.222 1.355 1.505 1.677
2. 0.7432, 0.7439

3. y =  2 + 2x + 
x x x2 3 4

2 6 24
+ −  (up to third approx.); exact solution: y =  1 + x + ex

4. y = 1 + x + 
5
2

4
3

3
4

9
20

2 3 4 5x x x x+ + +  (up to second approx.)

5. (i) 0.019984, 0.0200 (ii) 0.9138 6. 0.2027, 0.4227
7. 0.0213 8. 1.0082

9. y(1) = 1 + 
x
2

, y(2) = 1 + 
x x
2

3
40

5
+ , y(3) = 1 + 

x x x x
2

3
40 60 192

5 6 9
+ + + .

5.27 EULER’S METHOD [G.B.T.U. (MCA) 2010]

It is the simplest one-step method and has a limited application because of its low accuracy.
This method  yields solution of an ordinary diff. eqn. in the form of a set of tabulated values.

In this method, we determine the change Δy is y
corresponding to small increase in the argument x. Consider
the differential equation

 
dy
dx

f x y= ( , ) , y(x0) = y0 ...(1)

Let y = g(x) be the solution of (1). Let x0, x1, x2 ...... be
equidistant values of x.

In this  method, we use the property that in a small
interval, a curve is nearly a straight line. Thus at the point
(x0, y0), we approximate the curve by the tangent at the point
(x0, y0).

Y

O
X

Q1

Q2

P0

x0 x1 x2

y0

y1

y2
slope f(x

, y )
0

0

slo
pe f(x

, y )
1

1

y
=

g(
x)
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NUMERICAL TECHNIQUES–II 533

The equation of the tangent at P0(x0, y0) is

y – y0 = 
dy
dx

x xF
HG
I
KJ P0

0( – ) = f(x0, y0) (x – x0)

⇒    y = y0 + (x – x0) f(x0, y0) ...(2)

This gives the y-coordinate of any point on the tangent. Since the curve is approximated
by the tangent in the interval (x0, x1), the value of y on the curve corresponding to x = x1 is
given by the above value of y in eqn. (2) approximately.

Putting x = x1(= x0 + h) in eqn. (2), we get
y1 = y0 + hf(x0, y0)

Thus Q1 is (x1, y1)
Similarly, approximating the curve in the next interval (x1, x2) by a line through

Q1(x1, y1)
 with slope f(x1, y1), we get

y2 = y1 + hf(x1, y1)

In general, it can be shown that,

 yn+1 = yn
 + hf(xn, yn)

This is called Euler’s formula.

A great disadvantage of this method lies in the fact that if 
dy
dx

 changes rapidly over an

interval, its value at the beginning of the interval may give a poor approximation as compared
to its average value over the interval and thus the value of y calculated from Euler’s method
may be in much error from its true value. These errors accumulate in the succeeding intervals
and the value of y becomes much erroroneous ultimately.

Note. In Euler’s method, the curve of actual solution y = g(x) is approximated by a sequence of short
lines. The process is very slow. If h is not properly chosen, the curve P0Q1Q2 ...... of short lines representing
numerical solution deviates significantly from the curve of actual solution.

5.28 IMPROVED EULER’S METHOD

The improved Euler’s method gives greater improvement in accuracy over the original Euler’s
method. Here the core idea is that we use a line through (x0, y0) whose slope is the average of
the slopes at (x0, y0)

 and (x1, y1
(1)) where y1

(1) = y0 + hf(x0, y0). This line approximates the curve
in the interval (x0, x1).

Geometrically, if L1 is the tangent at (x0, y0), L2 is

a line through (x1, y1
(1)) of slope f(x1, y1

(1)) and L  is the
line through (x1, y1

(1)) but with a slope equal to the aver-
age  of  f(x0, y0)  and  f(x1, y1

(1))  then  the  line  L  through

(x0, y0) and parallel to L  is used to approximate the curve
in the interval (x0, x1). Thus the ordinate of the point B
will give the value of y1. Now, the eqn. of the line AL is
given by

   y1 = y0 + (x1 – x0) 
f x y f x y( , ) ( , )(1)

0 0 1 1

2
+L

N
MM

O
Q
PP

Y

O
X

x0 x1

A L1

L2

L

L

B

(x , y )1 1

(x , y )1 1
(1)

(x , y )0 0

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
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= y0 + h 
f x y f x y( , ) ( , )( )

0 0 1 1
1

2
+L

NMM
O
QPP

...(1)

A generalized form of improved Euler’s formula is

 y1
(n+1) = y0 + 

h
2

 [f(x0, y0) + f{x1, y1
(n)}]  ; n = 0, 1, 2, ...... ...(2)

where y1
(n) is the nth approximation to y1.

The above iteration formula can be started by choosing y1
(1) from Euler’s formula

y1
(1) = y0 + hf(x0, y0) ...(3)

Since this formula attempts to correct the values of  yn+1 using the predicted value of
yn+1 (by Euler’s method), it is classified as a one-step predictor-corrector method.

5.29 MODIFIED EULER’S METHOD

In this method, the curve in the interval (x0, x1), where
x1 = x0 + h is approximated by the line through (x0, y0)

with slope f x
h

y
h

f x y0 0 0 02 2
+ +RST

UVW, ( , ) , which is the

slope at the middle point whose abscissa is the aver-
age of x0 and x1.

In the adjoining figure, line AL through A(x0, y0)

which is parallel to the line PL  with slope

f x
h

y
h

f x y0 0 0 02 2
+ +RST

UVW, ( , )  approximates the curve in

the interval (x0, x1). The ordinate at x = x1, meeting the
line L at B, will give the value of y1.

The equation for line AL is

y – y0 = (x – x0) f x
h

y
h

f x y0 0 0 02 2
+ +RST

UVW
L
NM

O
QP, ( , ) ...(1)

Putting x = x1 in (1), we get

 y1 = y0 + (x1 – x0) f x
h

y
h

f x y0 0 0 02 2
+ +RST

UVW
L
NM

O
QP, ( , )

⇒  y1 = y0 + h f x
h

y
h

f x y0 0 0 02 2
+ +RST

UVW, ( , )

Proceeding in the same way, we obtain

yn+1 = yn + h f x
h

y
h

f x yn n n n+ +RST
UVW2 2

, ( , ) ...(2)

which is the generalized form of modified Euler’s formula.

Y

O X
x0 x +0

A
L1

L

L
B

(x , y )1 1

(x , y )0 0

y0

h
2

x1

y1

h
2

y +0 f(x , y0 0)

P
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EXAMPLES

Example 1. Given 
dy
dx

y – x
y x

=
+

 with y = 1 for x = 0. Find y approximately for x = 0.1 by

Euler’s method.
Sol. We have

 
dy
dx

 = f(x, y) = 
y x
y x

–
+

 ; x0 = 0, y0 = 1, h = 0.1

Hence the approximate value of y at  x = 0.1 is given by
  y1 = y0 + hf(x0, y0) | Using yn+1 = yn + hf (xn, yn)

= 1 + (0.1) 
1 0
1 0

–
+
F
HG
I
KJ  = 1.1

Much better accuracy is obtained by breaking up the interval 0 to 0.1 into five steps.
The approximate value of y at xA = 0.02 is given by,

 y1 = y0 + hf(x0, y0) = 1 + (0.02) 
1 0
1 0

–
+
F
HG
I
KJ  = 1.02

At xB = 0.04,  y2 = y1 + hf(x1, y1) = 1.02 + (0.02) 
1.02 – 0.02
1.02 0.02+
F
HG

I
KJ  = 1.0392

At xC = 0.06,  y3 = 1.0392 + (0.02) 1.0392 – .04
1.0392 .04

0
0+

F
HG

I
KJ  = 1.0577

At xD = 0.08,  y4 = 1.0577 + (0.02) 
1.0577 – .06
1.0577 .06

0
0+

F
HG

I
KJ  = 1.0756

At xE = 0.1, y5 = 1.0756 + (0.02) 
1.0756 – .08
1.0756 .08

0
0+

F
HG

I
KJ  = 1.0928

Hence y = 1.0928 when x = 0.1

Y

O
X

A�

A
B

C

D

E

B� C� D� E�
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Example 2. Solve the equation 
dy
dx

1 – y=  with the initial condition x = 0, y = 0 using

Euler’s algorithm and tabulate the solutions at x = 0.1, 0.2, 0.3.
Sol. Here, f(x, y) = 1 – y
Taking h = 0.1, x0 = 0, y0 = 0, we obtain

 y1 = y0 + hf(x0, y0) = 0 + (0.1) (1 – 0) = 0.1
∴   y(0.1) = 0.1
Again,  y2 = y1 + hf(x1, y1) = 0.1 + (0.1) (1 – 0.1) = 0.1 + 0.09 = 0.19
∴ y(0.2) = 0.19
Again,  y3 = y2 + hf(x2, y2) = 0.19 + (0.1) (1 – 0.19) = 0.271
∴   y(0.3) = 0.271
Tabulated values are

x y(x)

0 0
0.1 0.1
0.2 0.19
0.3 0.271

Example 3. Use Euler’s method to obtain an approximate value of y(0.4) for the equation
y′ = x + y, y(0) = 1 with h = 0.1.

Sol. Here, f(x, y) = x + y
Taking h = 0.1, x0 = 0, y0 = 1, we obtain

 y1 = y0 + h f(x0, y0) = 1 + (0.1) (0 + 1) = 1.1
∴  y(0.1) = 1.1
Again,  y2 = y1 + h f(x1, y1) = 1.1 + (0.1) (0.1 + 1.1) = 1.22
∴    y(0.2) = 1.22
Again,  y3 = y2 + h f(x2, y2) = 1.22 + (0.1) (0.2 + 1.22) = 1.362
∴ y(0.3) = 1.362
Again,  y4 = y3 + h f(x3, y3) = 1.362 + (0.1) (0.3 + 1.362) = 1.5282
∴   y(0.4) = 1.5282
Example 4. Solve the following differential equation using Euler’s method from x = 0 to

x = 0.2 when h = 0.05.

 
dy
dx

 + xy = 0, y(0) = 1

Sol. Here, f(x, y) = – xy
Taking h = 0.05, x0 = 0, y0 = 1, we obtain

 y1 = y0 + h f (x0, y0) = 1 + (0.05) {– (0 × 1)} = 1
∴  y (0.05) = 1
Again,  y2 = y1 + h f (x1, y1) = 1 + (0.05) {– (0.05 × 1)} = 0.9975
∴ y(0.1) = 0.9975
Again,  y3 = y2 + h f (x2, y2) = 0.9975 + (0.05) {– (0.1 × 0.9975)} = 0.9925125
∴ y(0.15) = 0.9925125
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Again,  y4 = y3 + h f(x3, y3) = 0.9925125 + (0.05) {– (0.15) (0.9925125)}
= 0.985068656

∴ y(0.2) = 0.985068656
Hence, in tabular form, we can write

x 0 0.05 0.10 0.15 0.2

y 1 1 0.9975 0.9925125 0.985068656

Example 5. Find y(0.1) using improved Euler’s method and then y(0.2) by using modified

Euler’s method, given that 
dy
dx

 = log (x + y), y(0) = 1.0 (U.P.T.U. 2007)

Sol. Here  f(x, y) = log (x + y)
Also,  x0 = 0, y0 = 1, h = 0.1
Using improved Euler’s method, we get

y1
(1) = y0 + h f(x0, y0) = 1 + (0.1) log (0 + 1) = 1

   y1
(2) = y0 + 

h
2

 [f(x0, y0) + f{x1, y1
(1)}]

= 1 + 
( )0

2
.1

 [0 + log(0.1 + 1)] = 1.0047655

   y1
(3) = y0 + 

h
2

 [f(x0, y0) + f{x1, y1
(2)}]

= 1 + 
( )0

2
.1

 [0 + log (0.1 + 1.0047655)] = 1.0049816

   y1
(4) = y0 + 

h
2

 [f(x0, y0) + f{x1, y1
(3)}]

= 1 + 
( )0

2
.1

 [0 + log(0.1 + 1.0049816)] = 1.0049914

Since y1
(3) and y1

(4) are same up to four decimal places
∴  y1 = y(0.1) = 1.0049
Again,  x1 = 0.1, y1 = 1.0049, h = 0.1
Using modified Euler’s method, we get

  y2 = y1 + h f x
h

y
h

f x y1 1 1 12 2
+ +RST

UVW, ( , )

= 1.0049 + (0.1) log x
h

y
h

f x y1 1 1 12 2
+ + +RST

UVW( , )

= 1.0049 + (0.1) log [0.1 + 0.05 + 1.0049 + (0.05) log (0.1 + 1.0049)]
= 1.0197323

∴  y(0.2) = 1.0197323

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
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Example 6. Apply modified Euler’s method to solve

 
dy
dx

 = ex + xy, y(0) = 0  to compute y(0.1) and y(0.2).

Sol. Here,  f(x, y) = ex + xy
We have,  x0 = 0, y0 = 0, h = 0.1
Using modified Euler’s method, we obtain

 y1 = y0 + h f x
h

y
h

f x y0 0 0 02 2
+ +RST

UVW, ( , )

= 0 + (0.1) [e0.05 + (0.05) (0.05) (e0 + 0)] = 0.105377
∴  y(0.1) = 0.105377

Again,   y2 = y1 + h f x
h

y
h

f x y1 1 1 12 2
+ +RST

UVW, ( , )

= 0.105377 + (0.1) [e0.15 + (0.15) {(0.105377) + (0.05) (e0.1 + 0.0105377)}]
= 0.105377 + (0.1) [e0.15 + (0.15) (0.16116243)] = 0.22397786

∴  y(0.2) = 0.22397786.

ASSIGNMENT

1. Using Euler’s method, compute y(0.04) for the differential equation

dy
dx

 = – y;  y(0) = 1. Take h = 0.01. (U.P.T.U. 2007)

2. Apply Euler’s method to solve 
dy
dx

 = x + y; y(0) = 0 choosing h = 0.2 and compute y(0.4), y(0.6),

y(0.8) and y(1.0).

3. If 
dy
dx

 =  1 + y2, y(0) = 1, find y(0.4) by using Euler’s method. Take h = 0.2.

[G.B.T.U. (C.O.) 2011]

4. Given that 
dy
dx

 = log10 (x + y); y(0) = 1

Find y(0.2) and y(0.5) using improved Euler’s method.

5. Using improved Euler’s method, obtain a solution of the equation 
dy
dx

 = x + | y  | = f(x, y)

with initial condition y = 1 at x = 0 for the range 0 ≤ x ≤ 0.6 in steps of 0.2.

6. Use Euler’s modified method to obtain y(0.25) given that y′ = 2xy, y(0) = 1

7. Solve y′ = x2 + y, y(0) = 1 to obtain y(0.02) and y(0.04) using Euler’s modified method.

8. Solve 
dy
dx

 = y – 
2x
y ; y(0) = 1 in the range 0 ≤ x ≤ 0.2 using

(i) Improved Euler’s method (ii) Modified Euler’s method.
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Answers
1. y(0.04) = 0.960596
2. y(0.4) = 0.04, y(0.6) = 0.128, y(0.8) = 0.2736, y(1.0) = 0.48832
3. y(0.4) = 1.992 4. y(0.2) = 1.0082, y(0.5) = 1.0490
5. y(0.2) = 1.2309, y(0.4) = 1.5253, y(0.6) = 1.8861
6. y(0.25) = 1.0625 7. y(0.02) = 1.0202, y(0.04) = 1.0408
8.

x Improved Euler’s Modified Euler’s
method method

0 1 1

0.1 1.095 1.0954762

0.2 1.1828 1.1832984

5.30 RUNGE-KUTTA METHODS

More efficient methods in terms of accuracy were developed by two German Mathematicians
Carl Runge (1856–1927) and Wilhelm Kutta (1867–1944). These methods are well-known
as Runge-Kutta methods. They are distinguished by their orders in the sense that they
agree with Taylor’s series solution upto terms of hr, where r is the order of the method.

These methods donot demand prior computation of higher derivatives of y(x) as in Taylor’s
method. In place of these derivatives, extra values of the given function f(x, y) are used.

Fourth order Runge-Kutta method is widely used for finding the numerical solutions of
linear or non-linear ordinary differential equations.

Runge-Kutta methods are referred to a single step methods. The major disadvantage of
Runge-Kutta methods is that they use many more evaluations of the derivative f(x, y) to obtain
the same accuracy compared with multi-step methods. A class of methods known as Runge-
Kutta methods combines the advantage of high order accuracy with the property of being one
step.

5.30.1. First Order Runge-Kutta Method
Consider the differential equation

dy
dx

 = f(x, y);  y (x0) = y0 ...(1)

Euler’s method gives

y1 = y0 + hf(x0, y0) = y0 + hy0′ ...(2)

Expanding by Taylor’s series, we get

 y1 = y(x0 + h) = y0 + hy0′ + 
h2

2 !
 y0″ + ... ...(3)

Comparing (2) and (3), it follows that Euler’s method agrees with Taylor’s series solution
up to the term in h. Hence Euler’s method is the first order Runge-Kutta method.
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5.30.2. Second Order Runge-Kutta Method

Consider the differential equation

y′ = f(x, y) with the initial condition y(x0) = y0

Let h be the interval between equidistant values of x then in second order Runge-Kutta
method, the first increment in y is computed from the formulae

 k1 = hf (x0, y0)

 k2 = hf(x0 + h, y0 + k1)

Δy = 1
2 (k1 + k2)

taken in the given order.

Then,  x1 = x0 + h

 y1 = y0 + Δy = y0 + 1
2  (k1 + k2)

In a similar manner, the increment  in y for the second interval is computed by means
of the formulae,

 k1 = hf (x1, y1)

 k2 = hf (x1 + h, y1 + k1)

Δy = 1
2 (k1 + k2)

and similarly for the next intervals.

The inherent error in the second order Runge-Kutta method is of order h3.

5.30.3. Third Order Runge-Kutta Method
This method gives the approximate solution of the initial value problem

 
dy
dx

 = f (x, y); y(x0) = y0 as

 y1 = y0 + Δy ...(1)

where   Δy = 
h
6

(k1 + 4k2 + k3)

Here,  k1 = f (x0, y0)

 k2 = f x
h

y
k

0 0
1

2 2
+ +RST

UVW,

 k3 = f (x0 + h, y0 + k′); k′ = hf (x0 + h, y0 + k1)

Formula (1) can be generalised for successive approximations. Expression in (1) agrees
with Taylor’s series expansion for y1 up to and including terms in h3. This method is also
known as Runge’s method.

5.31 FOURTH ORDER RUNGE-KUTTA METHOD (U.P.T.U. 2015)

It is one of the most widely used methods and is particularly suitable in cases when the
computation of higher derivatives is complicated.

UVW
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Consider the differential equation y′ = f(x, y) with the initial condition y(x0) = y0. Let h
be the interval between equidistant values of x then the first increment in y is computed from
the formulae

  k1 = hf (x0, y0)

  k2 = hf x
h

y
k

0 0
1

2 2
+ +F

HG
I
KJ,

  k3 = hf x
h

y
k

0 0
2

2 2
+ +F

HG
I
KJ, ....(1)

  k4 = hf (x0 + h, y0 + k3)

 Δy = 
1
6

 (k1 + 2k2 + 2k3 + k4)

taken in the given order.
Then,   x1 = x0 + h and y1 = y0 + Δy
In a similar manner, the increment in y for the second interval is computed by means of

the formulae
  k1 = hf (x1, y1)

  k2 = hf x
h

y
k

1 1
1

2 2
+ +F

HG
I
KJ,

  k3 = hf x
h

y
k

1 1
2

2 2
+ +F

HG
I
KJ,

  k4 = hf (x1 + h, y1 + k3)

  Δy = 
1
6

(k1 + 2k2 + 2k3 + k4)

and similarly for the next intervals.
This method is also termed as Runge-Kutta’s method simply.
It is to be noted that the calculations for the first increment are exactly the same as for

any other increment. The change in the formula for the different intervals is only in the values
of x and y to be substituted. Hence to obtain Δy for the nth interval, we substitute xn–1, yn–1, in
the expressions for k1, k2, etc.

The inherent error in the fourth order Runge-Kutta method is of order h5.

5.32 RUNGE-KUTTA METHOD FOR SIMULTANEOUS FIRST ORDER EQUATIONS

Consider the simultaneous equations

dy
dx

 = f1(x, y, z) ...(1)

dz
dx

 = f2 (x, y, z) ...(2)

with the initial conditions y(x0) = y0 and z(x0) = z0. Now, starting from (x0, y0, z0), the increments
k and l in y and z are given by the following formulae:

 k1 = hf1(x0, y0, z0); l1 = hf2(x0, y0, z0)

 k2 = hf1 x
h

y
k

z
l

0 0
1

0
1

2 2 2
+ + +F

HG
I
KJ, , ; l2 = hf2 x

h
y

k
z

l
0 0

1
0

1

2 2 2
+ + +F

HG
I
KJ, ,

U
V
||

W
||
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 k3 = hf1 x
h

y
k

z
l

0 0
2

0
2

2 2 2
+ + +F

HG
I
KJ, , ; l3 = hf2 x

h
y

k
z

l
0 0

2
0

2

2 2 2
+ + +F

HG
I
KJ, ,

   k4 = hf1(x0 + h, y0 + k3 , z0 + l3); l4 = hf2(x0 + h, y0 + k3 , z0 + l3)

    k = 
1
6

(k1 + 2k2 + 2k3 + k4);  l = 
1
6

(l1 + 2l2 + 2l3 + l4)

Hence,   y1 = y0 + k,  z1 = z0 + l

To compute y2, z2, we simply replace x0, y0, z0 by x1, y1, z1 in the above formulae.

5.33 RUNGE-KUTTA METHOD FOR SECOND ORDER DIFFERENTIAL EQUATIONS

Consider a second order differential equation

d y
dx

2

2  = φ x y
dy
dx

, ,F
HG

I
KJ ...(1)

with initial conditions y(x0) = y0, y′(x0) = y0′ ...(2)

Let
dy
dx

 = z so that 
d y
dx

dz
dx

2

2 = .

Substituting in equation (1), we get

dz
dx

 = φ (x, y, z)

with initial conditions y(x0) = y0, z(x0) = z0

Hence, the problem is reduced to solving the simultaneous equations

 
dy
dx

 = z = f1 (x, y, z) and
dz
dx

 = f2 (x, y, z)

subject to y(x0) = y0, z(x0) = z0.
Above simultaneous equations can be solved as explained in art. 5.32.

EXAMPLES

Example 1. Solve the equation 
dy
dx

 = x + y with initial condition y(0) = 1 by Runge-Kutta

rule, from x = 0 to x = 0.4 with h = 0.1. (M.T.U. 2014)
Sol. Here f(x, y) = x + y, h = 0.1, x0 = 0, y0 = 1
We have,

  k1 = hf (x0, y0) = 0.1 (0 + 1) = 0.1

  k2 = hf x
h

y
k

0 0
1

2 2
+ +F

HG
I
KJ,  = 0.1 (0.05 + 1.05) = 0.11

  k3 = hf x
h

y
k

0 0
2

2 2
+ +F

HG
I
KJ,  = 0.1105

  k4 = hf (x0 + h, y0 + k3) = 0.12105
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∴   Δy = 
1
6

(k1 + 2k2 + 2k3 + k4) = 0.11034

Thus,  x1 = x0 + h = 0.1 and y1 = y0 + Δy = 1.11034

Now for the second interval, we have

 k1 = hf (x1, y1) = 0.1 (0.1 + 1.11034) = 0.121034

k2 = hf x
h

y
k

1 1
1

2 2
+ +F

HG
I
KJ,  = 0.13208

  k3 = hf x
h

y
k

1 1
2

2 2
+ +F

HG
I
KJ,  = 0.13263

 k4 = hf (x1 + h, y1 + k3) = 0.14429

∴ Δy = 
1
6

(k1 + 2k2 + 2k3 + k4) = 0.132460

Hence x2 = 0.2 and y2 = y1 + Δy = 1.11034 + 0.13246 = 1.24280
Similarly, for finding y3, we have

  k1 = hf (x2, y2) = 0.14428, k2 = 0.15649, k3 = 0.15710, k4 = 0.16999
∴  y3 = 1.3997

and for  y4 = y(0.4), we calculate
  k1 = 0.16997, k2 = 0.18347, k3 = 0.18414, k4 = 0.19838

∴   y4 = 1.5836.

Example 2. Given 
dy
dx

 = y – x, y(0) = 2. Find y(0.1) and y(0.2) correct to four decimal

places. (Use both second and fourth order methods) (U.P.T.U. 2014, 2015)

Sol. By second order Method

To find y(0.1)

Here  y′ = f (x, y) = y – x, x0 = 0, y0 = 2 and h = 0.1

Now,  k1 = hf (x0, y0) = 0.1(2 – 0) = 0.2
 k2 = hf (x0 + h, y0 + k1) = 0.21

∴ Δy = 
1
2

 (k1 + k2) = 0.205

Thus,  x1 = x0 + h = 0.1 and y1 = y0 + Δy = 2.205
To find y(0.2) we note that,

 x1 = 0.1, y1 = 2.205, h = 0.1
For second interval, we have,

 k1 = hf (x1, y1) = 0.2105
 k2 = hf (x1 + h, y1 + k1) = 0.22155

∴ Δy = 
1
2

(k1 + k2) = 0.216025

Thus,  x2 = x1 + h = 0.2 and y2 = y1 + Δy = 2.4210

Hence y(0.1) = 2.205, y(0.2) = 2.421.
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By fourth order method

y′ = f(x, y) = y – x, x0 = 0, y0 = 2 and h = 0.1

 k1 = hf(x0, y0) = 0.1 (2 – 0) = 0.2

  k2 = hf x
h

y
k

0 0
1

2 2
+ +F

HG
I
KJ,  = 0.205

  k3 = hf x
h

y
k

0 0
2

2 2
+ +F

HG
I
KJ,  = 0.20525

and  k4 = hf (x0 + h, y0 + k3) = 0.210525

∴ Δy = 
1
6

(k1 + 2k2 + 2k3 + k4) = 0.2052

Thus, x1 = x0 + h = 0 + 0.1 = 0.1

 y1 = y0 + Δy = 2 + 0.2052 = 2.2052

Now to determine y2 = y(0.2), we note that

x1 = x0 + h = 0.1, y1 = 2.2052, h = 0.1

For II interval,    k1 = hf (x1, y1) = 0.21052

k2 = hf x
h

y
k

1 1
1

2 2
+ +F

HG
I
KJ,  = 0.21605

 k3 = hf x h y
k

1 1
22
2

+ +F
HG

I
KJ/ ,  = 0.216323

and  k4 = hf (x1 + h, y1 + k3) = 0.221523

∴   Δy = 
1
6

(k1 + 2k2 + 2k3 + k4) = 0.21613

Thus,   x2 = x1 + h = 0.1 + 0.1 = 0.2

and   y2 = y1 + Δy = 2.2052 + 0.21613 = 2.4213

Hence,  y(0.1) = 2.2052, y(0.2) = 2.4213.

Example 3. Given the initial value problem: y′ = 1 + y2, y(0) = 0

Find y(0.6) by Runge-Kutta fourth order method taking h = 0.2. (U.P.T.U. 2008, 2006)

Sol. Here, f(x, y) = 1 + y2, h = 0.2, x0 = 0, y0 = 0
We have,  k1 = h f (x0, y0) = 0.2

 k2 = h f x
h

y
k

0 0
1

2 2
+ +F

HG
I
KJ,  = 0.202

 k3 = h f x
h

y
k

0 0
2

2 2
+ +F

HG
I
KJ,  = 0.2020402

 k4 = h f (x0 + h, y0 + k3) = 0.2081640

∴ Δy = 
1
6

(k1 + 2k2 + 2k3 + k4) = 0.2027074
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Thus,  y1 = y(0.2) = y0 + Δy = 0.2027074, x1 = x0 + h = 0.2
Again, f(x, y) = 1 + y2, h = 0.2, x1 = 0.2, y1 = 0.2027074
We have,  k1 = h f (x1, y1) = 0.208218

 k2 = h f x
h

y
k

1 1
1

2 2
+ +F

HG
I
KJ,  = 0.218827

 k3 = h f x
h

y
k

1 1
2

2 2
+ +F

HG
I
KJ,  = 0.219484

 k4 = h f (x1 + h, y1 + k3) = 0.235649

∴ Δy = 
1
6

(k1 + 2k2 + 2k3 + k4) = 0.22008

Thus,  y2 = y(0.4) = y1 + Δy = 0.4227874, x2 = x1 + h = 0.4
Again, f(x, y) = 1 + y2, h = 0.2, x2 = 0.4, y2 = 0.4227874
We have,  k1 = h f (x2, y2) = 0.235749

 k2 = h f x
h

y
k

2 2
1

2 2
+ +F

HG
I
KJ,  = 0.258463

 k3 = h f x
h

y
k

2 2
2

2 2
+ +F

HG
I
KJ,  = 0.260945

 k4 = h f (x2 + h, y2 + k3) = 0.293498

∴ Δy = 
1
6

(k1 + 2k2 + 2k3 + k4) = 0.261344

Thus,  y3 = y(0.6) = y2 + Δy = 0.6841314.
Example 4. Use the Runge-Kutta fourth order method to find the value of y when x = 1

given that y = 1 when x = 0 (taking n = 2) and 
dy
dx

y x
y x

= −
+

. [U.P.T.U. (MCA) 2008]

Sol. Here,    f(x, y) = 
y x
y x

−
+

, x0 = 0, y0 = 1, h = 0.5

We have,  k1 = h f (x0, y0) = 0.5

 k2 = h f x
h

y
k

0 0
1

2 2
+ +F

HG
I
KJ,  = 0.333

 k3 = h f x
h

y
k

0 0
2

2 2
+ +F

HG
I
KJ,  = 0.3235

 k4 = h f (x0 + h, y0 + k3) = 0.2258

∴ Δy = 
1
6

(k1 + 2k2 + 2k3 + k4) = 0.3398

Thus,  y1 = y(0.5) = y0 + Δy = 1.3398, x1 = x0 + h = 0.5
Again,  k1 = h f (x1, y1) = 0.22823

k2 = h f x
h

y
k

1 1
1

2 2
+ +F

HG
I
KJ,  = 0.15969
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 k3 = h f x
h

y
k

1 1
2

2 2
+ +F

HG
I
KJ,  = 0.15432

 k4 = h f (x1 + h, y1 + k3) = 0.09906

∴ Δy = 
1
6

(k1 + 2k2 + 2k3 + k4) = 0.159218

Thus, y2 = y(1.0) = y1 + Δy = 1.499018.
Example 5. Use Runge-Kutta method of fourth order to approximate y when x = 0.1

given that y = 1 at x = 0 and 
dy
dx

 = 3x + y2. [U.P.T.U. MCA (C.O.) 2008]

Sol. Here, f(x, y) = 3x + y2, h = 0.1, x0 = 0, y0 = 1
We have,  k1 = h f (x0, y0) = 0.1

 k2 = h f x
h

y
k

0 0
1

2 2
+ +F

HG
I
KJ,  = 0.12525

 k3 = h f x
h

y
k

0 0
2

2 2
+ +F

HG
I
KJ,  = 0.127917

 k4 = h f (x0 + h, y0 + k3) = 0.15722

∴ Δy = 
1
6

(k1 + 2k2 + 2k3 + k4) = 0.127259

Thus, y(0.1) = y0 + Δy = 1.127259.
Example 6. Find the value of y(1.1) using Runge-Kutta method of fourth order, given

that 
dy
dx

 = y2 + xy, y(1) = 1.0, take h = 0.05. (G.B.T.U. 2011, 2012; M.T.U. 2013)

Sol. Here, f(x, y) = y2 + xy, x0 = 1, y0 = 1, h = 0.05
We have,  k1 = h f (x0, y0) = 0.1

 k2 = h f x
h

y
k

0 0
1

2 2
+ +F

HG
I
KJ,  = 0.10894

k3 = h f x
h

y
k

0 0
2

2 2
+ +F

HG
I
KJ,  = 0.109637

k4 = h f (x0 + h, y0 + k3) = 0.119821

∴ Δy = 
1
6

(k1 + 2k2 + 2k3 + k4) = 0.109496

Thus, y1 = y(1.05) = y0 + Δy = 1.109496, x1 = x0 + h = 1.05

Again, k1 = h f (x1, y1) = 0.119798

k2 = h f x
h

y
k

1 1
1

2 2
+ +F

HG
I
KJ,  = 0.13123

 k3 = h f x
h

y
k

1 1
2

2 2
+ +F

HG
I
KJ,  = 0.13221

 k4 = h f (x1 + h, y1 + k3) = 0.145385
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∴ Δy = 
1
6

(k1 + 2k2 + 2k3 + k4) = 0.13201

Thus, y2 = y(1.1) = y1 + Δy = 1.241506
Example 7. Use Runge-Kutta IV order method with h = 0.1 to find x(0.1) and x(0.2)

where 
dx
dt

 = t – x and x(0) = 0.

Sol. Here,  f(t, x) = t – x, t0 = 0, x0 = 0
 k1 = hf (t0, x0) = 0

 k2 = hf t
h

, x
k

0 0
1

2 2
+ +F
HG

I
KJ  = 0.005

 k3 = hf t
h

, x
k

0 0
2

2 2
+ +F
HG

I
KJ  = 0.00475

 k4 = hf (t0 + h, x0 + k3) = 0.009525

∴ Δx = 
1
6

(k1 + 2k2 + 2k3 + k4) = 0.0048375

Thus, x(0.1) = x0 + Δx = 0.0048375, t1 = t0 + h = 0.1
Again,  k1 = hf (t1, x1) = 0.00951625

k2 = hf t
h

, x
k

1 1
1

2 2
+ +F
HG

I
KJ  = 0.014040

k3 = hf t
h

, x
k

1 1
2

2 2
+ +F
HG

I
KJ  = 0.013814

k4 = hf (t1 + h, x1 + k3) = 0.018135

∴ Δx = 
1
6

 (k1 + 2k2 + 2k3 + k4) = 0.013893

Thus, x(0.2) = x1 + Δx = 0.0187305.
Example 8. Solve the initial value problem u′ = – 2tu2, u(0) = 1 with h = 0.2 on the

interval [0, 0.4]. Use Runge-Kutta fourth order method and compare your result with exact
solution. [U.P.T.U. 2009, U.P.T.U. (MCA) 2006]

Sol. Here, f(t, u) = – 2t u2, t0 = 0, u0 = 1, h = 0.2

We have, k1 = h f (t0, u0) = 0

k2 = hf t
h

,u
k

0 0
1

2 2
+ +F
HG

I
KJ  = – 0.04

k3 = hf t
h

,u
k

0 0
2

2 2
+ +F
HG

I
KJ  = – 0.038416

k4 = hf (t0 + h, u0 + k3) = – 0.0739715

∴  Δu = – 0.03846725

Thus, u1 = u(0.2) = u0 + Δu = 0.9615328
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Again, k1 = hf (t1, u1) = – 0.0739636

k2 = hf t
h

,u
k

1 1
1

2 2
+ +F
HG

I
KJ  = – 0.1025753

k3 = hf t
h

,u
k

1 1
2

2 2
+ +F
HG

I
KJ  = – 0.0994255

k4 = hf (t1 + h, u1 + k3) = – 0.1189166

∴  Δu = – 0.0994803

Thus, u2 = u(0.4) = u1 + Δu = 0.8620525

Absolute errors in numerical solutions are

∈(0.2) = | 0.961539 – 0.961533 | = 0.000006

∈(0.4) = | 0.862069 – 0.862053 | = 0.000016

Example 9. Using Runge-Kutta method of fourth order, find y(0.8) correct to 4 decimal
places if y′ = y – x2, y(0.6) = 1.7379, taking h = 0.1. (U.P.T.U. 2007)

Sol. Here,  f(x, y) = y – x2, x0 = 0.6, h = 0.1, y0 = 1.7379
We have, k1 = hf(x0, y0) = h(y0 – x0

2) = 0.13779

  k2 = hf x
h

y
k

0 0
1

2 2
+ +F

HG
I
KJ,  = h y

k
x

h
0

1
0

2

2 2
+FHG
I
KJ − +FHG

I
KJ

L
N
MM

O
Q
PP
 = 0.1384295

k3 = hf x
h

y
k

0 0
2

2 2
+ +F

HG
I
KJ,  = h y

k
x

h
0

2
0

2

2 2
+FHG
I
KJ − +FHG

I
KJ

L
N
MM

O
Q
PP

= 0.138461475
k4 = hf (x0 + h, y0 + k3) = h[(y0 + k3) – (x0 + h)2] = 0.1386361475

∴ Δ y = 
1
6

 (k1 + 2k2 + 2k3 + k4) = 0.138368

Thus,   y1 = y(0.7) = y0 + Δy = 1.876268, x1 = x0 + h = 0.7
Now, x1 = 0.7, y1 = y(0.7) = 1.876268, h = 0.1
Again, k1 = hf(x1, y1) = h(y1 – x1

2) = 0.1386268

k2 = hf x
h

y
k

h y
k

x
h

1 1
1

1
1

1

2

2 2 2 2
+ +F

HG
I
KJ = +FHG

I
KJ − +FHG

I
KJ

L
N
MM

O
Q
PP,  = 0.13830814

k3 = hf x
h

y
k

1 1
2

2 2
+ +F

HG
I
KJ,  = h y

k
x

h
1

2
1

2

2 2
+FHG
I
KJ − +FHG

I
KJ

L
N
MM

O
Q
PP

= 0.138292207
k4 = hf(x1 + h, y1 + k3) = h[(y1 + k3) – (x1 + h)2] = 0.1374560207

∴ Δy = 
1
6

 (k1 + 2k2 + 2k3 + k4) = 0.138213919

Thus, y2 = y(0.8) = y1 + Δy = 2.0145, x2 = x1 + h = 0.8.
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Example 10. Solve: y′ = 
1

x y+
, y(0) = 1 for x = 0.5 to x = 1 by Runge-Kutta method. Take

h = 0.5.

Sol. Here, f(x, y) = 
1

x y+
, x0 = 0, h = 0.5, y0 = 1

We have, k1 = hf(x0, y0) = h 1

0 0x y+
F
HG

I
KJ  = 0.5

k2 = hf x
h

y
k

0 0
1

2 2
+ +F

HG
I
KJ,  = h 1

2 20 0
1x

h
y

k+ + +F
HG

I
KJ

 = 0.3333

k3 = hf x
h

y
k

0 0
2

2 2
+ +F

HG
I
KJ,  = h . 1

2 20 0
2x

h
y

k+ + +F
HG

I
KJ

 = 0.3529

k4 = hf (x0 + h, y0 + k3) = h 1

0 0 3( )x h y k+ + +
 = 0.2698

∴  Δy = 
1
6

 (k1 + 2k2 + 2k3 + k4) = 0.3570

Thus, y1 = y(0.5) = y0 + Δy = 1.3570, x1 = x0 + h = 0.5
Now, x1 = 0.5, y1 = 1.3570, h = 0.5

Again, k1 = hf (x1, y1) = 
h

x y1 1+
 = 0.2692

k2 = hf x
h

y
k h

x
h

y
k1 1

1

1 1
12 2

2 2

+ +F
HG

I
KJ =

+ + +
,  = 0.2230

k3 = hf x
h

y
k h

x
h

y
k1 1

2

1 1
22 2

2 2

+ +F
HG

I
KJ =

+ + +
,  = 0.2254

k4 = hf (x1 + h, y1 + k3) = 
h

x h y k1 1 3+ + +
 = 0.1936

∴ Δy = 
1
6

(k1 + 2k2 + 2k3 + k4) = 0.2266

Thus,  y2 = y(1) = y1 + Δy = 1.5836, x2 = x1 + h = 1.

Example 11. If 
dy
dx

 = x + y2, use Runge-Kutta method of fouth order to find an approximate

value of y for x = 0.2 given that y = 1 when x = 0. (Take h = 0.1) (U.P.T.U. 2009)
Sol. Here, f(x, y) = x + y2, x0 = 0, y0 = 1, h = 0.1
We have, k1 = hf (x0, y0) = h(x0 + y0

2) = 0.1

k2 = hf x
h

y
k

h x
h

y
k

0 0
1

0 0
1

2

2 2 2 2
+ +F

HG
I
KJ = + + +FHG

I
KJ

L
N
MM

O
Q
PP,  = 0.11525

k3 = hf x
h

y
k

h x
h

y
k

0 0
2

0 0
2

2

2 2 2 2
+ +F

HG
I
KJ = + + +FHG

I
KJ

L
N
MM

O
Q
PP,  = 0.116857
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k4 = hf (x0 + h, y0 + k3) = h[x0 + h + (y0 + k3)
2] = 0.134737

∴ Δy = 
1
6

 (k1 + 2k2 + 2k3 + k4) = 0.116492

Thus, y1 = y(0.1) = y0 + Δy = 1.116492, x1 = x0 + h = 0.1
Now, x1 = 0.1, y1 = 1.116492, h = 0.1
Again,  k1 = hf (x1, y1) = h(x1 + y1

2) = 0.134655

k2 = hf x
h

y
k

1 1
1

2 2
+ +F

HG
I
KJ,  = h x

h
y

k
1 1

1
2

2 2
+ + +FHG

I
KJ

L
N
MM

O
Q
PP  = 0.155143

k3 = hf x
h

y
k

1 1
2

2 2
+ +F

HG
I
KJ,  = h x

h
y

k
1 1

2
2

2 2
+ + +FHG

I
KJ

L
N
MM

O
Q
PP  = 0.157579

k4 = hf (x1 + h, y1 + k3) = h [x1 + h + (y1 + k3)
2] = 0.1823257

∴ Δ y = 
1
6

(k1 + 2k2 + 2k3 + k4) = 0.15707

Thus, y2 = y(0.2) = y1 + Δy = 1.273562, x2 = x1 + h = 0.2.

Example 12. Solve:   
dy
dx

 = yz + x, 
dz
dx

 = xz + y ; given that y(0) = 1, z(0) = – 1 for y(0.1),

z(0.1).

Sol. Here,   f1(x, y, z) = yz + x, f2(x, y, z) = xz + y

  h = 0.1, x0 = 0, y0 = 1, z0 = – 1

   k1 = hf1 (x0, y0, z0) = h (y0 z0 + x0) = – 0.1

l1 = hf2(x0, y0, z0) = h(x0 z0 + y0) = 0.1

   k2 = hf1
x

h
y

k
z

l
0 0

1
0

1

2 2 2
+ + +F

HG
I
KJ, ,  = – 0.08525

l2 = hf2 x
h

y
k

z
l

0 0
1

0
1

2 2 2
+ + +F

HG
I
KJ, ,  = 0.09025

k3 = hf1 x
h

y
k

z
l

0 0
2

0
2

2 2 2
+ + +F

HG
I
KJ, ,  = – 0.0864173

l3 = hf2 x
h

y
k

z
l

0 0
2

0
2

2 2 2
+ + +F

HG
I
KJ, ,  = 0.090963125

k4 = hf1 x h y k z l0 0 3 0 3+ + +, ,b g = – 0.073048

l4 = hf2(x0 + h, y0 + k3, z0 + l3) = 0.0822679

∴ k = 
1
6

(k1 + 2k2 + 2k3 + k4) = – 0.0860637

and l = 
1
6

(l1 + 2l2 + 2l3 + l4) = 0.0907823

Thus, y1 = y(0.1) = y0 + k = 1 – 0.0860637 = 0.9139363

z1 = z(0.1) = z0 + l = –1 + 0.0907823 = –0.9092176.
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ASSIGNMENT

1. Use  Runge-Kutta  method   to  approximate  y  when  x = 0.1  given  that  x = 0  when y = 1 and

dy
dx

 = x + y.

2. Use Runge-Kutta Fourth order formula to find y(1.4) if y (1) = 2 and 
dy
dx

 = xy. Take h = 0.2.

3. Use Runge-Kutta method to find y when x = 1.2 in steps of 0.1 given that

 
dy
dx

 = x2 + y2 and y(1) = 1.5

4. (i) Write the main steps to be followed in using the Runge-Kutta method of fourth order to solve

an ordinary diff. equation of first order. Hence solve 
dy
dx

 = x3 + y3, y(0) = 1 and step length

h = 0.1 up to three iterations.

(ii) State Runge-Kutta method of fourth order. Using this method, find the values of y(0.2), y(0.4)

and y(0.6) for the following initial value problem 
dy
dx

 = x3 – y3 with condition that y(0) = 1.

(U.P.T.U. 2015)
5. Use  classical  Runge-Kutta method of fourth order to find the numerical solution at x = 1.4 for

dy
dx

 = y2 + x2,  y(1) = 0. Assume step size h = 0.2.

6. Given that y′ = x2  – y,  y(0) = 1, find y(0.1), y(0.2) using Runge-Kutta method of fourth order.

7. (i) Estimate y(1) if 2yy′ = x2 and y(0) = 2 using Runge-Kutta method of fourth order by taking
h = 0.5. Also compare the result with exact value. (G.B.T.U. 2011)

(ii) Estimate y (0.8) using Runge-Kutta method of fourth order (perform two iterations) for the

differential equation 2y 
dy
dx

 = x2, y (0) = 2. Also compare the result with exact value.

(G.B.T.U. 2013)

8. Using Runge-Kutta method, find y(0.2) given that 
dy
dx

 = 3x + 
1
2

y, y(0) = 1 taking h = 0.1.

9. Given that 
dy
dx

 = 1 + xy; y(0) = 2. Using Runge-Kutta fourth order method, find y(0.1), y(0.2).

[G.B.T.U. MCA (SUM) 2010]

10. Use Runge-Kutta method of fourth order to solve the following differential equation in the interval
[0, 0.4]:

 
dy
dx

y x
y x

= +
− , y(0) = 1. Take h = 0.2. [G.B.T.U. (C.O.) 2011]

11. Using Runge-Kutta method of fourth order, solve the following differential equation:

dy
dx

y x

y x
= −

+

2 2

2 2 with y (0) = 1 at x = 0.2, 0.4. (G.B.T.U. 2010)
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12. Use Runge-Kutta formula of fourth order to find the numerical solution at x = 0.6 and 0.8

for the differential equation y′ = x y+ , y (0.4) = 0.41. Assume the step length h = 0.2.

[M.T.U. 2012, G.B.T.U. (MCA) 2011]

13. (i) Apply  Runge-Kutta  fourth  order method to solve 10 
dy
dx

 = x2 + y2 ; y (0) = 1 for 0 < x ≤ 0. 4 and

h = 0.1. (G.B.T.U. 2013, 2011)
(ii) Apply Runge-Kutta method of fourth order to solve the initial value problem:

5 dy
dx

 = x2 + y2, y (0) = 1

and find y in the interval 0 ≤ x ≤ 0.2, taking h = 0.1. (G.B.T.U. 2012)
14. Using Runge-Kutta method of fourth order, solve for y(0.1), y(0.2) and y(0.3) given that

y′ = xy + y2, y(0) = 1. [M.T.U. (MCA) 2012, G.B.T.U. (C.O.) 2010]

15. Using fourth order Runge-Kutta method, solve the initial value problem d y

dx
x

dy
dx

2

2 −   + y2 = 0

with initial conditions y = 1 and dy
dx

 = 0 when x = 0 in the interval [0, 0.2] and step size h = 0.1.

(M.T.U. 2013)

16. Solve dy
dx

 =  x + z,
dz
dx

 = x – y2 for y (0.1), z (0.1) given that y (0) = 2, z (0) = 1 by Runge-Kutta

IV order method.

17. Given the initial value problem dy
dx

xy

x y
=

−
2

2 2
, y(1) = 3,

Find the numerical solution at x = 1.2 and x = 1.5 by using Runge-Kutta method of fourth order.
(U.P.T.U. 2014)

Answers
1. 1.11034 2. y(1.2) = 2.4921, y(1.4) = 3.2320
3. y(1.1) = 1.8955, y(1.2) = 2.5041
4. (i) 1.118057, 1.291457, 1.584057 (ii) 0.8456, 0.7510, 0.7015
5. y(1.2) = 0.246326, y(1.4) = 0.622751489
6. y(0.1) = 0.9051627, y(0.2) = 0.8212695
7. (i) 2.0816705

(ii) y(0.4) = 2.005326, y(0.8) = 2.042221; y(0.8) [Exact value] = 2.042221829
8. 1.1749 9. 2.110359, 2.24309

10. y(0.2) = 1.23923, y(0.4) = 1.54892 11. 1.195999, 1.375269
12. y(0.6) = 0.61035, y (0.8) = 0.84899
13. (i) y(0.1) = 1.0101, y(0.2) = 1.0206, y(0.3) = 1.0317, y(0.4 ) = 1.0437

(ii) x: 0 0.1 0.2
y: 1 1.020475 1.04221

14. y(0.1) = 1.1168873, y(0.2) = 1.2773914, y(0.3) = 1.50412
15. x: 0 0.1 0.2

y: 1 0.995 0.98
16. 2.0845, 0.586.
17. y(1.2) = 2.8233

y(1.5) = 2.39265
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TEST YOUR KNOWLEDGE

1. What do you mean by initial value problem? (U.P.T.U. 2014)
2. What do you mean by numerical differentiation? Explain in brief. (M.T.U. 2012)

3. Let I = 
x

x
f x dx

0

3z ( )  where f(x) is a third degree polynomial. Write the formula you will like to use

to find the approximate value of I. It is given that the data are equispaced. (M.T.U. 2012)
4. Derive Newton-Cote’s quadrature formula for numerical integration. (M.T.U. 2013)

5. Show that y′ = 1 1
2

1
3

1
4

2 3 2

h
y y y yΔ Δ Δ Δ− + − +L
NM

O
QP... . (M.T.U. 2013)

6. Calculate the value of 
4

5 2.
logz e x dx  by trapezoidal rule. (M.T.U. 2013)

7. Explain two types of errors in numerical differentiation. [M.T.U. (MCA) 2012]

8. Evaluate 
0

6

21z +
dx

x
 by using Simpson’s one-third rule. [M.T.U. (MCA) 2012]

9. Discuss and explain the working of Runge-Kutta’s II and IV order methods.
10. What is the disadvantage of Picard’s method?
11. Given the table:

x: 0 0.5 1
y: 1 0.8 0.5

then find 
0

1z y dx  by trapezoidal rule.

12. Evaluate 
0

1

21z +
dx

x
 (taking h = 1/4) by Simpson’s 1/3 rule.

13. Derive Picard’s method of successive approximations.
14. Derive Simpson’s 1/3rd rule from Newton-Cote’s quadrature formula. Explain its limitations and

usefulness.
15. Derive Simpson’s 3/8th rule from Newton-Cote’s quadrature formula. (M.T.U. 2014)
16. Derive Trapezoidal rule from Newton-Cote’s quadrature formula.
17. What are the single-step and multi-step methods? Differentiate.
18. What do you mean by a boundary value problem?
19. Explain Milne’s Simpson predictor-corrector method for solution of an ordinary differential

equations numerically.
20. Write a short note on numerical differentiation.

Answers
3. Simpson’s 3/8th rule 6. 1.82765 8. 1.366173413 11. 0.775

12. 0.7854.
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EXAMINATION PAPERS

U.P.T.U., LUCKNOW NAS–301

B. Tech. [SEMESTER-III]

(ODD SEM.) THEORY EXAMINATION, 2014–2015
MATHEMATICS –III

(PAPER ID: 199320)

Time: 3 Hours Total Marks: 100

Note: Attempt All Questions. All Questions carry equal marks.

1. Attempt any four parts of the following: (5 × 4 = 20)
(a) State Cauchy-Riemann theorem for an analytic function. Test the analyticity of the

following function :

f(z) = 

( – ) + ( + )
if and

if

3 3 3x y i x y

x y
x

z

3

2 2 0

0 0
+

≠

=

R
S|
T|

,

,
(b) State Cauchy-integral theorem for an analytic function. Verify this theorem by

integrating the function z3 + iz along the boundary of the rectangle with vertices
+ 1, – 1, i, – i.

(c) Show that the function u = 
1
2

log(x2 + y2) is harmonic. Find the harmonic conjugate

of u.

(d ) Evaluate the integral 
e

z
dz

z2

51( )
,

+z around the boundary of the circle | z | = 2.

(e) Find the Taylor series expansion of the function tan–1 z about the point z = π/4.

( f ) Evaluate the integral cos
– cos

2

0

3
5 4 2

θ
θ

θ
π

dz .

2. Attempt any two parts of the following: (10 × 2 = 20)
(a) Find the Fourier transform of the following function f(x) = 1 – x2, if | x | ≤ 1 and

f(x) = 0, if |x| > 1.
(b) Using z-transform, solve the following difference equation

Yn+2 – (2 cos α)Yn + 1 + Yn = 7n with the conditions that Y0 = 5, Y1 = 1.

(c) State the convolution theorem for Fourier transform. Prove that the Fourier transform
of the convolution of the two functions is equal to the product of their Fourier
transforms.

3. Attempt any two parts of the following: (10 × 2 = 20)
(a) Define skewness and kurtosis of a distribution. The first four moments of a

distribution are 0, 2.5, 0.7, and 18.71. Find the coefficient of skewness and kurtosis.
555
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(b) Fit a second degree parabola to the following data:

x 1 2 3 4 5 6 7 8 9

y 2 6 7 8 10 11 8 13 5

(c) Define coefficient of correlation and regression. If θ is the acute angle between the

two lines of regression then prove that tan θ = 
1 2

2 2
– r
r

x y

x y

σ σ

σ σ+

where r, σx, σy have their usual meanings. Give the significance of the formula when
r = 0 and r = ± 1.

4. Attempt any two parts of the following: (10 × 2 = 20)
(a) Derive Newton-Raphson’s method to find a root of the equation f(x) = 0. Prove that

this method has quadratic convergence.
(b) Apply Newton’s divided difference method to obtain an interpolatory polynomial for

the following data:

x 3 5 7 9 11 13

f(x) 31 51 17 19 90 110

(c) Obtain Lagrange’s Interpolatory for the following data:

x 1 3 5 7 10

f(x) 13 31 25 37 101

Find the values of f(4) and f(8.5).
5. Attempt any two parts of the following: (10 × 2 = 20)

(a) Solve the following system of linear equations using Gauss-Seidel method
10x + 3y + 7z = 41

3x + 20y + 17z = 101
x + 19y + 23z = 201

Perform three iterations.
(b) State Simpson’s three-eighth rule. Using this rule, evaluate the following integral

0

6

51z +
x
x

 dx.

(c) State Runge-Kutta method of fourth order. Using this method, find the values of

y(0.2), y(0.4) and y(0.6) for the following initial value problem 
dy
dx

 = x3 – y3 with

condition that y(0) = 1.
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U.P.T.U., LUCKNOW AS–303

B. Tech. [SEMESTER-III]

(ODD SEM.) THEORY EXAMINATION, 2014–2015
ENGINEERING MATHEMATICS –III

(PAPER ID: 990303)

Time: 3 Hours Total Marks: 100

UNIT–1

1. Answer any four from the following: (4 × 5 = 20)

(a) If f(z) is a regular function of z, then prove that 
∂
∂

∂
∂

2

2

2

2x y
+

F
HG

I
KJ  |f(z)|2 = 4 |f ′(z)|2.

(b) Find the analytic function f(z) = u + iv, given that v = ex (x sin y + y cos y).

(c) Evaluate the following integral using Cauchy’s integral formula 
4 3

1 2
–

( – )( – )
z

z z zCz dz

where C is the circle |z| = 
3
2

.

(d) Expand f(z) = 
1

1 2( – ) ( – )z z
 for 1 < | z | < 2.

(e) Determine the poles of the following function and residue at each pole:

f(z) = 
z

z z

2

21 2( – ) ( )+
 and hence evaluate 

z dz
z zC

2

21 2( – ) ( )+z  where C | z | = 3.

(f ) Evaluate 
0

2

2

π θ
θz +

d
cos  by contour integration in the complex plane.

UNIT–2

2. Answer any four from the following: (4 × 5 = 20)

(a) Find Fourier sine transform of f(x) = 
e

x

ax–

.

(b) Using Parseval’s identity, show that 
0

2

2 21 4

∝z +
=x dx

x( )
π

.

(c) Solve the equation 
∂
∂

∂
∂

u
t

u
x

=
2

2 ,  x > 0, t > 0 subject to the condition:
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(i) u = 0 when x = 0, t > 0 (ii) u = 
1 0 1
0 1
,
,

< <
≥

RST
x

x  when t = 0

(iii) u(x, t) is bounded.
(d) Solve the difference equation yk + 1 – 2yk–1 = 0, k ≥ 1, y(0) = 1.
(e) Find the Z-transform of sin αk, k ≥ 0.

(f) Find Z–1 9
3 1 2

3

2
z

z z( – ) ( – )
.

3. Answer any four from the following: (4 × 5 = 20)
(a) Three urns contains 6 red, 4 black; 4 red, 6 black, 5 red, 5 black balls respectively.

One of the urns is selected at random and a ball is drawn from it. If the ball drawn
is red, find the probability that it is drawn from the first urn.

(b) Using Poisson distribution, find the probability that the ace of spades will be drawn
from a pack of well-shuffled cards at least once in 104 consecutive trials.

(c) Find the mean and standard deviation of Normal distribution.
(d) A manufacturer of envelopes knows that the weight of the envelopes is normally

distributed with mean 1.9 gm and variance 0.01 square gm. Find how many envelopes
weighing (i) 2 gm or more, (ii) 2.1 gm or more, can be expected in a given packet of
1000 envelopes.
[Given: If t is the normal variable, then φ(0 ≤ t ≤ 1) = 0.3413 and φ(0 ≤ t ≤ 2) = 0.4772]

(e) Find the moment generating function of Binomial distribution about its mean.
(f) If the probability density function of a random variable x is

f(x) = kx x xα β α β– –( – ) , , ,
,

1 11 0 1 0 0
0

< < > >RST otherwise

Find k and mean of x.
4. Answer any two from the following: (2 × 10 = 20)

(a) If an approximate root of the equation x(1 – loge x) = 0.5 lies between 0.1 and 0.2,
find the value of the root correct to three decimal places by Newton-Raphson method.

(b) Solve the system of equations
x + y + 54z = 110

27x + 6y – z = 85
6x + 15y + 2z = 72

Using Gauss-Seidel iteration method.
(c) Find the cubic spline approximation for the function y = f(x) from the following data,

given that y0 = y3 = 0

x – 1 0 1 2

y – 1 1 3 35
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5. Answer any two from the following: (2 × 10 = 20)
(a) The velocity V of a particle at distances from a point on its path is given by the table:

S 0 10 20 30 40 50 60 feet

V 47 58 64 65 61 52 38 feet/sec

Estimate the time taken to travel 60 feet by using Simpson’s one-third rule. Compare

the result with Simpson’s 
3
8

rule.

(b) By applying the fourth order Runge-Kutta Method find y(0.2) from y′ = y – x, y(0) = 2
taking h = 0.1

(c) The differential equation 
dy
dx

 = y – x2 is satisfied by y(0) = 1, y(0.2) = 1.12186,

y(0.4) = 1.46820, y(0.6) = 1.7379. Compute the value of y(0.8) by Milne’s predictor-
corrector formula.
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U.P.T.U., LUCKNOW
B. Tech. (SEM. III) ODD SEMESTER THEORY AS–303

EXAMINATION 2013–2014
MATHEMATICS –III

(PAPER ID: 1226)

Time: 3 Hours Total Marks: 100

Note: Attempt all questions from each Section as indicated. The symbols have their usual meaning.

SECTION–A

1. Attempt all parts of this Section. Each part carries 2 marks: (2 × 10 = 20)
(a) Define Conformal Transformation.

(b) Find residue of f(z) = 
z

z z

2

2 3 2+ +
 at the pole – 1.

(c) Define Fourier Transform of a function f(x).
(d) Find the Z-Transform of {ak}, k ≥ 0.
(e) Define coefficients of Skewniess.
(f) What is Total Probability Theorem?
(g) Define Spline Function.

(h) Show that δ = E E
1
2

1
2–

–
.

(i) Define rate of convergence.
(j) What do you mean by initial value problem?

SECTION–B

2. Attempt any three parts of this Section. (10 × 3 = 30)

(a) State and prove Cauchy integral formula. Also evaluate z

zC

2

2
1
1

+z –
dz, where C is the

circle:

(i) | z – 1 | = 1 (ii) | z | = 1
2

.

(b) Using Fourier Transform, solve 
∂
∂

∂
∂

y
t

y
x

=
2

2 , – ∞ < x < ∞, t > 0; y(x, 0) = f(x).

(c) The first four moments of a distribution about the value ‘4’ of the variables are – 1.5,
17, – 30 and 108. Find the moments about mean and about origin. Also find Skewness
and Kurtosis.
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(d) Use Gauss-Seidel method to solve the following system of simultaneous equations:
9x + 4y + z = – 17
x – 2y – 6z = 14

x + 6y = 4
Perform four iterations.

(e) Given 
dy
dx

 = y – x, y(0) = 2. Find y(0.1) and y(0.2) correct to four decimal places by

Runge-Kutta fourth order method.

SECTION–C

Note: All questions of this Section are compulsory. Attempt any two part from each question:

(5 × 2 × 5 = 50)
3. (a) Verify Cauchy’s theorem by integrating z3 along the boundary of a square with vertices

at 1 + i, 1 – i, – 1 + i and – 1 – i.

(b) Evaluate the following integral by using complex integration 
cos

cos
2

5 40

θ
θ

π

+z dθ.

(c) Determine the analytic function f(z) = u + iv, in terms of z, whose real part is
e–x (x sin y – y cos y).

4. (a) Find the Fourier transform of: F(x) = 
1
0
,
, .| |
| |

x a
x a

<
>

RST  Hence evaluate

(i) sin cos
–

ap px
p∞

∞z dp (ii)
sin p

p0

∞z dp.

(b) Find the inverse Z-transform of: F(z) = 
1

3 2( – ) ( – )z z  for

(i) |z| < 2 (ii) 2 < |z|< 3 (iii) |z| > 3.
(c) Solve by Z-transform the difference equation:

yk + 2 + 6yk+ 1 + 9yk = 2k; (y0 = y1 = 0).
5. (a) State and prove Baye’s theorem.

(b) A continuous random variable X has a p.d.f. f(x) = 3x2, 0 ≤ x ≤ 1. Find a and b such
that:
(i) P(x ≤ a) = P(x > a), and (ii) P(x > b) = 0.05.

(c) Fit a Poisson distribution to the following data and calculate theoretical frequencies:

Death 0 1 2 3

Frequencies 122 260 15 2

6. (a) Find a positive value of (17)1/3 correct to four decimal places by Newton-Raphson
method.
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(b) Obtain cubic spline for the following data:

x 0 1 2 3

f(x) 1 2 32 244

With the end conditions M0 = M3 = 0 for (0, 1). Hence compute f(0.5).
(c) From the following table of half-yearly premium for policies maturing at different

ages, estimate the premium for policies maturing at age of 46.

Age 45 50 55 60 65

Premium (in rupees) 114.84 96.16 83.32 74.48 68.48

7. (a) The table given below reveals the velocity ‘v’ of a body during the time ‘t’ specified.
Find its acceleration at t = 1.1.

t 1.0 1.1 1.2 1.3 1.4

v 43.1 47.7 52.1 56.4 60.8

(b) Evaluate 
e

x

x

+z 10

6

 dx by Simpson’s 3/8th rule.

(c) Using Milne’s method, solve dy
dx

= 1 + y2 with initial condition y(0) = 0, y(0.2) =

0.2027, y(0.4) = 0.4228, y(0.6) = 0.6841, obtain y(0.8).

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com


B. Tech. [SEMESTER III/IV]

THEORY EXAMINATION, 2013–2014
MATHEMATICS –III

Time: 3 Hours Total Marks: 100

Note: Attempt all questions.

1. Attempt any four parts of the question: (5 × 4 = 20)
(a) Define analytic function. Discuss the analyticity of f(z) = Re(z3) in the complex plane.
(b) Show that v(x, y) = e–x (x cos y + y sin y) is harmonic. Find its harmonic conjugate.
(c) Integrate f (z) = Re(z) from z = 0 to z = 1 + 2i.

(i) along straight line joining z = 0 to z = 1 + 2i.
(ii) along the real axis from z = 0 to z = 1 and then along a line parallel to imaginary

axis from z = 1 to z = 1 + 2i.

(d ) Evaluate 
( ) sin

( – )
1

2 3 2
+z z z

zC
 dz, where C is the circle|z – i| = 2 counter-clockwise.

(e) Find all Taylor and Laurent’s series expansion of the following function about z = 0:

f(z) = 
–

–
2 3

3 22
z

z z

+
+

( f ) Use contour integration to evaluate 
dθ

θ θ

π

3 20

2

– cos sin+z  .

2. Attempt any two parts of the following: (2 × 10 = 20)
(a) Define moment generating function. Why is it called moment generating function?

If P(X = x) = 
1
2x , x = 1, 2, 3, ... find the moment generating function of x. Hence obtain

the variance.
(b) Determine the normal equation if the curve y = ax + bx2 is fitted to the data (xi, yi),

i = 1, 2, ..., m. Hence fit this curve to the data:

x : 1 2 3 4 5

y : 1.8 5.1 8.9 14.1 19.8

(c) Calculate the coefficient of correlation between the following ages of husband (x)
and wife (y) by taking 30 and 28 as assumed mean in case of x and y respectively:
x : 24 27 28 28 29 30 32 33 35 35 40

y : 18 20 22 25 22 28 28 30 27 30 32

3. Attempt any two parts of the following: (2 × 10 = 20)
(a) Out of 800 families with four children each, how many families would be expected to

have
(i) 2 boys and 2 girls (ii) at least one boy

(iii) no girl (iv) atmost two girls.
Assume equal probabilities for boys and girls.
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(b) The groups of 100 people each were taken for testing the use of a vaccine. 15 persons
contracted the disease out of the inoculated persons, while 25 contracted the disease
in the other group. Test the efficiency of the vaccine using chi-square test. (the value
of χ2 for one degree of freedom at 5% level of significance is 3.84)

(c) Calculate the trend values by the method of least square fit to a straight line and
hence estimate profit for 1981:
Year : 1971 1972 1973 1974 1975 1976 1977
Profit (in thousands) : 60 72 75 65 80 85 95

4. Attempt any four parts of the following:
(a) Explain Newton-Raphson method and use it to find the positive root of x4 = x + 10

correct to three decimal places.
(b) Find the root of the equation 2x (1 – x2 + x) ln x = x2 – 1 lying in the interval [0, 1]

using Regula-Falsi method.

(c) Prove that 1 + δ2μ2 = 1
1
2

2
2

+FHG
I
KJδ , where symbols have their usual meanings for

finite differences.
(d) Use Newton-Gregory formula to interpolate the value of y at x = 36 from the following

data:
x : 21 25 29 33 37
y : 18.4 17.8 17.1 16.3 15.5

(e) Find f (x) as a polynomial in x for the following data using Newton’s divided difference
formula:
x : – 4 – 1 0 2 5
f(x) : 1245 33 5 9 1335

(f) Using Lagrange’s interpolation formula, find polynomial which takes the values 3,
12, 15, – 21 when x has the values 3, 2, 1, – 1.

5. Attempt any two parts of the following:

(a) Decompose A = 
4 1 1
1 4 2
3 2 4

–
–

L

N
MM

O

Q
PP  in the form LU, where L is lower triangular matrix and

U is the upper triangular matrix and hence solve the system of equations:
4x1 + x2 + x3 = 6

x1 + 4x2 – 2x3 = 4
3x1 + 2x2 – 4x3 = 6

(b) (i) A slider in a machine moves along fixed straight rod. Its distances x(m) along
the rod are given at various times (sec.)
t : 1 1.1 1.2 1.3 1.4 1.5
x : 16.40 19.01 21.96 25.29 29.03 33.21
Find the velocity of the slider at t = 1.1 sec.

(ii) Evaluate 
0

2
10

πz ( sin )–e tt dt using Simpson’s rule with eight intervals.

(c) Given the initial value problem 
dy
dx

 = 
2

2 2
xy

x y–
, y(1) = 3

Find the numerical solution of x = 1.2 and x = 1.5 by using Runge-Kutta method of
fourth order.

www.cgaspirants.com

www.cgaspirants.com

www.cg
asp

ira
nts.

co
m

http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com
http://www.cgaspirants.com


B. Tech. (SEM. III) ODD SEMESTER THEORY AS301
EXAMINATION, 2013–2014

MATHEMATICS –III

Time: 3 Hours Total Marks: 100

Note: Attempt all questions from each Section as indicated. The symbols have their usual meaning.

SECTION–A

1. Attempt all parts of this Section. Each part carries 2 marks: (2 × 10 = 20)

(a) Find residue of f(z) = 
2 1

22
z

z z

+
– –

 at the pole z = – 1.

(b) Define harmonic function.
(c) State Convolution theorem for Fourier Transform.
(d) Find the Z-Transform of {nCk}, 0 ≤ k ≤ n.
(e) Define coefficients of kurtosis.
(f ) Define marginal and conditional distribution.
(g) Prove that: |(X, Y)| < ||X|| ||Y||.
(h) Define Abelian group.
(i) Define rate of convergence.
(j) Write the formula for Simpson’s 3/8 rule.

SECTION–B

Note: Attempt any three parts of this Section. (10 × 3 = 30)

2. (a) Apply calculus residues to prove that: 
cosh
cosh

ax
x

dx
π0

∞z  = 
1
2 2

sec
a

.

(b) If Fc(p) = 
1
2

 tan–1 2
2p

, then find f(x).

(c) Show that Poisson distribution is a limiting form of binomial distribution when p is
a very small and n is very large. Also find mean and variance of Poisson distribution.

(d) If p = p(x) = p0 + p1x + p2x
2 and q = q(x) = q0 + q1x + q2x

2, then the inner product is
defined by:

(p, q) = p0q0 + p1q1 + p2q2 for the vectors X1 = 1 + 2x + 3x2, X2 = 3 + 5x + 5x2,

X3 = 2 + x + 8x2. Find the orthogonal vectors.
(e) Use Gauss-Seidel method to solve the following system of simultaneous equations:

83x + 11y – 4z = 95
7x + 52y + 13z = 104
  3x + 8y + 29z = 71

Perform four iterations.
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SECTION–C
Note: All questions of this Section are compulsory. Attempt any two parts from each question:

(10 × 5 = 50)
3. (a) In a two-dimensional fluid flow, the stream function is

ψ = – 
y

x y2 2+
, find the velocity potential Φ.

(b) Expand f(z) = 
z

z z( – ) ( – )1 2
 in Laurent series vaild for region:

(i) | z – 1 | > 1 (ii) 0 < | z – 2 | < 1.
(c) State and prove Cauchy’s Theorem.

4. (a) Find Fourier cosine transform of 
1

1 2+ x
 and hence find Fourier sine Transform of 

x
x1 2+

.

(b) Find the inverse Z-transform of F(z) = 
9

2 3 1

3

3
z

z z( – ) ( – )
.

(c) Solve by Z-transform the difference equation:
yk + 2 – 2yk + 1 + yk = 3k + 5, y(0) = 0, y(1) = 1.

5. (a) In a certain factory manufacturing razor blades, there is a small chance of 0.002 for
any blade to be defective. The blades are supplied in packets of 10. Use suitable
distribution to calculate the approximate number of packets containing no defective,
one defective and two defective blades respectively in a consignment of 20,000 packets.

(b) Find the moment generating function of the exponential distribution:

f(x) = 
1
c

 e–x/c, 0 ≤ x ≤ ∞, c > 0. Hence find its mean and S.D.

(c) Calculate the first four moments about the mean for the following data:
Class-interval: 0–10 10–20 20–30 30–40 40–50
Frequency: 10 20 40 20 10

6. (a) Examine the following vectors for linear dependence and find the relation, if it exists:
X1 = (1, 2, 1), X2 = (3, 1, 5), X3 = (3, – 4, 5).

(b) Let V be the vector space of all real valued continuous functions over R. Then show
that the solutions set W of the differential equation:

3 11
2

2
d y
dx

dy
dx

+  – 4y = 0, is a subspace of V.

(c) Show that the intersection of any two subspaces of a vector space is also a space of
the same.

7. (a) Use Newton’s Divided difference formula to find f(x) from the following data:
x : 0 1 2 4 5 6
f(x): 1 14 15 5 6 19

(b) Compute the rate of convergence of Newton-Raphson method.
(c) Apply Runge-Kutta fourth order method to find an approximate value of y when

x = 0.2, given that 
dy
dx

 = x + y with initial condition y = 1 at x = 0.
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Table 1: NORMAL TABLE
AREAS UNDER THE STANDARD NORMAL

CURVE =
1

2 0
2

2

π

z z

e dzz −

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .0000 .0040 .0080 .0120 .0160 .0199  .0239 .0279 .0319 .0359
0.1 .0398 .0438 .0478 .0517 .0557 .0596  .0636 .0675 .0714 .0754
0.2 .0793 .0832 .0871 .0910 .0948 .0987  .1026 .1064 .1103 .1141
0.3 .1179 .1217 .1255 .1293 .1331 .1368  .1406 .1443 .1480 .1517
0.4 .1554 .1591 .1628 .1664 .1700 .1736  .1772 .1808 .1844 .1879
0.5 .1915 .1950 .1985 .2019 .2054 .2088  .2123 .2157 .2190 .2224

0.6 .2257 .2291 .2324 .2357 .2389 .2422  .2454 .2485 .2517 .2549
0.7 .2580 .2611 .2642 .2673 .2704 .2734  .2764 .2794 .2823 .2852
0.8 .2881 .2910 .2939 .2967 .2995 .3023  .3051 .3078 .3106 .3133
0.9 .3159 .3186 .3212 .3238 .3264 .3289  .3315 .3340 .3365 .3389
1.0 .3413 .3438 .3461 .3485 .3508 .3531  .3554 .3577 .3599 .3621

1.1 .3643 .3665 .3686 .3708 .8729 .3749  .3770 .3790 .3810 .3830
1.2 .3849 .3869 .3888 .3907 .3925 .3944  .3962 .3980 .3997 .4015
1.3 .4032 .4049 .4066 .4082 .4099 .4115  .4131 .4147 .4162 .4177
1.4 .4192 .4207 .4222 .4236 .4251 .4255  .4279 .4292 .4306 .4319
1.5 .4332 .4345 .4357 .4370 .4382 .4394  .4406 .4418 .4429 .4441

1.6 .4452 .4463 .4474 .4484 .4495 .4505  .4515 .4525 .4535 .4545
1.7 .4554 .4564 .4573 .4582 .4591 .4599  .4608 .4616 .4625 .4633
1.8 .4641 .4649 .4656 .4664 .4671 .4678  .4686 .4693 .4699 .4706
1.9 .4713 .4719 .4726 .4732 .4738 .4744  .4750 .4756 .4761 .4767
2.0 .4772 .4778 .4783 .4788 .4793 .4798  .4803 .4808 .4812 .4817

2.1 .4821 .4826 .4830 .4834 .4838 .4842  .4846 .4850 .4854 .4857
2.2 .4861 .4864 .4868 .4871 .4875 .4878  .4881 .4884 .4887 .4890
2.3 .4893 .4896 .4898 .4901 .4904 .4906  .4909 .4911 .4913 .4916
2.4 .4918 .4920 .4922 .4925 .4927 .4929  .4931 .4932 .4934 .4936
2.5 .4938 .4940 .4941 .4943 .4945 .4946  .4948 .4949 .4951 .4952

2.6 .4953 .4955 .4956 .4957 .4959 .4930  .4961 .4962 .4963 .4964
2.7 .4965 .4966 .4967 .4968 .4969 .4970  .4971 .4972 .4973 .4974
2.8 .4974 .4975 .4976 .4977 .4977 .4978  .4979 .4979 .4980 .4981
2.9 .4981 .4982 .4982 .4983 .4984 .4984  .4985 .4985 .4986 .4986
3.0 .4987 .4987 .4987 .4988 .4988 .4989  .4999 .4989 .4990 .4990

3.1 .4990 .4991 .4991 .4991 .4992 .4992  .4992 .4992 .4993 .4993
3.2 .4993 .4993 .4994 .4994 .4994 .4994  .4994 .4995 .4995 .4995
3.3 .4995 .4995 .4995 .4996 .4996 .4996  .4996 .4996 .4996 .4997
3.4 .4997 .4997 .4997 .4997 .4997 .4997  .4997 .4997 .4997 .4998
3.5 .4998 .4998 .4998 .4998 .4998 .4998  .4998 .4998 .4998 .4998

APPENDIX

(i)

z = 0 z
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Table 2 : SIGNIFICANT VALUES tv (α) OF t-DISTRIBUTION
(TWO TAIL AREAS) [| t | > tv(α)] = α

d.f. Probability (Level of Significance)

(ν) 0.50 0.10 0.05 0.02 0.01 0.001

1 1.00 6.31 12.71 31.82 63.66 636.62
2 0.82 0.92 4.30 6.97 6.93 31.60
3 0.77 2.32 3.18 4.54 5.84 12.94
4 0.74 2.13 2.78 3.75 4.60 8.61
5 0.73 2.02 2.57 3.37 4.03 6.86

6 0.72 1.94 2.45 3.14 3.71 5.96
7 0.71 1.90 2.37 3.00 3.50 5.41
8 0.71 1.80 2.31 2.90 3.36 5.04
9 0.70 1.83 2.26 2.82 3.25 4.78

10 0.70 1.81 2.23 2.76 3.17 4.59

11 0.70 1.80 2.20 2.72 3.11 4.44
12 0.70 1.78 2.18 2.68 3.06 4.32
13 0.69 1.77 2.16 2.05 3.01 4.22
14 0.69 1.76 2.15 2.62 2.98 4.14
15 0.69 1.75 2.13 2.60 2.95 4.07

16 0.69 1.75 2.12 2.58 2.92 4.02
17 0.69 1.74 2.11 2.57 2.90 3.97
18 0.69 1.73 2.10 2.55 2.88 3.92
19 0.69 1.73 2.09 2.54 2.86 3.88
20 0.69 1.73 2.09 2.53 2.85 3.85

21 0.69 1.72 2.08 2.52 2.83 3.83
22 0.69 1.72 2.07 2.51 2.42 3.79
23 0.69 1.71 2.07 2.50 2.81 3.77
24 0.69 1.71 2.06 2.49 2.80 3.75
25 0.68 1.71 2.06 2.49 2.79 3.73

26 0.68 1.71 2.06 2.48 2.78 3.71
27 0.68 1.70 2.05 2.47 2.77 3.69
28 0.68 1.70 2.05 2.47 2.76 3.67
29 0.68 1.70 2.05 2.46 2.76 3.66
30 0.68 1.70 2.04 2.46 2.75 3.65

∞ 0.67 1.65 1.96 2.33 2.58 3.29
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APPENDIX (iii)

Table 3 : F-Distribution
Values of F for F-Distributions with 0.05 of the Area in the Right Tail

Degrees of freedom for numerator

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞

1 161 200 216 225 230 234 237 239 241 242 244 246 248 249 250 251 252 253 254

2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.5 19.5 19.5 19.5 19.5 19.5

3 10.1 9.55 9.28 9.12 9.01 9.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.37

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21

14 4.60 3.74 3.34 3.11 3.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13

15 4.54 3.68 3.29 3.06 3.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88

20 4.35 3.49 3.10 2.87 2.17 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.98 1.94 1.98 1.84 1.79 1.73

25 4.24 3.39 2.99 2.76 2.60 2.94 2.40 2.34 2.28 2.24 2.16 2.29 2.01 1.96 1.92 1.87 1.82 1.77 1.71

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.64 1.62

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25

∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00
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Table 4 : CHI-SQUARE
Significant Values χ2 (α) of Chi-Square Distribution Right Tail Areas

for Given Probability α,
P = Pr (χ2 > χ2 (α)) = α

And v is Degrees of Freedom (d.f.)

Degree of Probability (Level of Significance)
freedom (ν)

0.99 0.95 0.50 0.10 0.05 0.02 0.01

1 .000157 .00393 .455 2.706 3.841 5.214 6.635
2 .0201 .103 1.386 4.605 5.991 7.824 9.210
3 .115 .352 2.366 6.251 7.815 9.837 11.341
4 .297 .711 3.357 7.779 9.488 11.668 13.277
5 .554 1.145 4.351 9.236 11.070 13.388 15.086
6 .872 2.635 5.348 10.645 12.592 15.033 16.812
7 1.239 2.167 6.346 12.017 14.067 16.622 18.475
8 1.646 2.733 7.344 13.362 15.507 18.168 20.090
9 2.088 3.325 8.343 14.684 16.919 19.679 21.669

10 2.558 3.940 9.340 15.987 18.307 21.161 23.209

11 3.053 4.575 10.341 17.275 19.675 22.618 24.725
12 3.571 5.226 11.340 18.549 21.026 24.054 26.217
13 4.107 5.892 12.340 19.812 22.362 25.472 27.688
14 4.660 6.571 13.339 21.064 23.685 26.873 29.141
15 4.229 7.261 14.339 22.307 24.996 28.259 30.578
16 5.812 7.962 15.338 23.542 26.296 29.633 32.000
17 6.408 8.672 15.338 24.769 27.587 30.995 33.409
18 7.015 9.390 17.338 25.989 28.869 32.346 34.805
19 7.633 10.117 18.338 27.204 30.144 33.687 36.191
20 8.260 10.851 19.337 28.412 31.410 35.020 37.566

21 8.897 11.591 20.337 29.615 32.671 36.343 38.932
22 9.542 12.338 21.337 30.813 33.924 37.659 40.289
23 10.196 13.091 22.337 32.007 35.172 38.968 41.638
24 10.856 13.848 23.337 32.196 36.415 40.270 42.980
25 11.524 14.611 24.337 34.382 37.65 41.566 44.314
26 12.198 15.379 25.336 35.363 38.885 41.856 45.642
27 12.879 16.151 26.336 36.741 40.113 41.140 46.963
28 13.565 16.928 27.336 37.916 41.337 45.419 48.278
29 14.256 17.708 28.336 39.087 42.557 46.693 49.588
30 14.933 18.493 29.336 40.256 43.773 47.962 50.892

Note. For degrees of freedom (ν) greater than 30, the quantity 2 2 12χ ν− −  may be used as a normal

variate with unit variance.
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